浙教新版2017-2018学年浙江省宁波市镇海区八年级(上)期末数学试卷
<合集试卷3套>2018年宁波市八年级上学期期末教学质量检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图□ABCD 的对角线交于点O ,70ACD ∠=,BE AC ⊥,则ABE ∠的度数为( )A .50°B .40°C .30°D .20°【答案】D 【分析】先根据平行四边形的性质得到70BAC ACD ∠=∠=︒,再根据垂直的定义及三角形的内角和求出ABE ∠.【详解】∵四边形ABCD 为平行四边形,∴AB ∥CD ,∴70BAC ACD ∠=∠=︒∵BE AC ⊥∴ABE ∠=90°-BAC ∠=20°故选D.【点睛】此题主要考查平行四边形内的角度求解,解题的关键是熟知平行四边形的性质.2.估计15的运算结果应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间【答案】A【分析】根据算术平方根的定义由9<15<16可得到315<<1.【详解】解:∵9<15<16,∴315<<1.故选:A .【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.3.下列各图中,能表示y 是x 的函数的是( ) A . B . C . D .【答案】C【分析】根据函数的定义逐一判断即可.【详解】A 选项,当自变量x 取定一个值时,对应的函数值y 不唯一,不符合题意;B 选项,当自变量x 取定一个值时,对应的函数值y 不唯一,不符合题意;C 选项,当自变量x 取定一个值时,对应的函数值y 唯一确定,符合题意;D 选项,当自变量x 取定一个值时,对应的函数值y 不唯一,不符合题意.故选:C.【点睛】本题主要考查函数的定义,掌握函数的定义是解题的关键.4.如图,在四边形ABCD 中,AB=CD ,BA 和CD 的延长线交于点E ,若点P 使得S △PAB =S △PCD ,则满足此条件的点P ( )A .有且只有1个B .有且只有2个C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外)【答案】D【解析】试题分析:作∠E 的平分线,可得点P 到AB 和CD 的距离相等,因为AB=CD ,所以此时点P 满足S △PAB =S △PCD .故选D .考点:角平分线的性质.5.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:1x -,-a b ,3,21x +,a ,1x +分别对应下列六个字:益,爱,我,数,学,广,现将223(1)3(1)a x b x ---因式分解,结果呈现的密码信息可能是( )A .我爱学B .爱广益C .我爱广益D .广益数学【答案】C【分析】先运用提公因式法,再运用公式法进行因式分解即可.【详解】因为223(1)3(1)a x b x ---=23(1)()x a b --=3(1)(1)()x x a b +--所以结果呈现的密码信息可能是:我爱广益.故选:C【点睛】考核知识点:因式分解.掌握提公因式法和套用平方差公式是关键.6.同学们都玩过跷跷板的游戏,如图是一个跷跷板的示意图,立柱OC与地面垂直,OA=OB.当跷跷板的一头A着地时,∠AOA′=50°,则当跷跷板的另一头B着地时,∠COB′等于()A.25°B.50°C.65°D.130°【答案】C【分析】根据等腰三角形的性质即可得到结论.【详解】解:∵OA=OB=12 AB,∴OA′=OB′=12A′B′,∵AB=A′B′,∴OA=OB′,∵∠AOA′=50°,∴∠AOB′=180°﹣50°=130°,∵OC⊥AB′,∴∠COB′=12AOB∠'=65°,故选C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.7.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t=或154其中正确的结论有()A .1个B .2个C .3个D .4个【答案】C 【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案.【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩, 100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=,当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确; 综上可知正确的有①②③共三个,故选:C .【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.8.如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A.PD=PE B.OD=OE C.∠DPO=∠EPO D.PD=OP【答案】D【详解】∵∠1=∠2,PD⊥OA,PE⊥OB,∴PD=PE,∵OP=OP,∴Rt△POE≌Rt△POD(HL),∴OD=OE,∠DPO=∠EPO.∴A、B、C正确,D错误,故选D9.若等腰三角形的周长为15cm,其中一边为7cm,则该等腰三角形的底边长为()A.4cm B.4cm或7cm C.1cm或7cm D.7cm【答案】C【分析】分底为7cm和腰为7cm两种情况进行讨论,再根据三角形的三边关系进行验证.【详解】分两种情况讨论:①当底为7cm时,此时腰长为4cm和4cm,满足三角形的三边关系;②当腰为7cm时,此时另一腰为7cm,则底为1cm,满足三角形的三边关系;综上所述:底边长为1cm或7cm.故选:C.【点睛】本题考查了等腰三角形的性质及三角形的三边关系,分两种情况讨论是解答本题的关键.10.如果是个完全平方式,那么的值是()A.8 B.-4 C.±8 D.8或-4【答案】D【解析】试题解析:∵x2+(m-2)x+9是一个完全平方式,∴(x±3)2=x2±2(m-2)x+9,∴2(m-2)=±12,∴m=8或-1.故选D .二、填空题11.将数字 1657900 精确到万位且用科学记数法表示的结果为__________.【答案】1.66×1【分析】用科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,再对千位数的数字进行四舍五入即可.【详解】解:1657900=1.6579×1≈1.66×1.故答案为:1.66×1.【点睛】本题考查了科学记数法表示较大的数的方法,准确确定a 与n 值是关键.12.如图,点D 、E 分别在线段AB ,AC 上,AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是 (只写一个条件即可).【答案】∠B=∠C (答案不唯一).【解析】由题意得,AE=AD ,∠A=∠A (公共角),可选择利用AAS 、SAS 、ASA 进行全等的判定,答案不唯一:添加,可由AAS 判定△ABE ≌△ACD ;添加AB=AC 或DB=EC 可由SAS 判定△ABE ≌△ACD ;添加∠ADC=∠AEB 或∠BDC=∠CEB ,可由ASA 判定△ABE ≌△ACD .13.若分式方程244x a x x =+--无解,则a =_____________. 【答案】1【分析】先通过去分母,把分式方程化为整式方程,求出8x a =-,根据分式方程无解,可得8x a =-是分式方程有增根,进而即可求解.【详解】244x a x x =+--, 去分母得:2(4)x x a =-+, 解得:8x a =-,∵分式方程244x a x x =+--无解, ∴8x a =-是增根,即:8-a=1,∴a=1.故答案是:1.【点睛】本题主要考查分式方程的增根,学会去分母,把分式方程化为整式方程,熟练掌握分式方程的增根的意义:使分式方程的分母等于零的根,是解题的关键.14.若点(),3P a 在第二象限,且到原点的距离是5,则a =________.【答案】-4【分析】根据点(),3P a 到原点的距离是5,即可列出关于a 的方程,求出a 值,再根据(),3P a 在第二象限,a <0,取符合题意的a 值即可.【详解】∵点(),3P a 到原点的距离是5∴22235a +=解得a=±4又∵(),3P a 在第二象限∴a <0∴a=-4故答案为:-4【点睛】本题考查了坐标到原点的距离求法,以及直角坐标系中不同象限内点的坐标特点.15.如图,在一张长为7cm ,宽为5cm 的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为_____.【答案】82cm 或2152cm 或272cm【详解】分三种情况计算:(1)当AE=AF=4时,如图:∴S△AEF=12AE•AF=12×4×4=82cm;(2)当AE=EF=4时,如图:则BE=5﹣4=1,BF=22224115 EF BE-=-=,∴S△AEF=12•AE•BF=12×4×15=2152cm;(3)当AE=EF=4时,如图:则DE=7﹣4=3,DF=2222437 EF DE=-=-,∴S△AEF=12AE•DF=12×4×7=272cm;16.如图AB∥CD,∠B=72°,EF平分∠BEC,EG⊥EF,则∠DEG=______°.【答案】1【解析】直接利用平行线的性质得出∠BEC=108°,再利用角平分线的定义得出答案.【详解】解:∵AB∥CD,∠B=72°,∴∠BEC=108°,∵EF平分∠BEC,∴∠BEF=∠CEF=54°,∵∠GEF=90°,∴∠GED=90°﹣∠FEC=1°.故答案为:1.【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出∠BEC 的度数是解题关键.17.x 2{1y ==是方程2x -ay =5的一个解,则a =____. 【答案】-1【解析】试题解析:把x 21y =⎧⎨=⎩代入方程2x-ay=5,得:4-a=5, 解得:a=-1.三、解答题18.利用“同角的余角相等”可以帮助我们得到相等的角,这个规律在全等三角形的判定中有着广泛的运用. (1)如图①,B ,C ,D 三点共线,AB BD ⊥于点B ,DE BD ⊥于点D ,AC CE ⊥,且AC CE =.若6AB DE +=,求BD 的长.(2)如图②,在平面直角坐标系中,ABC ∆为等腰直角三角形,直角顶点C 的坐标为(10),,点A 的坐标为(21)-,.求直线AB 与y 轴的交点坐标. (3)如图③,90ACB ∠=︒,OC 平分AOB ∠,若点B 坐标为0b (,),点A 坐标为(0)a ,.则AOBC S =四边形 .(只需写出结果,用含a ,b 的式子表示)【答案】(1)6;(2)(0,2);(3)()24b a +【分析】(1)利用AAS 证出△ABC ≌△CDE ,根据全等三角形的性质可得AB=CD ,BC=DE ,再根据BD=CD+BC 等量代换即可求出BD ;(2)过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,利用AAS 证出△ADC ≌△CEB ,根据全等三角形的性质可得AD=CE ,CD=BE ,根据点A 和点C 的坐标即可求出点B 的坐标,然后利用待定系数法求出直线AB 的解析式,即可求出直线AB 与y 轴的交点坐标;(3)过点C 作CD ⊥y 轴于D ,CE ⊥x 轴于E ,根据正方形的判定可得四边形OECD 是正方形,然后利用ASA 证出△DCA ≌△ECB ,从而得出DA=EB ,S △DCA =S △ECB ,然后利用正方形的边长相等即可求出a 、b 表示出DA 和正方形的边长OD ,然后根据ECB AOBC AOEC S S S =+四边形四边形即可推出AOBC S 四边形=OECD S 正方形,最后求正方形的面积即可.【详解】解:(1)∵AB BD ⊥,DE BD ⊥,AC CE ⊥ ∴∠ABC=∠CDE=∠ACE=90°∴∠A +∠ACB=90°,∠ECD +∠ACB=180°-∠ACE=90° ∴∠A=∠ECD在△ABC 和△CDE 中ABC CDE A ECDAC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CDE∴AB=CD ,BC=DE∴BD=CD +BC=6AB DE +=(2)过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E∵△ABC 为等腰直角三角形∴∠ADC=∠CEB=∠ACB=90°,AC=CB∴∠DAC +∠ACD=90°,∠ECB +∠ACD=180°-∠ACB=90° ∴∠DAC =∠ECB在△ADC 和△CEB 中ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB∴AD=CE ,CD=BE∵点C 的坐标为()1,0,点A 的坐标为()21-,∴CO=1,AD=1,DO=2,∴OE=OC +CE= OC +AD=2,BE=CD=CO +DO=3,∴点B 的坐标为(2,3)设直线AB 的解析式为y=kx +b将A 、B 两点的坐标代入,得1232k b k b=-+⎧⎨=+⎩ 解得:122k b ⎧=⎪⎨⎪=⎩∴直线AB 的解析式为122y x =+ 当x=0时,解得y=2∴直线AB 与y 轴的交点坐标为(0,2);(3)过点C 作CD ⊥y 轴于D ,CE ⊥x 轴于E∵OC 平分∠AOB∴CD=CE∴四边形OECD 是正方形∴∠DCE=90°,OD=OE∵∠ACB=90°∴∠DCA +∠ACE=∠ECB +∠ACE=90°∴∠DCA=∠ECB在△DCA 和△ECB 中DCA ECB CD CECDA CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DCA ≌△ECB∴DA=EB ,S △DCA =S △ECB∵点B 坐标为()0b ,,点A 坐标为()0a , ∴OB=b ,OA=a∵OD=OE∴OA +DA=OB -BE即a +DA=b -DA∴DA=2b a -∴OD= OA +DA=2b a + ECB AOBC AOEC S S S=+四边形四边形 =DCA AOEC S S+四边形=OECD S 正方形 = DA 2 =22b a +⎛⎫ ⎪⎝⎭ =()24b a +故答案为:()24b a +.【点睛】 此题考查的是全等三角形的判定及性质、同角的余角相等、求一次函数的解析式和正方形的判定及性质,掌握构造全等三角形的方法、全等三角形的判定及性质、同角的余角相等、利用待定系数法求一次函数的解析式和正方形的判定及性质是解决此题的关键.19.如图,已知函数 y=x+1 的图象与 y 轴交于点 A ,一次函数 y=kx+b 的图象经过点 B (0,﹣1),与x 轴 以及 y=x+1 的图象分别交于点 C 、D ,且点 D 的坐标为(1,n ),(1)则n= ,k= ,b= ;(2)函数 y=kx+b 的函数值大于函数 y=x+1 的函数值,则x 的取值范围是 ;(3)求四边形 AOCD 的面积;(4)在 x 轴上是否存在点 P ,使得以点 P ,C ,D 为顶点的三角形是直角三角形?若存在求出点 P 的坐标; 若不存在,请说明理由.【答案】(1)2,3,-1;(2)1x >;(3)5;6(4)(1,0)P 或'(7,0).P【解析】试题分析:(1)对于直线1y x =+,令0x =求出y 的值,确定出A 的坐标,把B 坐标代入y kx b =+中求出b 的值,再将D 坐标代入1y x =+求出n 的值,进而将D 坐标代入求出k 的值即可;由两个一次函数解析式,结合图象确定出x 的范围;过D 作DE 垂直于x 轴,四边形AOCD 的面积等于梯形AOED 面积减去三角形CDE 面积,求出即可;在x 轴上存在点P ,使得以点P 、C 、D 为顶点的三角形是直角三角形,理由:分两种情况考虑:•'DP DC ⊥;‚DP CP ⊥,分别求出P 点坐标即可.试题解析:(1)对于直线1y x =+,令0x =得到1y =,即A (0,1),把B (0,-1)代入y kx b =+中,得:1b =-,把D (1,n )代入1y x =+得:2n =,即D (1,2),把D 坐标代入1y kx =-中得:21k =-,即3k =,故答案为2,3,-1;一次函数1y x =+与31y x =-交于点D (1,2),由图象得:函数y kx b =+的函数值大于函数1y x =+的函数值x 时的取值范围是1x >;故答案为1x >;过D 作DE 垂直于x 轴,如图1所示,则CDE AOCD AOED S S S =-四边形梯形 11=()22AO DE OE CE DE +⋅-⋅1125(12)12;2236=+⨯-⨯⨯= (4)如图2,在x 轴上存在点P ,使得以点P 、C 、D 为顶点的三角形是直角三角形,理由:分两种情况考虑:•当'DP DC ⊥时,可得'1,P D DC k k ⋅=-DC 直线斜率为3,'P D ∴直线斜率为13-,(1,2),D 'P D ∴直线解析式为12(1),3y x -=--令0,7,y x =∴=即'(7,0);P ‚当DP CP ⊥时,由D 横坐标为1,得到P 点横坐标为1,P 在x 轴上,(1,0).P ∴考点:一次函数综合题.20.将下列各式因式分解(1)x 2(m ﹣2)+y 2(2﹣m )(2)x 2+2x ﹣15【答案】(1)(m ﹣2)(x+y )(x ﹣y );(2)(x+5)(x ﹣3)【分析】(1)将原式变形后,利用提公因式法和平方差公式进行因式分解;(2)利用十字相乘法进行分解即可.【详解】解:(1)原式=x 2(m ﹣2)﹣y 2(m ﹣2)=(m ﹣2)(x+y )(x ﹣y );(2)原式=(x+5)(x ﹣3).【点睛】本题考查提公因式法、公式法进行因式分解,将多项式变形为相应的形式是正确利用提公因式法、公式法的前提.21.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m -+有一个因式是()3x +,求另一个因式以及m 的值,解:设另一个因式为()x n +,得: ()()243x x m x x n -+=++, 则()2433x x m x n x n -+=+++ ∴343n m n +=-⎧⎨=⎩解得: 7,21n m =-=-∴另一个因式为()7x -,m 的值为21-,问题:仿照以上方法解答下列问题:已知二次三项式225x x k --有一个因式是()23x -,求另一个因式以及k 的值.【答案】另一个因式为()1x -,k 的值为3-【分析】设另一个因式为(x+n ),得2x 2-5x-k=(2x-3)(x+n )=2x 2+(2n-3)x-3n ,可知2n-3=-5,k=3n ,继而求出n 和k 的值及另一个因式.【详解】解:设另一个因式为(x+n ),得:2x 2-5x-k=(2x-3)(x+n )则2x 2-5x-k=2x 2+(2n-3)x-3n ,∴2353n k n -=-⎧⎨=⎩解得: 1,3n k =-=-∴另一个因式为()1x -,k 的值为3-,【点睛】本题考查因式分解的应用,正确读懂例题,理解如何利用待定系数法求解是解本题的关键.22.如图所示,在平面直角坐标系xOy 中,已知点(1,2)(3,1)(0,1),,---A B C(1)在图作出ABC 关于y 轴的称图形111A B C △(2)若将ABC 向右移2个单位得到A B C ''',则点A 的对应点A '的坐标是 .【答案】(1)作图见解析;(2) (1,2)【分析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1的位置,然后顺次连接即可; (2)根据网格结构找出点A 、B 、C 向右平移2个单位的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′的坐标.【详解】(1)△A 1B 1C 1如图所示;(2)△A′B′C′如图所示,A′(1,2);【点睛】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.如图,在ABC 中,点D 是BC 上一点,分别过点D 、C 两点作DE AB ⊥于点E ,CF AB ⊥于点F ,点H 是AC 边上一点,连接FH ,且12∠=∠.求证:FH BC ∥.【答案】见解析【分析】先根据题意判断DE CF ∥,得到1BCF ∠=∠,之后因为12∠=∠,即可得到2BCF ∠=∠,利用内错角相等,两直线平行,即可解答.【详解】解:证明:∵在ABC 中,点D 是BC 上一点,DE AB ⊥于点E ,CF AB ⊥于点F ,∴DE CF ∥,∴1BCF ∠=∠,∵12∠=∠,∴2BCF ∠=∠,∴FH BC ∥.【点睛】本题考查的主要是平行线的性质和判定,在本题中,用到的相关知识有:垂直于同一条直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.24.解方程:()51511x x x +=-- ()211201x x x+=++ 【答案】 (1) 0x =; (2)无解【分析】(1)两边乘以()1x -去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2) 两边乘以()1x x +去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)方程两边都乘以()1x -去分母得:()551x x +-=,去括号移项合并得:40x =,解得:0x =,经检验0x =是分式方程的解;(2)方程两边都乘以()1x x +去分母得:10x +=,移项得:1x =-,经检验:1x =-时,()10x x +=,∴1x =-是分式方程的增根,∴原方程无解.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.25.先化简,再求值:(11x +﹣1)÷21x x -,其中x =2 【答案】-1【分析】先对括号内的式子进行通分,再将除法转化为乘法,并对分子、分母因式分解,最后约分即可得到最简形式1-x;接下来将x=2代入化简后的式子中进行计算即可求得答案.【详解】解:原式=x x+x-x+1x(1)(1)=﹣x+1当x=2时原式=﹣2+1=﹣1.【点睛】本题考查分式的混合运算,求代数式的值.在对分式进行化简时,先观察分式的特点,运用合适的运算法则进行化简.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中的假命题是( )A .三角形的一个外角大于内角B .同旁内角互补,两直线平行C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解 D .方差是刻画数据离散程度的量【答案】A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求;同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求.故选:A【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键.2.如图,ABC 中,90ACB ∠=︒,2AC =,3BC =.设AB 长是m ,下列关于m 的四种说法:①m 是无理数;②m 可以用数轴上的一个点来表示;③m 是13的算术平方根;④23m <<.其中所有正确说法的序号是( )A .①②B .①③C .①②③D .②③④ 【答案】C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB =90°,∴在Rt ABC 中,m =AB 22AC BC +13故①②③正确,∵m 2=13,9<13<16,∴3<m <4,故④错误,故选:C .【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型. 3.下列各式中,相等关系一定成立的是( )A .22()()x y y x -=-B .2(6)(6)6x x x +-=-C .222()x y x y +=+D .6(2)(2)(2)(6)x x x x x -+-=--【答案】A【分析】用平方差公式和完全平方公式分别计算,逐项判断即可.【详解】解:A .22()()x y y x -=-,故A 正确;B .应为2(6)(6)36x x x +-=-,故B 错误;C .应为222()2x y x y xy +=++,故C 错误;D .应为6(2)(2)(2)(6)x x x x x -+-=--,故D 错误.故选A .【点睛】本题考查平方差公式及完全平方公式的计算.4.A ,B 两地相距80km ,甲、乙两人骑车分别从A ,B 两地同时相向而行,他们都保持匀速行驶.如图,l 1,l 2分别表示甲、乙两人离B 地的距离y (km )与骑车时间x (h )的函数关系.根据图象得出的下列结论,正确的个数是( )①甲骑车速度为30km/小时,乙的速度为20km/小时;②l 1的函数表达式为y=80﹣30x ;③l 2的函数表达式为y=20x ; ④小时后两人相遇.A.1个B.2个C.3个D.4个【答案】D【解析】根据速度=路程÷时间,即可求出两人的速度,利用待定系数法求出一次函数和正比例函数解析式即可判定②③正确,利用方程组求出交点的横坐标即可判断④正确.【详解】解:甲骑车速度为=30km/小时,乙的速度为=20km/小时,故①正确;设l1的表达式为y=kx+b,把(0,80),(1,50)代入得到:,解得,∴直线l1的解析式为y=﹣30x+80,故②正确;设直线l2的解析式为y=k′x,把(3,60)代入得到k′=20,∴直线l2的解析式为y=20x,故③正确;由,解得x=,∴小时后两人相遇,故④正确;正确的个数是4个.故选:D.【点睛】本题考查一次函数的应用,速度、时间、路程之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.下列标志中,不是轴对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形的性质对各项进行判断即可.【详解】A. 是轴对称图形;B. 不是轴对称图形;C. 是轴对称图形;D. 是轴对称图形;故答案为:B .【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的性质是解题的关键.6.若不等式组30x ax >⎧⎨-≤⎩,只有三个正整数解,则a 的取值范围为( ) A .0a 1≤< B .0a 1<< C .0a 1<≤ D .0a 1≤≤【答案】A【解析】解不等式组得:a<x ≤3,因为只有三个整数解,∴0≤a<1;故选A .7.△ABC 中,AB =AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC=1.,则∠A 的度数是( )A .35︒B .40︒C .70︒D .110︒【答案】B【解析】设∠A 的度数是x ,则∠C=∠B=1802x-,∵BD 平分∠ABC 交AC 边于点D∴∠DBC=1804x-, ∴1802x-+1804x-+1=180°,∴x=40°,∴∠A 的度数是40°.故选:B.8.已知x-y=3,12x z -=,则()()22554y z y z -+-+的值等于( )A .0B .52 C .52- D .25【答案】A【分析】此题应先把已知条件化简,然后求出y-z 的值,代入所求代数式求值即可.【详解】由x-y=3,12x z -=得:()()x z x y y z ---=-15322=-=-;把52-代入原式,可得255252525255=0224424⎛⎫⎛⎫-+-+-+= ⎪ ⎪⎝⎭⎝⎭. 故选:A .【点睛】此题考查的是学生对代数式变形方法的理解,这一方法在求代数式值时是常用办法.9.下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,13 【答案】C【分析】根据勾股数的定义:有a 、b 、c 三个正整数,满足a 2+b 2=c 2,称为勾股数.由此判定即可.【详解】解:A 、32+42=52,能构成勾股数,故选项错误;B 、62+82=102,能构成勾股数,故选项错误C 、42+62≠82,不能构成勾股数,故选项正确;D 、52+122=132,能构成勾股数,故选项错误.故选:C .【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.10.如果多项式221155abc ab a bc -+-的一个因式是15ab -,那么另一个因式是( ) A .5c b ac -+B .5c b ab +-C .15c b ab -+D .15c b ab +- 【答案】A 【分析】多项式先提取公因式15ab -,提取公因式后剩下的因式即为所求. 【详解】解:22111(5)555abc ab a bc ab c b ac -+-=--+, 故另一个因式为(5)c b ac -+,故选:A .【点睛】此题考查了因式分解-提取因式法,找出多项式的公因式是解本题的关键.也是解本题的难点,要注意符号.二、填空题11.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.【答案】1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案为1.考点:多边形内角与外角.12.甲、乙两人骑自行车匀速同向行驶,乙在甲前面100米处,同时出发去距离甲1300米的目的地,其中甲的速度比乙的速度快.设甲、乙之间的距离为y 米,乙行驶的时间为x 秒,y 与x 之间的关系如图所示,则甲的速度为每秒___________米.【答案】6【解析】由函数图像在B 点处可知50秒时甲追上乙,C 点为甲到达目的地,D 点为乙达到目的地,故可设甲的速度为x ,乙的速度为y ,根据题意列出 方程组即可求解.【详解】依题意,设甲的速度为x 米每秒,乙的速度为y 米每秒,由函数图像可列方程50()1001300100300x y y -=⎧⎨-=⎩解得x=6,y=4,∴甲的速度为每秒6米故填6.【点睛】此题主要考查函数图像的应用,解题的关键是根据函数图像得到实际的含义,再列式求解.13.已知2()40m n -=,2()4000m n +=,则22m n +的值为____.【答案】2020【分析】已知等式利用完全平方公式化简整理即可求出未知式子的值.【详解】∵2()40m n -=,2()4000m n += ∴()()2222400040202022m n m n m n ++-++=== 故答案是:2020【点睛】 本题考查了完全平方公式,熟练掌握公式是解题的关键.14.若关于x 的方程32211x m x x -=+++无解,则m 的值为________.【答案】5-【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【详解】去分母得:3x−2=2x+2+m,由分式方程无解,得到x+1=0,即x=−1,代入整式方程得:−5=−2+2+m,解得:m=−5,故答案为-5.【点睛】此题考查分式方程的解,解题关键在于掌握运算法则.15.一件工作,甲独做需a小时完成,乙独做需b小时完成,则甲、乙两人合作需的小时数是______.【答案】ab a b +【分析】设总工作量为1,根据甲独做a小时完成,乙独做b小时完成,可以表示出两人每小时完成的工作量,进而得出甲、乙合做全部工作所需时间.【详解】解:∵一件工作,甲独做x小时完成,乙独做y小时完成,∴甲每小时完成总工作量的:1a,乙每小时完成总工作量的:1b∴甲、乙合做全部工作需:111aba b a b=+ +故填:aba b +.【点睛】此题考查了列代数式,解决问题的关键是读懂题意,根据关键描述语,找到所求的量的等量关系,当总工作量未知时,可设总工作量为1.16.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是____ ___【答案】15cm【详解】在△ABC中,边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,AE=BE,AD=BD,△ADC•的周长为9cm,即AC+CD+AD=9,则△ABC的周长=AB+BC+AC=AE+BE+BD+CD+AC=AE+BE+AD+CD+AC=6+9=15cm【点睛】本题考查垂直平分线,解答本题的关键是掌握垂直平分线的概念和性质,运用其来解答本题17.小强从镜子中看到的电子表的读数是15:01,则电子表的实际读数是______.【答案】10:51【解析】由镜面对称的特点可知:该电子表的实际读数是:10:51.故答案为10:51.三、解答题18.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=1.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)2【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=2.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ ,∵PF ∥AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=2, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键. 19.如图,在平面直角坐标系中,点A ,B 分别在y 轴,x 轴正半轴上.(1)OAB ∠的平分线与ABO ∠的外角平分线交于点C ,求C ∠的度数;(2)设点A ,B 的坐标分别为()0,a ,(),0b ,且满足224250a a b b -+-+=,求OAB S 的面积; (3)在(2)的条件下,当ABD △是以AB 为斜边的等腰直角三角形时,请直接写出点D 的坐标.【答案】(1)45°;(2)1;(3)(1.5,1.5)或(-0.5,0.5)【分析】(1)根据角平分线的定义即可得出∠BAC=12∠OAB 、∠DBA=12∠EBA ,再根据三角形的外角的性质即可得出∠C=12∠AOB=45°; (2)利用非负数的性质求出a ,b 的值,即可求得OAB S 的面积;(3)作DE ⊥x 轴于E ,DF ⊥y 轴与F ,可得△DEB ≌△DFA ,则BE=AF ,DF=DE ,推出四边形OEDF 是正方形,OE=OF ,设BE=AF=x ,则OA-x=OB+x,求出x 的值,即可得D 的坐标,同理求出点D 1的坐标.【详解】解:(1)∵AC 平分∠OAB ,BD 平分∠EBA ,∴∠BAC=12∠OAB 、∠DBA=12∠EBA , ∵∠EBA=∠OAB+∠AOB , ∴∠DBA=12(∠OAB+∠AOB )=∠C+∠CAB , ∴∠C=12(∠OAB+∠AOB )-∠CAB =12(∠OAB+∠AOB )-12∠OAB =12∠AOB =45°;(2)∵且满足224250a a b b -+-+=,∴2244210a a b b -++-+=()()22210a b -+-= ∴a=2,b=1,。
[试卷合集3套]宁波市2018年八年级上学期期末统考数学试题
![[试卷合集3套]宁波市2018年八年级上学期期末统考数学试题](https://img.taocdn.com/s3/m/dc11f1bb011ca300a6c390f2.png)
【点睛】
此题主要考查平行四边形内的角度求解,解题的关键是熟知平行四边形的性质.
2.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm,在容器内壁离容器底部4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm,则该圆柱底面周长为()cm.
A.4次B.3次C.2次D.1次
【答案】B
【详解】试题解析:∵四边形ABCD是平行四边形,
∴BC=AD=12,AD∥BC,
∵四边形PDQB是平行四边形,
∴PD=BQ,
∵P的速度是1cm/秒,
∴两点运动的时间为12÷1=12s,
∴Q运动的路程为12×4=48cm,
动以后,以P、D、Q、B四点组成平行四边形的次数有3次,
故选:B.
考点:平行四边形的判定与性质
7.下列交通标志中,是轴对称图形的是()
A. B. C. D.
【答案】D
【分析】根据轴对称的概念:一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就是轴对称图形即可得出答案.
【详解】解:A、不是轴对称图形,故本选项不合题意;
B、不是轴对称图形,故本选项不合题意;
C、不是轴对称图形,故本选项不合题意;
D、是轴对称图形,故本选项符合题意;
故选:D.
【点睛】
本题主要考察了轴对称图形,掌握轴对称图形的概念是解题的关键.
8.如图,在▱ABCD中,AB=2.6,BC=4,∠ABC的平分线交CD的延长线于点E,则DE的长为( )
A.2.6B.1.4C.3D.2
【答案】B
【分析】由平行四边形ABCD中,BE平分∠ABC,可证得△BCE是等腰三角形,继而利用DE=CE-CD,求得答案.
2017-2018学年度上学期期末考试八年级数学试卷1

浙教版2017-2018学年度上学期期末考试八年级数学试卷1(时间:120分钟 满分:120分 )一、用心选一选(每小题3分,共30分)1.下列图形中不一定是轴对称图形的是( )A.等腰三角形B.线段C.钝角D.直角三角形 2.下列命题是真命题的是( )A.若两个角相等,则它们是对顶角B.如果a b >,a c >,那么b c> C.两边和其中一边的对角对应相等的两个三角形全等 D.全等三角形的面积相等3.如图在△ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于点D ,若BCBD则点D 到AB 的 距离是()A.1B. 2C.D. 4.下列图象中,以方程240y x --=的解为坐标的点组成的图象是选项中的( ) +5.下列判断正确的是( )A. 35a a ->-B. a a ≥C.a a >- D. 2a a >6.等腰三角形一腰上的中线把这个三角形的周长分成1︰2两部分,已知这个三角形周长为36cm ,则个等腰三角形的底边为( )cm.A.4B.10C.20D.4或207.已知不等式:①2x -<-;②5x >;③2x <;④22x -<-,从这四个不等式中取两个,构成正整数解是3的不等式组是()A.①与②B.②与③C.③与④D.①与④ 8.在函数13y x =-中,自变量的取值范围是( ) A. 3x ≥- B. 3x ≥-且3x ≠ C. 3x ≥且3x ≠- D. 3x ≠-A. B. C. D.第3题图9. 将一次函数213y x =-+的图象,先向左平移3个单位长度,再向下5个单位长度,得到的函数解析式为( ) A. 26y x =-- B. 22y x =-- C. 27y x =-+ D. 23y x =-+ A.第一、二、三象限 B. 第二、三、四象限 C. 第一、三、四象限 D. 第一、二、四象限距离相等,则可选择的地址有 处. m解集为______.18.如图,在△ABC 中,FD 、EG 分别是AB 、AC 的垂直平分线,分别交BC 于点D 、E ,若BC =17cm,则△ADE 的周长是 .19.如图,△ABC ≌△ABE ≌△ADC ,若∠1︰∠2︰∠3=28︰5︰3,则∠α的度数是 .20. 在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4)点B 是x 轴正半轴上的整点,记△AOB 内部(不包括边界)的整点个数为m .当m =3时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为28时,m= .第17题图第18题图 第19题图三、专心答一答(共60分)21. (6分)请在下图方格中画出三个以AB 为腰的等腰三角形ABC .(要求:1、锐角三角形、直角三角形、钝角三角形各画一个;2、点C 在格点上;3、只需画出图形即可,不写画法;4、标上字母,每漏标一个扣1分.)23. (9分)先阅读理解下面的例题,再按要求解答: 例题:解一元二次不等式x 2-16>0. 解:∵x 2-16=(x +4)(x -4), ∴(x +4)(x -4)>0.由有理数的乘法法则“两数相乘,同号得正”,有 (1)4040x x +>⎧⎨->⎩或(2)4040x x +<⎧⎨-<⎩24. (9分)如图,在等腰△ABC 中,点D 是AB 上任一点,AE ⊥CD ,垂足为E ,CH ⊥AB ,垂足为H , 交A E 于点G .(1)若AG =CD ,求证:∠ACB =90°; (2)BD 与CG 相等吗?请说明理由.第22题图第24题图25.(10分)如图,l 1、l 2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是 2 000小时,照明效果一样.(1)根据图象分别求出l 1、l 2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)26.(8分)如图已知一块四边形草地ABCD ∠A=60°,∠B =∠D =90°,AB =28米,CD =16米,求这块草地的面积.第25题图 第27题图。
{3套试卷汇总}2018年宁波市八年级上学期期末统考数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.等腰三角形的两边分别等于5、12,则它的周长为 ( )A .29B .22C .22或29D .17 【答案】A【解析】试题解析:有两种情况:①当腰是12时,三边是12,12,5,它的周长是12+12+5=29; ②当腰是5时,三边是12,5,5,∵5+5<12,∴此时不能组成三角形.故选A .考点:1.等腰三角形的性质;2.三角形三边关系.2.当4x =-时,代数式3x +的值为( ).A .7B .1-C .7-D .1 【答案】B【分析】把4x =-代入即可求解.【详解】把4x =-代入3x +得3-4=-1故选B.【点睛】此题主要考查代数式求值,解题的关键把x 的值代入.3.216x kx ++是一个完全平方式,则k 等于( )A .8±B .8C .4±D .4 【答案】A【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可得出结论.【详解】解:∵216x kx ++是完全平方式,∴()222222448164x x kx x k x x x ++±=++==±+解得:8k =±故选A .【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键. 4.如果把分式2x y x +中x 和y 都扩大10倍,那么分式的值 ( ) A .扩大2倍B .扩大10倍C .不变D .缩小10倍【答案】C【分析】根据题意,将分式2x y x +换成10x ,10y ,再化简计算即可. 【详解】解:若x 和y 都扩大10倍,则102010(2)21010x y x y x y x x x +++==, 故分式的值不变,故答案为:C .【点睛】本题考查了分式的基本性质,解题的关键是用10x ,10y 替换原分式中的x ,y 计算.5.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只 雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为( )A .56156x y x y y x +=⎧⎨-=-⎩B .65156x y x y y x +=⎧⎨+=+⎩C .56145x y x y y x +=⎧⎨+=+⎩D .65145x y x y y x +=⎧⎨-=-⎩【答案】C【分析】根据题意,可以列出相应的方程组,从而可以解答本题.【详解】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x+6y =1(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x+y =5y+x, 故选C.【点睛】此题考查二元一次方程组应用,解题关键在于列出方程组6.如图,ABC ∆是直角三角形,90BAC ∠=︒,点D 、E 分别在BC 、AC 上,且AB AD AE ==. 下列结论:①45EDC ∠=︒,②12EBD EAD ∠=∠, ③当DA DC =时,ABD ∆是等边三角形,④当22.5C ∠=︒时,BD DE =,其中正确结论的个数有( )A .1个B .2个C .3个D .4个【答案】D 【分析】①②构造辅助圆,利用圆周角定理解决问题即可;③想办法证明BD =AD 即可;④想办法证明∠BAD =45°即可解决问题.【详解】解:如图,由题意:AB AD AE ==,以A 为圆心AB 为半径,作⊙A .∵1122EBD EAD BED BAD ∠=∠∠=∠,, ∴()11904522EDC EBD BED EAD BAD ∠=∠+∠=∠∠=⨯︒=︒+ ,故①②正确, 当DA DC =时,∠DAC =∠C ,∵∠BAD +∠DAC =90°,∠ABD +∠C =90°,∴∠BAD =∠ABD ,∴BD =AD ,∵AB =AD ,∴AB =AD =BD ,∴△ABD 是等边三角形,故③正确,当22.5C ∠=︒时,∠ABD =∠ADB =67.5°,∴∠BAD =180°−2×67.5°=45°,∴∠DAE =∠BAD =45°,∵AB =AE ,AD =AD ,∴△BAD ≌△EAD (SAS ),∴BD DE =,故④正确.故选:D .【点睛】本题考查全等三角形的判定和性质,圆周角定理,等腰三角形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.7.若a >b ,则下列结论不一定...成立的是( ) A .a+2>b+2B .-3a <-3bC .a 2>b 2D .1-4a <1-4b【答案】C【分析】根据不等式的性质逐项判断即得答案.【详解】解:A 、若a >b ,则a+2>b+2,故本选项结论成立,不符合题意;B 、若a >b ,则﹣3a <﹣3b ,故本选项结论成立,不符合题意;C 、若a >b ≥0,则a 2>b 2,若0≥a >b ,则a 2<b 2,故本选项结论不一定成立,符合题意;D 、若a >b ,则1-4a <1-4b ,故本选项结论成立,不符合题意.故选:C .【点睛】本题考查了不等式的性质,属于常考题型,熟练掌握不等式的性质是解题的关键.8.下列整式的运算中,正确的是( )A .236a a a =B .()325a a =C .325a a a +=D .()222ab a b = 【答案】D【分析】根据同底数幂的乘法,积的乘方,幂的乘方逐一判断即可.【详解】解:A 、235a a a =,故A 错误;B 、()326a a =,故B 错误;C 、3a 与2a 不是同类项,不能合并,故C 错误;D 、 ()222ab a b =,正确,故答案为:D .【点睛】本题考查了底数幂的乘法,积的乘方,幂的乘方,解题的关键是掌握幂的运算法则.9.如果关于x 的分式方程2122m x x x -=--无解,那么m 的值为( ) A .4B .4-C .2D .2- 【答案】B【分析】先解方程,去分母,移项合并得x=-2-m ,利用分式方程无解得出x=2,构造m 的方程,求之即可.【详解】解关于x 的分式方程2122m x x x -=--, 去分母得m+2x=x-2,移项得x=-2-m , 分式方程2122m x x x-=--无解, x=2,即-2-m=2,m=-4,故选择:B .【点睛】本题考查分式方程无解问题,掌握分式方程的解法,会处理无解的问题,一是未知数系数有字母,让系数为0,一是分式方程由增根.10.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )A .B .C .D .【答案】C 【分析】由题意可知该三角形为钝角三角形,其最长边上的高应在三角形内部,按照三角形高的定义和作法进行判断即可.【详解】解:三角形最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上. 故选C.【点睛】此题考查的是三角形高线的画法,无论什么形状的三角形,其最长边上的高都在三角形的内部,本题中最长边的高线垂直于最长边.二、填空题11.已知函数1()1f x x =+,则2f =______. 21 【分析】根据所求,令2x . 【详解】令2x 2122112(12)(21)f-===++-. 【点睛】本题考查了函数的定义,已知函数解析式,当x a =时,将其代入解析式即可得()f a ,本题需注意的是,12+不是最简式,需进行化简得出最后答案. 12.在平面直角坐标系中,把直线 y =-2x +3 沿 y 轴向上平移 3 个单位长度后,得到的直线函数关系式为__________.【答案】y=-2x+1【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+3=-2x+1.故答案为:y=-2x+1.【点睛】本题考查了一次函数图形的平移变换和函数解析式之间的关系,掌握一次函数的规律:左加右减,上加下减是解决此题的关键.13.如果一次函数y =x ﹣3的图象与y 轴交于点A ,那么点A 的坐标是_____.【答案】(0,﹣3)【分析】代入x=0求出与之对应的y 值,进而可得出点A 的坐标.【详解】解:当x =0时,y =x ﹣3=﹣3,∴点A 的坐标为(0,﹣3).故答案为:(0,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题关键.14.如果△ABC 的三边长分别为7,5,3,△DEF 的三边长分别为2x ﹣1,3x ﹣2,3,若这两个三角形全等,则x=__________.【答案】1【分析】根据全等三角形的对应边相等得到327x -=且215x -=或325x -=且217x -=,然后分别解两方程求出满足条件的x 的值.【详解】∵△ABC 与△DEF 全等,∴327x -=且215x -=,解得:3x =,或325x -=且217x -=,没有满足条件的x 的值.故答案为:1.【点睛】本题考查了全等三角形的性质:全等三角形的对应边相等.注意要分类讨论.15.如图,90C ∠=︒,12∠=∠,若10BC =,6BD =,则D 到AB 的距离为________。
{3套试卷汇总}2018年宁波市八年级上学期期末检测数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在下列命题中,真命题是( )A .同位角相等B .到角的两边距离相等的点在这个角的平分线上C .两锐角互余D .直角三角形斜边上的中线等于斜边的一半 【答案】D【分析】逐项作出判断即可.【详解】解:A. 同位角相等,是假命题,不合题意;B. 到角的两边距离相等的点在这个角的平分线上,是假命题,不合题意;C. 两锐角互余,是假命题,不合题意;D. 直角三角形斜边上的中线等于斜边的一半,是真命题,符合题意.故选:D【点睛】本题考查了同位角,互余,角平分线的判定,直角三角形性质,熟知相关定理是解题关键,注意B 选项,少了“在角的内部”这一条件.2.下列各数中,( )是无理数.A .1B .-2C .2πD .1.4 【答案】C【解析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比,逐一判定即可.【详解】A 选项,1是有理数,不符合题意;B 选项,-2是有理数,不符合题意;C 选项,2π是无理数,符合题意; D 选项,1.4是有理数,不符合题意;故选:C.【点睛】此题主要考查对无理数的理解,熟练掌握,即可解题.3.已知a b > ,则下列不等式中正确的是( )A .22a b ->-B .22a b <C .22a b ->-D .22a b +>+ 【答案】D【分析】根据不等式的性质解答即可.【详解】A. -2a<-2b ,故该项错误; B. 22a b >,故该项错误;C.2-a<2-b ,故该项错误;D. 22a b +>+正确,故选:D.【点睛】此题考查不等式的性质,熟记性质并熟练解题是关键.4.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( )A .13B .14C .15D .16【答案】C【解析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C .考点:多边形内角与外角.5.a ,b 是两个连续整数,若a <b ,则a+b 的值是( )A .7B .9C .21D .25 【答案】A的范围,即可得出a 、b 的值,代入求出即可.【详解】解:∵3<4,∴a =3,b =4,∴a +b =7,故选:A .【点睛】的范围,难度不是很大.6.点P (2018,2019)在第( )象限.A .一B .二C .三D .四 【答案】A【分析】根据各象限内点的坐标特征解答.【详解】解:点P (2018,2019)在第一象限.故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.下列运算中,结果正确的是( )A .x 3·x 3=x 6B .3x 2+2x 2=5x 4C .(x 2)3=x 5D .(x +y)2=x 2+y 2 【答案】A【分析】依据完全平方公式、幂的乘方、同底数幂的乘法、合并同类项的法则即可解答.【详解】A.x 3·x 3=x 6 ,正确; B.3x 2+2x 2=5x 2,故本选项错误;C.(x 2)3=x 6,故本选项错误;D.(x+y )2=x 2+2xy+y 2,故本选项错误;故选A .【点睛】本题考查了完全平方公式、合并同类项法则、同底数幂的乘法、幂的乘方的性质,需熟练掌握且区分清楚.8.不等式﹣2x >12的解集是( ) A .x <﹣14 B .x <﹣1 C .x >﹣14 D .x >﹣1【答案】A【解析】解:根据不等式的基本性质3,不等式两边同除以-2,即可得x <-14故选A .【点睛】此题主要考查了不等式的性质,利用不等式的基本性质3解题,关键是注意两边同时乘以或除以同一个负数,不等式的符号改变.9.在边长为a 的正方形中挖掉一个边长为b 的小正方形(a b >),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A .()()22a b a b a b -=+-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()2a ab a a b -=- 【答案】A 【分析】在左图中,大正方形减小正方形剩下的部分面积为a 2-b 2;因为拼成的长方形的长为a+b ,宽为a-b ,根据“长方形的面积=长×宽”可得:(a+b)(a-b),因为面积相等,进而得出结论.【详解】解:由图可知,大正方形减小正方形剩下的部分面积为a 2-b 2;拼成的长方形的面积:(a+b)(a-b),∴()()22a b a b a b -=+-. 故选:A .【点睛】此题主要考查了平方差公式的几何背景,解题的关键是求出第一个图的阴影部分面积,进而根据长方形的面积计算公式求出拼成的长方形的面积,根据面积不变得出结论.10.如图所示,在下列条件中,不能判断ABD △≌BAC 的条件是( )A .D C ∠=∠,BAD ABC ∠=∠B .BD AC =,BAD ABC ∠=∠ C .BAD ABC ∠=∠,ABD BAC ∠=∠D .AD BC =,BD AC =【答案】B 【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意; C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选择:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.二、填空题11.分式13x -有意义的条件是______. 【答案】3x ≠【分析】根据分式有意义,分母不等于0列式计算即可得解.【详解】根据题意得:30x -≠,解得:x≠1;故答案为:x≠1.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解答本题的关键.12.如图,已知△ABC 是等边三角形,D 是AC 边上的任意一点,点B ,C ,E 在同一条直线上,且CE =CD ,则∠E =_____度.【答案】1.【分析】根据等边三角形的性质得出∠ACB =60°,然后根据等腰三角形的性质以及三角形外角的性质即可求得∠E .【详解】解:∵△ABC 是等边三角形,∴∠ACB =60°,∵CE =CD ,∴∠E =∠CDE ,∵∠ACB =∠E+∠CDE ,∴∠E =12ACB ∠=1°,故答案为1.【点睛】本题考查等边三角形的性质,关键在于牢记基础知识,通过题目找到关键性质.13.已知x 、y 满足方程组521x y x y +=⎧⎨-=⎩,则代数式x y -=______. 【答案】-1 【分析】先利用加减消元法解方程,521x y x y +=⎧⎨-=⎩①②,把①+②得到3x=6,解得x=2,然后把x=2代入①可求出y ,最后把x 、y 的值都代入x-y 中进行计算即可;【详解】解:521x y x y +=⎧⎨-=⎩①②, 把①+②得:3x=6,解得x=2,把x=2代入①得2+y=5,解得y=3,∴方程组的解为23x y =⎧⎨=⎩, ∴231x y -=-=-;故答案为:-1;【点睛】本题主要考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.14.A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程____________. 【答案】48489x 4x 4+=+- 【分析】根据题意可列出相对应的方程,本题的等量关系为:顺流时间+逆流时间=9,从而可得解答本题;【详解】由题意可得, 顺流时间为:484x +;逆流时间为:484x -. 所列方程为:48489x 4x 4+=+-. 【点睛】本题主要考查由实际问题抽象出分式方程的知识点.15.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.【答案】t=﹣0.006h+1【解析】根据题意得到每升高1m 气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m 气温下降6℃,∴每升高1m 气温下降0.006℃,∴气温t (℃)与高度h (m )的函数关系式为t=﹣0.006h+1,故答案为:t=﹣0.006h+1.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.16.命题“对顶角相等”的逆命题是__________.【答案】相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题. 17.如图等边ABC ∆,边长为6,AD 是角平分线,点E 是AB 边的中点,则ADE ∆的周长为________.【答案】6+33【分析】由等腰三角形的三线合一的性质得到BD=CD,由勾股定理求出AD,由直角三角形斜边上的中线的性质求出DE,即可求出ADE ∆的周长.【详解】解:∵AB=6,AD 是角平分线,∴BD=CD=3,∴22AB AD +2263+33∵点E 是AB 边的中点,∴AE=3∴DE= 12AB=3 ∴ADE ∆的周长=AD+AE+DE=6+33故答案为6+33【点睛】 此题主要考查了等腰三角形的性质,勾股定理,,直角三角形斜边上的中线的性质,求出DE 和AD 的长是解决问题的关键..三、解答题18.(1)解方程:22510111x x x -+=+-- (2)先化简,再求值:22121121x x x x x x --⎛⎫-+÷⎪+++⎝⎭,其中2x =-. 【答案】(1)分式方程无解;(2)2x x --,2-.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】(1)去分母得:()()215110x x --+=-,即225510x x ---=-,解得:1x =,经检验:1x =是分式方程的增根,∴原分式方程无解;(2)22121121x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭221(1)(1)21121x x x x x x x x -+--⎡⎤=-÷⎢⎥++++⎣⎦ 22211(1)12x x x x x --++=⋅+- 2(2)(1)12x x x x x --+=⋅+- ()1x x =-+2x x =--,当2x =-时,原式()()2222=----=-.【点睛】本题考查了分式的化简求值以及解分式方程,熟练掌握运算法则是解本题的关键.19.如图,点B 在线段AD 上,//BC DE ,AB ED =,BC DB =,求证:AC EB =.【答案】证明见解析【分析】根据平行线的性质可得∠ABC=∠D ,再利用SAS 证明△ABC ≌△EDB ,根据全等三角形对应边相等即可得出结论.【详解】证明:∵//BC DE ,∴∠ABC=∠D ,又∵AB ED =,BC DB =,∴△ABC ≌△EDB (SAS ),∴AC EB =【点睛】本题考查全等三角形的判定定理.熟练掌握全等三角形的几种判定定理,并能结合题意选择合适的定理是解题关键.20.如图,AB ∥CD ,AE =DC ,AB =DE ,EF ⊥BC 于点F .求证:(1)△AEB ≌△DCE ;(2)EF 平分∠BEC .【答案】(1)见解析;(2)见解析【分析】(1)由SAS 即可得出△AEB ≌△DCE ;(2)由全等三角形的性质得出BE =CE ,由等腰三角形的性质即可得出结论.【详解】证明:(1)∵AB ∥CD ,∴∠A =∠D ,在△AEB 和△DCE 中,AB DE A D AE DC =⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△DCE (SAS );(2)∵△AEB ≌△DCE ,∴BE =CE ,△EBC 是等腰三角形,∵EF ⊥BC ,∴EF 平分∠BEC .【点睛】本题考查了全等三角形的判定和性质、等腰三角形的性质,解题的关键是熟练运用全等三角形的判定证全等.21.已知,点()()()0,1,2,0,4,3A B C .(1)求ABC ∆的面积;(2)画出ABC ∆关于x 轴的对称图形111A B C ∆.【答案】(1)4;(2)见解析【分析】(1)先确定出点A 、B 、C 的位置,再连接AC 、CB 、AB ,然后过点C 向x 、y 轴作垂线,垂足为D 、E ,根据ABC ODCE ABO ACE BCD S S S S S =---计算即可;(2)作出点()()()0,1,2,0,4,3A B C 关于x 轴的对称点111A B C 、、,再连接点111A B C 、、即可.【详解】(1)如图,确定出点A 、B 、C 的位置,连接AC 、CB 、AB ,过点C 向x 、y 轴作垂线,垂足为D 、E ,由图可知:ABC ODCE ABO ACE BCD S S S S S =--- 11134122423222=⨯-⨯⨯-⨯⨯-⨯⨯ 12143=---4=;(2)点()()()0,1,2,0,4,3A B C 关于x 轴的对称点为111(4,3)A B C -(0,-1)、(2,0)、,连接点111A B C 、、即为所求,如图所示:【点睛】本题主要考查的是点的坐标与图形的性质,明确ABC ODCE ABO ACE BCD S S S S S =---是解题的关键.22.解方程:28 4x-+1=2xx-.【答案】分式方程无解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:8+x2﹣4=x(x+2),整理得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.已知一次函数y=kx+b的图象过A(1,1)和B(2,﹣1)(1)求一次函数y=kx+b的表达式;(2)求直线y=kx+b与坐标轴围成的三角形的面积;(3)将一次函数y=kx+b的图象沿y轴向下平移3个单位,则平移后的函数表达式为,再向右平移1个单位,则平移后的函数表达式为.【答案】(1)y=﹣1x+3;(1)94;(3)y=﹣1x,y=﹣1x+1【分析】(1)把A、B两点代入可求得k、b的值,可得到一次函数的表达式;(1)分别令y=0、x=0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积;(3)根据上加下减,左加右减的法则可得到平移后的函数表达式.【详解】解:(1)∵一次函数y=kx+b的图象过A(1,1)和B(1,﹣1),∴121k bk b+=⎧⎨+=-⎩,解得23kb=-⎧⎨=⎩,∴一次函数为y=﹣1x+3;(1)在y=﹣1x+3中,分别令x=0、y=0,求得一次函数与两坐标轴的交点坐标分别为(0,3)、(32,0),∴直线与两坐标轴围成的三角形的面积为:S=12×3×32=94;(3)将一次函数y=﹣1x+3的图象沿y轴向下平移3个单位,则平移后的函数表达式为y=﹣1x,再向右平移1个单位,则平移后的函数表达式为y=﹣1(x﹣1),即y=﹣1x+1故答案为:y=﹣1x,y=﹣1x+1.【点睛】本题主要考查待定系数法求函数解析式,掌握待定系数法的应用关键是点的坐标,即把点坐标代入得到关于系数的方程组,求解即可.24.如图,已知直线334y x =-+与x 轴,y 轴分别交于点A ,B ,与直线y x =交于点C .点P 从点O 出发以每秒1个单位的速度向点A 运动,运动时间设为t 秒.(1)求点C 的坐标;(2)求下列情形t 的值;①连结BP ,BP 把ABO 的面积平分; ②连结CP ,若OPC 为直角三角形.【答案】(1)点C 的坐标为1212(,)77;(2)①t 的值为2;②t 的值为127或247. 【分析】(1)联立两条直线的解析式求解即可;(2)①根据三角形的面积公式可得,当BP 把ABO ∆的面积平分时,点P 处于OA 的中点位置,由此即可得出t 的值;②先由点C 的坐标可求出45COA ∠=︒,再分90OPC ∠=︒和90OCP ∠=︒两种情况,然后利用等腰直角三角形的性质求解即可.【详解】(1)由题意,联立两条直线的解析式得334y x y x⎧=-+⎪⎨⎪=⎩ 解得127127x y ⎧=⎪⎪⎨⎪=⎪⎩故点C 的坐标为1212(,)77; (2)①直线334y x =-+,令0y =得3304x -+=,解得4x = 则点A 的坐标为(4,0),即4OA = 当点P 从点O 向点A 运动时,t 的最大值为41OA = BP 将ABO ∆分成BOP ∆和BPA ∆两个三角形由题意得BOP BPA S S ∆∆=,即1122OB OP OB PA ⋅=⋅ 则OP PA =,即此时,点P 为OA 的中点122OP OA ∴==241OP t ∴==<,符合题意 故t 的值为2; ②由(1)点C 坐标可得2212121245,()()2777COA OC ∠=︒=+= 若OPC ∆为直角三角形,有以下2中情况:当90OPC ∠=︒时,OPC ∆为等腰直角三角形,且OP CP =由点C 坐标可知,此时127CP =,则127OP = 故1217OP t ==,且1247<,符合题意 当90OCP ∠=︒时,OPC ∆为等腰直角三角形,且OC CP = 由勾股定理得222427OP OC CP OC =+== 故2417OP t ==,且2447<,符合题意 综上,t 的值为127或247. 【点睛】本题考查了一次函数的几何应用、等腰三角形的判定与性质、勾股定理等知识点,掌握一次函数的图象与性质是解题关键.25.如图,AD 为ABC ∆的角平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,连接EF 交AD 于点O ,=60BAC ∠︒.探究:判断AEF ∆的形状,并说明理由;发现:DO 与AD 之间有怎样的数量关系,请直接写出你的结论,不必说明理由.【答案】探究:△AEF 是等边三角形,理由见解析;发现:DO=14AD 【分析】(1)根据角平分线的性质得到DE=DF ,证明Rt △AED ≌Rt △AFD ,根据全等三角形的性质得到AE=AF ,根据有一个角为60°的等腰三角形是等边三角形即可得出结论;(2)根据等边三角形的性质、30°角所对直角边等于斜边的一半计算即可.【详解】探究:△AEF 是等边三角形.理由如下:∵AD 为△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE=DF ,∠AED=∠AFD=90°.在Rt△AED和Rt△AFD中,∵DE DF AD AD=⎧⎨=⎩,∴Rt△AED≌Rt△AFD(HL),∴AE=AF.∵∠BAC=60°,∴△AEF是等边三角形.发现:DO=14AD.理由如下:∵AD为△ABC的角平分线,∠BAC=60°,∴∠EAD=30°,∴DE=12 AD.∵△AEF是等边三角形,AD为△ABC的角平分线,∴∠AEF=60°,AD⊥EF.∵DE⊥AB,∴∠DEA=90°,∴∠DEO=30°,∴OD=12 DE,∴DO=14 AD.【点睛】本题考查了等边三角形的判定和性质、30°角所对直角边等于斜边的一半的性质,掌握30°角所对直角边等于斜边的一半是解答本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知ABC ∆的外角125ACD ∠=︒中,若70B ∠=︒,则A ∠等于( )A .50°B .55°C .60°D .65°【答案】B【分析】三角形的一个外角等于和它不相邻的两个内角的和.根据三角形的外角的性质计算即可.【详解】解:∵∠ACD 是△ABC 的一个外角,∴∠ACD=∠B+∠A ,∵∠B=70°,∴∠A=∠ACD-∠B=125°-70°=55°,故选:B .【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.2.如图,ABC ∆中,AB AC =,=90BAC ∠︒,P 为BC 中点,90EPF ∠=︒,给出四个结论:①B BAP ∠=∠;②AE CF =;③PE PF =;④12ABC AEPF S S ∆=四边形,其中成立的有( )A .4个B .3个C .2个D .1个【答案】A 【分析】根据等腰直角三角形的性质,得∠B=45°,∠BAP=45°,即可判断①;由∠BAP=∠C=45°,AP=CP ,∠EPA=∠FPC ,得∆EPA ≅∆FPC ,即可判断②;根据∆EPA ≅∆FPC ,即可判断③;由12EPA FPA FPC FPA CPA ABC AEPF S S S S S S S ∆=+=+==四边形,即可判断④. 【详解】∵ABC ∆中,AB AC =,=90BAC ∠︒,P 为BC 中点,∴∠B=45°,∠BAP=12∠BAC=12×90°=45°,即:B BAP ∠=∠, ∴①成立;∵AB AC =,=90BAC ∠︒, P 为BC 中点,∴∠BAP=∠C=45°,AP=CP=12BC ,AP ⊥BC , 又∵90EPF ∠=︒, ∴∠EPA+∠APF=∠FPC+∠APF=90°,∴∠EPA=∠FPC ,∴∆EPA ≅∆FPC (ASA ),∴AE CF =,②成立;∵∆EPA ≅∆FPC ,∴PE PF =∴③成立,∵∆EPA ≅∆FPC , ∴12EPA FPA FPC FPA CPA ABC AEPF S SS S S S S ∆=+=+==四边形, ∴④成立.故选A .【点睛】本题主要考查等腰直角三角形的性质以及三角形全等的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键.3.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( ) A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 【答案】D【分析】设直线AB 的解析式为y=kx+b ,根据平移时k 的值不变可得k=-2,把(1,4)代入即可求出b 的值,即可得答案.【详解】设直线AB 的解析式为y=kx+b ,∵将直线y=-2x 向上平移后得到直线AB ,∴k=-2,∵直线AB 经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB 的解析式为:y=-2x+6,故选:D .【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变.4.如图,在平面直角坐标系中,点A坐标为(2,23),作AB⊥x轴于点B,连接AO,绕原点B将△AOB 逆时针旋转60°得到△CBD,则点C的坐标为()A.(﹣1,3)B.(﹣2,3)C.(﹣3,1)D.(﹣3,2)【答案】A【分析】首先证明∠AOB=60°,∠CBE=30°,求出CE,EB即可解决问题.【详解】解:过点C作CE⊥x轴于点E,∵A(2,3,∴OB=2,AB=3∴Rt△ABO中,tan∠AOB233,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴BC=AB=3∠CBE=30°,∴CE=12BC3BE3=3,∴OE=1,∴点C的坐标为(﹣13,故选:A.【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.5.实数a 、b 、c 、d 在数轴上的位置如图所示,下列关系式不正确的是( )A .a b >B .b d b d -=+C .a c c a -=-D .1d c a ->-【答案】D【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值解题即可.【详解】如下图:A .∵OA >OB ,∴|a|>|b|,故A 正确;B .b d OB OD b d -=+=+,故B 正确;C..|a-c|=|a+(-c )|=-a+c=c-a ,故C 正确;D .|d-1|=OD-OE=DE ,|c-a|=|c+(-a )|=OC+OA ,故D 不正确.故答案为:D .【点睛】本题考查了实数与数轴,正确理解绝对值的意义是解题的关键.6.如图,在ABC ∆中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且16ABC S ∆=,则BEF ∆的面积是( )A .3B .4C .5D .6【答案】B 【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高;同理,D 、E 、分别是BC 、AD 的中点,可得△EBC 的面积是△ABC 面积的一半;利用三角形的等积变换可解答.【详解】 点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF=12EC,而高相等, E 是AD 的中点, 12BEF BEC S S ∴=△△, E 是AD 的中点,12BDE S S ∴=△△ABD , 12DE CD S S =△C △A 12C S S ∴=△EBC △AB 14BFE C S S ∴=△△AB ,且ABC S =16 S ∴△BEF =4故选B.【点睛】本题主要考察三角形的面积,解题关键是证明得出14BFE C S S =△△AB . 7.分式23y x -有意义的条件是( ) A .x ≠0B .y ≠0C .x ≠3D .x ≠﹣3 【答案】C【分析】根据分式的分母不为0可得关于x 的不等式,解不等式即得答案.【详解】解:要使分式23y x -有意义,则30x -≠,解得:x≠1. 故选:C .【点睛】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键. 8.下列图形中,∠1与∠2不是同位角的是( ) A . B . C . D .【答案】B【分析】同位角是“F ”形状的,利用这个判断即可.【详解】解:观察A 、B 、C 、D ,四个答案,A 、C 、D 都是“F”形状的,而B 不是. 故选:B【点睛】本题考查基本知识,同位角的判断,关键在于理解同位角的定义.9.王老师乘公共汽车从A 地到相距50千米的B 地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时所花的时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( )A .50350204x x =⨯+B .50350420x x =⨯+C .50150204x x +=+D .50501204x x =-+ 【答案】A【分析】根据题意得到回来时的速度为(x+20)千米/时,根据时间等于路程除以速度即可列出方程.【详解】根据题意得到回来时的速度为(x+20)千米/时,去时的时间是50x 小时, 回来时的时间是5020x +, ∵回来时所花的时间比去时节省了14, ∴50350204x x=⨯+, 故选:A.【点睛】此题考查分式方程的实际应用,正确理解时间、速度、路程之间的数量关系是解题的关键.10.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .13【答案】A 【分析】利用基本作图得到MN 垂直平分AB ,利用线段垂直平分线的定义得到DA=DB ,然后利用等线段代换得到△BDC 的周长=AC+BC .【详解】由作法得MN 垂直平分AB ,∴DA=DB ,∴△BDC 的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=1.故选A .【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.二、填空题11.已知一个角的补角是它余角的3倍,则这个角的度数为_____.【答案】45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.12.如图,点 P 在∠AOB 的平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是________(只写一个即可,不添加辅助线).【答案】∠APO=∠BPO (答案不唯一)【解析】OA=OB 结合已知条件可得△AOP=≌△BOP (ASA ),当∠OAP=∠OBP 或∠APO=∠BPO 时,利用全等三角形的判定(AAS )可得△AOP ≌△BOP .解:已知点P 在∠AOB 的平分线上∴∠AOP=∠BOP∵OP=OP ,OA=OB∴△AOP=≌△BOP .故填OA=OB .13.某会场座位号将“7排4号”记作(7,4),那么“3排5号”记作__________;【答案】(3,5 ).【分析】根据有序数对确定点的位置,可得答案.【详解】解:在电影院中,若将电影票上“7排4号”记作(7,4),,那么”3排5号”应记作(3,5), 故答案为:(3,5 ).【点睛】本题考查了坐标确定位置,利用有序数对确定位置注意排在前,号在后.14.如图,ABC ∆中,90BAC ∠=︒,AB AC =,把ABC ∆沿DE 翻折,使点A 落在BC 边上的点F 处,且15EFC ∠=︒,那么ADE ∠的度数为________.【答案】60︒【解析】根据等腰三角形的性质,求得∠C ,然后利用三角形内角和求得∠FEC ,再根据邻补角的定义求得∠AEF ,根据折叠的性质可得∠AED=∠FED=12∠AEF ,在△ADE 中利用三角形内角和定理即可求解. 【详解】解:∵ABC ∆中,90BAC ∠=︒,AB AC =,∴∠B=∠C=45°又∵15EFC ∠=︒∴∠FEC=180°-∠EFC-∠C=180°-15°-45°=120°,∴∠AEF=180°-∠FEC =60°又∵∠AED=∠FED=12∠AEF=30°,∠A=90°, ∴∠ADE=180°-∠AED-∠A=180°-30°-90°=60°.故答案为:60°.【点睛】本题考查了等腰三角形等边对等角,三角形内角和的应用,折叠的性质,找出图形中相等的角和相等的线段是关键.15.已知等腰△ABC 中,底边BC =20,D 为AB 上一点,且CD =16,BD =12,则△ABC 的周长为____.【答案】1603【分析】由BC=20,CD=16,BD=12,计算得出BD 2+DC 2=BC 2,根据勾股定理的逆定理即可证明CD ⊥AB ,设AD=x ,则AC=x+12,在Rt △ACD 中,利用勾股定理求出x ,得出AC ,继而可得出△ABC 的周长.【详解】解:在△BCD 中,BC=20,CD=16,BD=12,∵BD 2+DC 2=BC 2,∴△BCD 是直角三角形,∠BDC=90°,∴CD ⊥AB ,设AD=x ,则AC=x+12,在Rt △ADC 中,∵AC 2=AD 2+DC 2,∴x 2+162=(x+12)2,解得:x=143. ∴△ABC 的周长为:(143+12)×2+20=1603. 故答案为:1603. 【点睛】 本题考查勾股定理及其逆定理的知识,解题的关键是利用勾股定理求出AD 的长度,得出腰的长度. 16.若数据的2, 3, 5, 8a ,方差是0.7,则数据12,13,15,10,18a 的方差是__________.【答案】0.7【分析】根据方差的意义与求法将第一组数据中的a 的值求出来,再代入第二组数据求方差即可.但仔细观察可以发现,第二组数据每一个数都是在第一组数据的基础上加10,其波动情况并没有发生变化,故方差没有变化,也是0.7.【详解】解:根据方差的意义,第二组数据每一个数都是在第一组数据基础上加了10,波动情况没有发生变化,故其方差也为0.7.故答案为:0.7.【点睛】本题主要考查了方差的意义,深刻理解其意义是解答关键.17.如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,∠ABO=60°,在坐标轴上找一点P ,使得△PAB 是等腰三角形,则符合条件的点P 共有_____个.【答案】6【解析】如下图,符合条件的点P 共有6个.点睛:(1)分别以点A 、B 为圆心,AB 为半径画A 和B ,两圆和两坐标轴的交点为所求的P 点(与点A 、B 重合的除外);(2)作线段AB 的垂直平分线与两坐标轴的交点为所求的P 点(和(1)中重复的只算一次).三、解答题18.如图,在1010⨯网格中,每个小正方形的边长都为1.(1)建立如图所示的平面直角坐标系,若点()3,4A ,则点C 的坐标_______________;(2)将AOC ∆向左平移5个单位,向上平移2个单位,则点C 的坐标变为_____________;(3)若将AOC ∆的三个顶点的横纵坐标都乘以12-,请画出111AO C ∆; (4)图中格点AOC ∆的面积是_________________;(5)在x 轴上找一点P ,使得PA PC +最小,请画出点P 的位置,并直接写出PA PC +的最小值是______________.【答案】(1)()4,2;(2)()1,4-;(3)见解析;(4)5;(537【分析】(1)根据第一象限点的坐标特征写出C 点坐标;(2)利用点平移的坐标变换规律求解;(3)将△AOC 的三个顶点的横纵坐标都乘以- 12得到A 1、C 1的坐标,然后描点即可; (4)用一个矩形的面积分别减去三个三角形的面积去计算△AOC 的面积;(5)作C 点关于x 轴的对称点C′,然后计算AC′即可.【详解】解:(1)如图,点C 的坐标()4,2;(2)将AOC ∆向左平移5个单位,向上平移2个单位,则点C 的坐标变为()1,4-;(3)如图,11AOC ∆为所作;(4)图中格点AOC ∆的面积111442142435222=⨯-⨯⨯-⨯⨯-⨯⨯=; (5)如图,作C 关于x 轴的对待点C ’,连接C ’A 交x 轴于点P ,点P 即为所求作的点,PA PC +的最小值221637PA PC AC ''=+==+=.故答案为(1)()4,2;(2)()1,4-;(4)5;(5)37.【点睛】本题考查了作图-平移变换及轴对称变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了最短路径问题.19.如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点ABC ∆(即三角形的顶点都在格点上).(1)在图中作出ABC ∆关于直线l 的对称图形111A B C ∆(要求点A 与1A ,B 与1B ,C 与1C 相对应). (2)在直线l 上找一点P ,使得PAC ∆的周长最小.【答案】见解析【分析】(1)直接利用关于直线对称点的性质得出对应点位置进而得出答案;。
2016-2017学年浙江省宁波市镇海区八校八年级(上)期末数学试卷

2016-2017学年省市镇海区八校八年级(上)期末数学试卷一、精心选一选(每小题4分,共48分)1.(4分)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,42.(4分)若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<03.(4分)如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)4.(4分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°5.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°6.(4分)已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°7.(4分)直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(4分)不等式x+2<6的正整数解有()A.1个B.2个C.3 个D.4个9.(4分)小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A .B .C .D .10.(4分)下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有( )A .4个B .3个C .2个D .1个11.(4分)关于x 的不等式组{2x<3(x −3)+13x +24>x +x 有四个整数解,则a 的取值围是( )A .﹣114<a ≤﹣52B .﹣114≤a <﹣52C .﹣114≤a ≤﹣52D .﹣114<a <﹣5212.(4分)八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为( )A .x =23x +13B .y=58x+12C .x =712x +23D .x =916x +34 二、细心填一填(每小题4分,共24分)13.(4分)函数y=1x −3中自变量x 的取值围是 . 14.(4分)在直角三角形中,一个锐角为57°,则另一个锐角为 . 15.(4分)一次函数y=(2k ﹣5)x+2中,y 随x 的增大而减小,则k 的取值围是 .16.(4分)如图,在△ABC 中,AB=5,BC=12,AC=13,点D 是AC 的中点,则BD= .17.(4分)如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是45cm 2,AB=16cm ,AC=14cm ,则DE= .18.(4分)一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为 m 2.三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.(8分)解不等式组{5x +3≥2x ⋯(1)3x −12<4⋯(2),并把解表示在数轴上. 20.(8分)如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF(1)求证:△ABE ≌△CBF ;(2)若∠CAE=25°,求∠ACF 的度数.21.(8分)图1、图2是两形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 和点B 在小正方形的顶点上.(1)在图1中画出△ABC (点C 在小正方形的顶点上),使△ABC 为直角三角形(画一个即可);(2)在图2中画出△ABD (点D 在小正方形的顶点上),使△ABD 为等腰三角形(画一个即可).22.(9分)已知y 是x 的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣12时,函数y 的值; (3)当y <1时,自变量x 取值围.23.(9分)如图,AB ∥CD ,CE 平分∠ACD 交AB 于E 点.(1)求证:△ACE 是等腰三角形;(2)若AC=13cm ,CE=24cm ,求△ACE 的面积.24.(10分)随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x 万件,总利润为y 万元,写出y 关于x 的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?25.(12分)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|x 1﹣x 2|;若|x 1﹣x 2|<|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|y 1﹣y 2|.例如:点P 1(1,2),点P 1(3,5),因为|1﹣3|<|2﹣5|,所以点P 1与点P 2的“非常距离”为|2﹣5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (﹣12,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)如图2,已知C 是直线x =34x +3上的一个动点,点D 的坐标是(0,1),求点C 与点D 的“非常距离”最小时,相应的点C 的坐标.26.(14分)如图,A (0,4)是直角坐标系y 轴上一点,动点P 从原点O 出发,沿x 轴正半轴运动,速度为每秒1个单位长度,以P 为直角顶点在第一象限作等腰Rt △APB .设P 点的运动时间为t 秒.(1)若AB ∥x 轴,求t 的值;(2)当t=3时,坐标平面有一点M ,使得以M 、P 、B 为顶点的三角形和△ABP 全等,请直接写出点M 的坐标;(3)设点A 关于x 轴的对称点为A',连接A'B ,在点P 运动的过程中,∠OA'B 的度数是否会发生变化,若不变,请求出∠OA'B 的度数,若改变,请说明理由.2016-2017学年省市镇海区八校八年级(上)期末数学试卷参考答案与试题解析一、精心选一选(每小题4分,共48分)1.(4分)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,3 C.1,2,2 D.1,2,4【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+1=2,不能组成三角形,故A选项错误;B、1+2=3,不能组成三角形,故B选项错误;C、1+2>2,能组成三角形,故C选项正确;D、1+2<4,能组成三角形,故D选项错误;故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.2.(4分)若a>b,则下列各式中一定成立的是()A.ma>mb B.a2>b2C.1﹣a>1﹣b D.b﹣a<0【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、m≤0时,不等式不成立,故A错误;B、a<0时,不成立,故B错误;C、两边都乘以﹣1,不等号的方向改变,故C错误;D、两边都减a,不等号的方向不变,故D正确;故选:D.【点评】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(4分)如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(﹣2,3)C.(﹣4,﹣6)D.(3,﹣4)【分析】笑脸盖住的点在第二象限,那么点的横坐标小于0,纵坐标大于0,比较选项即可.【解答】解:笑脸盖住的点在第二象限,则其横坐标小于0,纵坐标大于0,那么结合选项笑脸盖住的点的坐标可能为(﹣2,3).故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限点的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(4分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.【点评】理解能说明它是假命题的反例的含义是解决本题的关键.5.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【分析】要求∠F的大小,利用△ABC≌△DEF,得到对应角相等,然后在△DEF 中依据三角形角和定理,求出∠F的大小.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选B.【点评】本题主要考查了全等三角形的对应角相等,并注意运用了三角形的角和定理,做题时要找准对应关系.6.(4分)已知一个等腰三角形一底角的度数为80°.则这个等腰三角形顶角的度数为()A.20°B.70°C.80°D.100°【分析】根据三角形角和定理和等腰三角形的性质,可以求得其顶角的度数.【解答】解:∵等腰三角形的一个底角为80°,∴顶角=180°﹣80°×2=20°.故选A.【点评】考查三角形角和定理和等腰三角形的性质的运用,此题基础题,比较简单.7.(4分)直线y=﹣x﹣2不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接根据一次函数的性质进行判断即可.【解答】解:∵直线y=﹣x﹣2中,k=﹣1<0,b=﹣2<0,∴此函数的图象在二、三、四象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k ≠0)中,当k<0,b<0时函数的图象在二、三、四象限是解答此题的关键.8.(4分)不等式x+2<6的正整数解有()A.1个B.2个C.3 个D.4个【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.【解答】解:不等式的解集是x<4,故不等式x+2<6的正整数解为1,2,3,共3个.故选C.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.9.(4分)小明到离家900米的春晖超市买水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A. B. C. D.【分析】由题意,0到20分钟,小明离家越来越远,在20分钟时,离家最远,为900米;在超市购物用了10分钟,即20到30分钟期间,离家距离没变,为900米;15分钟返回家中,即在30到45分钟期间,离家越来越近,在45分钟时,离家距离为0.过程清楚,问题解决.【解答】解:由题意,图形应有三个阶段,①从家到超市,时间为0﹣﹣20分钟;②在超市购物,20﹣﹣30分钟;③从超市到家,30﹣﹣45分钟.A、图显示20到45分钟时,距家都是900米,实际上45分钟时已经到家了,距离应为0;故错误.B、图显示20到45分钟时,离家越来越近,实际上,20到30分钟时一直在超市;故错误.C、图显示不出20到30分钟时,离家一直是900米来,故错误.D 、图显示的符合三个阶段,是正确的.综上所述,故选D .【点评】本题的解答,关键是读懂题意,明白具体有几个阶段,每一段的图象是不同的.10.(4分)下列命题:①有一个角为60°的等腰三角形是等边三角形;②等腰直角三角形一定是轴对称图形;③有一条直角边对应相等的两个直角三角形全等;④到线段两端距离相等的点在这条线段的垂直平分线上.正确的个数有( )A .4个B .3个C .2个D .1个【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①有一个角为60°的等腰三角形是等边三角形,故①正确; ②等腰直角三角形一定是轴对称图形,故②正确;③有一条直角边对应相等的两个直角三角形全等,故③错误;④到线段两端距离相等的点在这条线段的垂直平分线上,故④正确;故选:B .【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.(4分)关于x 的不等式组{2x<3(x −3)+13x +24>x +x 有四个整数解,则a 的取值围是( )A .﹣114<a ≤﹣52B .﹣114≤a <﹣52C .﹣114≤a ≤﹣52D .﹣114<a <﹣52【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值围即可.【解答】解:由(1)得x >8;由(2)得x <2﹣4a ;其解集为8<x <2﹣4a ,因不等式组有四个整数解,为9,10,11,12,则{2−4x>122−4x ≤13, 解得﹣114≤a <﹣52. 故选B .【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.(4分)八个边长为1的正方形如图摆放在平面直角坐标系中,经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为( )A .x =23x +13B .y=58x+12C .x =712x +23D .x =916x +34 【分析】直线l 和八个正方形的最上面交点为P ,过P 作PB ⊥OB 于B ,过P 作PC ⊥OC 于C ,易知OB=3,利用三角形的面积公式和已知条件求出点A 的坐标,根据待定系数法即可得到该直线l 的解析式.【解答】解:直线l 和八个正方形的最上面交点为P ,过P 作PB ⊥OB 于B ,过P 作PC ⊥OC 于C ,∵正方形的边长为1,∴OB=3,∵经过P 点的一条直线l 将这八个正方形分成面积相等的两部分,∴三角形ABP 面积是8÷2+1=5,∴12BP •AB=5, ∴AB=2.5,∴OA=3﹣2.5=0.5,由此可知直线l 经过(0,0.5),(4,3)设直线方程为y=kx+b ,则{x =0.54x +x =3, 解得{x =58x =12. ∴直线l 解析式为y=58x+12. 故选B .【点评】此题考查的是用待定系数法求一次函数的解析式以及正方形的性质,此题难度较大,解题的关键是作PB ⊥y 轴,作PC ⊥x 轴,根据题意即得到:直角三角形ABP 面积是5,利用三角形的面积公式求出AB 的长.二、细心填一填(每小题4分,共24分)13.(4分)函数y=1x −3中自变量x 的取值围是 x ≠3 . 【分析】根据分母不等于0列式进行计算即可求解.【解答】解:根据题意得,x ﹣3≠0,解得x ≠3.故答案为:x ≠3.【点评】本题考查了函数自变量的取值围,函数自变量的围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(4分)在直角三角形中,一个锐角为57°,则另一个锐角为 33° .【分析】利用直角三角形的两锐角互余可求得答案.【解答】解:∵直角三角形的两锐角互余,∴另一锐角=90°﹣57°=33°,故答案为:33°.【点评】本题主要考查直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.15.(4分)一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值围是k<2.5 .【分析】根据已知条件“一次函数y=(2k﹣5)x+2中y随x的增大而减小”知,2k﹣5<0,然后解关于k的不等式即可.【解答】解:∵一次函数y=(2k﹣5)x+2中y随x的增大而减小,∴2k﹣5<0,解得,k<2.5;故答案是:k<2.5【点评】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x 轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.16.(4分)如图,在△ABC中,AB=5,BC=12,AC=13,点D是AC的中点,则BD= 6.5 .【分析】由△ABC的三边长,利用勾股定理的逆定理判断出三角形为直角三角形,且AC为斜边,再由D为斜边上的中点,得到BD为斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,即可求出BD的长.【解答】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=25+144=169,AC2=132=169,即AB2+BC2=AC2,∴△ABC为以AC为斜边的直角三角形,又∵D 为AC 的中点,即BD 为斜边上的中线,∴BD=12AC=6.5. 故答案为:6.5.【点评】此题考查了勾股定理的逆定理,以及直角三角形斜边上的中线性质,熟练掌握定理及性质是解本题的关键.17.(4分)如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是45cm 2,AB=16cm ,AC=14cm ,则DE= 3 .【分析】根据角平分线上的点到角的两边距离相等可得DE=DF ,再利用△ABC 的面积列方程求解即可.【解答】解:∵AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE=DF ,∵△ABC 面积是45cm 2,∴12×16•DE+12×14•DF=45, 解得DE=3cm .故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.18.(4分)一块直角三角形绿地,两直角边长分别为3m ,4m ,现在要将绿地扩充成等腰三角形,且扩充时只能延长长为3m 的直角边,则扩充后等腰三角形绿地的面积为 8或12或10或253m 2. 【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD ,则应分为①AC=CD ,②AD=AB ,③BD=BA ,④DA=DB ,4种情况进行讨论.【解答】解:∵两直角边长为3m,4m,∴由勾股定理得到:AB=√32+42=5m.①如图1:当AC=CD=8m时;∵AC⊥CB,此时等腰三角形绿地的面积:12×4×4=8(m2);②如图2中,延长BC到D使CD等于3m,此时BD=6m,此时等腰三角形绿地的面积:12×6×4=12(m2);综上所述,扩充后等腰三角形绿地的面积为8m2或12m2.③BD=BA时,此时等腰三角形绿地的面积:12×5×4=10(m2);④DA=DB时,设DA=DB=x,在Rt△ADC中,有x2=42+(x﹣3)2,解得x=25 6,此时等腰三角形绿地的面积:12×256×4=253(m2);故答案为:8或12或10或25 3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,解决问题的关键是根据题意正确画出图形.三、认真解一解(8分+8分+8分+9分+9分+10分+12分+14分=78分)19.(8分)解不等式组{5x +3≥2x ⋯(1)3x −12<4⋯(2),并把解表示在数轴上. 【分析】分别解两不不等式得到x ≥﹣1和x <3,再利用数轴表示解集,然后写出不等式组的解集.【解答】解:解不等式(1)得x ≥﹣1,解不等式(2)得x <3在数轴上表示为所以不等式组的解集为﹣1≤x <3.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(8分)如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF(1)求证:△ABE ≌△CBF ;(2)若∠CAE=25°,求∠ACF 的度数.【分析】(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.【解答】解:(1)在Rt△ABE与Rt△CBF中,,{xx=xxxx=xx∴△ABE≌△CBF(HL).(2)∵△ABE≌△CBF,∴∠BAE=∠BCF=20°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=65°.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;准确找出图形中隐含的相等或全等关系是解题的关键.21.(8分)图1、图2是两形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).【分析】(1)利用网格结构,过点A的竖直线与过点B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BD=AB或AB=AD,连接即可得解.【解答】解:(1)如图1,①、②,画一个即可;(2)如图2,①、②,画一个即可.【点评】本题考查了应用与设计作图,(1)中作直角三角形时根据网格的直角作图即可,比较简单,(2)中根据网格结构作出与AB相等的线段是解题的关键,灵活性较强.22.(9分)已知y是x的一次函数,且当x=﹣4时,y=9;当x=6时,y=﹣1.(1)求这个一次函数的解析式;(2)当x=﹣12时,函数y的值;(3)当y <1时,自变量x 取值围.【分析】(1)设这个一次函数的解析式为y=kx+b (k ≠0),根据点的坐标利用待定系数法即可求出一次函数解析式;(2)将x=﹣12代入一次函数解析式中求出y 值即可; (3)由y <1可得出关于x 的一元一次不等式,解之即可得出结论.【解答】解:(1)设这个一次函数的解析式为y=kx+b (k ≠0),把(﹣4,9)、(6,﹣1)代入y=kx+b 中,{−4x +x =96x +x =−1,解得:{x =−1x =5, ∴这个一次函数的解析式为y=﹣x+5.(2)当x=﹣12时,y=﹣(﹣12)+5=112. (3)∵y=﹣x+5<1,∴x >4.【点评】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,根据点的坐标利用待定系数法求出函数解析式是解题的关键.23.(9分)如图,AB ∥CD ,CE 平分∠ACD 交AB 于E 点.(1)求证:△ACE 是等腰三角形;(2)若AC=13cm ,CE=24cm ,求△ACE 的面积.【分析】(1)如图,证明∠AEC=∠ACE ,即可解决问题.(2)如图,作辅助线;求出AG 的长度,运用三角形的面积公式,即可解决问题.【解答】(1)证明:如图,∵AB ∥CD ,∴∠AEC=∠DCE ,又∵CE 平分∠ACD ,∴∠ACE=∠DCE ,∴∠AEC=∠ACE ,∴△ACE为等腰三角形.(2)过A作AG⊥CE,垂足为G;∵AC=AE,∴CG=EG=12CE=12(cm);∵AC=13(cm),由勾股定理得,AG=5(cm);∴S△ACE =12×24×5=60(cm2).【点评】该题主要考查了等腰三角形的判定及其性质的应用问题;解题的关键是牢固掌握等腰三角形的判定及其性质,这是灵活运用、解题的基础.24.(10分)随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?【分析】(1)设生产甲礼品x万件,乙礼品(100﹣x)万件,根据收入=售价×产量列出函数关系式即可;(2)设生产甲礼品x万件,乙礼品(100﹣x)万件,所获得的利润为y万元,根据成本不超过1380万元求出x的取值围,然后根据利润=(售价﹣成本)×销量,列出函数关系式,求y的最大值;【解答】解:(1)设生产甲礼品x万件,乙礼品(100﹣x)万件,由题意得:y=(22﹣15)x+(18﹣12)(100﹣x)=x+600;(2)设生产甲礼品x 万件,乙礼品(100﹣x )万件,所获得的利润为y 万元, 由题意得:15x+12(100﹣x )≤1380, ∴x ≤60,利润y=(22﹣15)x+(18﹣12)(100﹣x )=x+600, ∵y 随x 增大而增大,∴当x=60万件时,y 有最大值660万元. 这时应生产甲礼品60万件,乙礼品40万件.【点评】本题考查了一次函数的应用,难度一般,解答本题的关键是读懂题意列出函数关系式并熟练掌握及一次函数最大值的方法.25.(12分)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|x 1﹣x 2|; 若|x 1﹣x 2|<|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|y 1﹣y 2|.例如:点P 1(1,2),点P 1(3,5),因为|1﹣3|<|2﹣5|,所以点P 1与点P 2的“非常距离”为|2﹣5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (﹣12,0),B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)如图2,已知C 是直线x =34x +3上的一个动点,点D 的坐标是(0,1),求点C 与点D 的“非常距离”最小时,相应的点C 的坐标.【分析】(1)①根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;②设点B的坐标为(0,y),根据|﹣12﹣0|≥|0﹣y|,得出点A与点B的“非常距离”最小值为|﹣12﹣0|,即可得出答案;(2)设点C的坐标为(x0,34x+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x 0=34x+2,据此可以求得点C的坐标;【解答】解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣12﹣0|=12≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②设点B的坐标为(0,y).∵|﹣12﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣12﹣0|=12;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|.即AC=AD,∵C是直线y=34x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,34x+3),∴﹣x0=34x+2,此时,x0=﹣87,∴点C与点D的“非常距离”的最小值为:|x0|=8 7,此时C(﹣87,157).【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.26.(14分)如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面有一点M,使得以M、P、B为顶点的三角形和△ABP 全等,请直接写出点M的坐标;(3)设点A关于x轴的对称点为A',连接A'B,在点P运动的过程中,∠OA'B的度数是否会发生变化,若不变,请求出∠OA'B的度数,若改变,请说明理由.【分析】(1)由AB∥x轴,可找出四边形ABCO为长方形,再根据△APB为等腰三角形可得知∠OAP=45°,从而得出△AOP为等腰直角三角形,由此得出结论;(2)由全等三角形的性质和等腰三角形的性质可得出结论,注意分类讨论;(3)由等腰直角三角形的性质和全等三角形的性质即可得出结论.【解答】解:(1)过点B作BC⊥x轴于点C,如图1所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠PAB=∠PBA=45°,∴∠OAP=90°﹣∠PAB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.t=4÷1=4(秒),故t的值为4.(2)点M的坐标为(4,7)或(6,﹣4)或(10,﹣1)或(0,4);(3)∠OA'B=45°,不发生变化;理由如下:∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠PAO+∠APO=90°,∴∠PAO=∠BPC.在△PAO和△BPC中,{∠xxx=∠xxx∠xxx=∠xxx=90°xx=xx,∴△PAO≌△BPC(AAS),∴AO=PC,BC=PO.∵点A(0,4),点P(t,0)∴PC=AO=4,BC=PO=t,CO=PC+PO=4+t∴点B(4+t,t);∴点B在直线y=x﹣4上又∵点A关于x轴的对称点为A'(0,﹣4)也在直线y=x﹣4上,∴∠OA'B=45°.【点评】本题考查了长方形的判定及性质、全等三角形的判定及性质、坐标与图形性质、等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
┃精选3套试卷┃2018届宁波市八年级上学期期末考试数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,在ABC 中,90C ∠=︒,BD 平分ABC ∠,交AC 于点D ,15cm AC =,9cm AD =,DE ⊥AB ,则DE =( )A .9cmB .7cmC .6cmD .5cm【答案】C 【分析】根据线段的和差即可求得DC ,再根据角平分线的性质即可得出DE=DC .【详解】解:∵15cm AC =,9cm AD =,∴6DC AC AD cm =-=,∵90C ∠=︒,BD 平分ABC ∠,DE ⊥AB ,∴DE=DC=6cm .故选:C .【点睛】本题考查角平分线的性质.角平分线上的点到角两边距离相等.22x -x 的取值范围是( )A .x >2B .x ≠2C .x ≥2D .x ≤2【答案】C【分析】根据被开方数大于等于0列不等式求解即可.【详解】由题意得,x ﹣1≥0,解得x≥1.故选:C .【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义. 3.下列因式分解正确的是( )A .x 2+xy+x =x (x+y )B .x 2﹣4x+4=(x+2)(x ﹣2)C .a 2﹣2a+2=(a ﹣1)2+1D .x 2﹣6x+5=(x ﹣5)(x ﹣1) 【答案】D【分析】各项分解得到结果,即可作出判断.【详解】A 、原式=x (x+y+1),不符合题意;B 、原式=(x ﹣2)2,不符合题意;C、原式不能分解,不符合题意;D、原式=(x﹣5)(x﹣1),符合题意,故选:D.【点睛】本题考查了因式分解的应用,掌握因式分解的概念以及应用是解题的关键.4.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3【答案】C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.若代数式23x-有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0D.x≠3【答案】D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.6.(2016河南2题)某种细胞的直径是0.00000095米,将0.00000095用科学记数法表示为()A.79.510-⨯B.89.510-⨯C.70.9510-⨯D.89510-⨯【答案】A【详解】略7.如图,在▱ABCD中,AB=2.6,BC=4,∠ABC的平分线交CD的延长线于点E,则DE的长为()A .2.6B .1.4C .3D .2【答案】B 【分析】由平行四边形ABCD 中,BE 平分∠ABC ,可证得△BCE 是等腰三角形,继而利用DE=CE-CD ,求得答案. 【详解】解:四边形ABCD 是平行四边形,AB//CD ∴,CD AB 2.6==,E ABE ∠∠∴=. BE 平分ABC ∠,ABE CBE ∴∠=∠,CBE E ∠∠∴=,CE BC 4∴==,DE CE CD 4 2.6 1.4∴=-=-=.故选:B .【点睛】此题考查了平行四边形的性质,能证得△BCE 是等腰三角形是解此题的关键.8.如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A =130°,∠B =110°,那么∠BCD 的度数为( )A .40°B .50°C .60°D .70°【答案】C 【分析】依据轴对称图形的性质可求得E ∠、D ∠的度数,然后用五边形的内角和减去A ∠、B ∠、E ∠、D ∠的度数即可. 【详解】解:直线m 是多边形ABCDE 的对称轴,130A E ∴∠=∠=,110B D ∠=∠=,5401302110260BCD ∴∠=-⨯-⨯=.故选C .【点睛】本题主要考查的是轴对称的性质、多边形的内角和公式的应用,熟练掌握相关知识是解题的关键.9.64的平方根是()A.8 B.8-C.8±D.32【答案】C【分析】根据平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,即可得解.【详解】由已知,得64的平方根是8±,故选:C.【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题.10.13⎛⎫⎪⎝⎭的值是()A.0 B.1 C.13D.以上都不是【答案】B【解析】由零指数幂的定义可知13⎛⎫⎪⎝⎭=1.【详解】由零指数幂的定义可知13⎛⎫⎪⎝⎭=1,故选B.【点睛】此题主要考察零指数幂.二、填空题11.将一次函数y=-2x-1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为______ .【答案】y=-1x+1【分析】注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.【详解】解:原直线的k=-1,b=-1;向上平移3个单位长度得到了新直线,那么新直线的k=-1,b=-1+3=1.因此新直线的解析式为y=-1x+1.故答案为y=-1x+1.【点睛】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.12.如图,网格纸上每个小正方形的边长为1,点A,点C均在格点上,点P为x轴上任意一点,则AC=____________;PAC∆周长的最小值为_______________.【答案】22 210+22【分析】根据勾股定理可计算出AC 的长,再找出点A 关于x 轴对称点,利用两点之间线段最短得出△PAC 周长最小值.【详解】解:如图,AC=2222+=22,作点A 关于x 轴对称的点A 1,再连接A 1C ,此时与x 轴的交点即为点P ,此时A 1C 的长即为AP+CP 的最小值,A 1C=2226+=210,∴△PAC 周长的最小值为:A 1C+AC=210+22.故答案为:22,210+22.【点睛】本题考查了作图-轴对称变换、最短路线问题,解决本题的关键是正确得出对应点位置.13.已知30AOB ∠=︒,点P 在AOB ∠的内部,点1P 和点P 关于OA 对称,点2P 和点P 关于OB 对称,则12,,P O P 三点构成的三角形是__________三角形.【答案】等边【分析】根据轴对称的性质可知:OP 1=OP 2=OP ,∠P 1OP 2=60°,即可判断△P 1OP 2是等边三角形.【详解】根据轴对称的性质可知,OP 1=OP 2=OP ,∠P 1OP 2=60°,∴△P 1OP 2是等边三角形.故答案为:等边.【点睛】主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.14.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,当∣BC-AC ∣最大时,点C 的坐标是________.【答案】(0,6)【解析】试题解析:当点,,A B C 在同一条直线上时, BC AC -取得最大值.设直线AB 的解析式为: ,y kx b =+∴可得出方程组430k b k b +=⎧⎨+=⎩, 解得62b k =⎧⎨=-⎩,则这个一次函数的解析式为y=−2x+6,当0x =时, 6.y =故点C 的坐标为:()0,6.故答案为()0,6.15.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C=______.【答案】35°【分析】先根据等腰三角形的性质求出∠ADB 的度数,再由平角的定义得出∠ADC 的度数,根据等腰三角形的性质即可得出结论.【详解】∵△ABD 中,AB=AD ,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD ,∴∠C=(180°﹣∠ADC )÷2=(180°﹣110°)÷2=35°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.16.如图,在ABC 中,DM ,EN 分别垂直平分边AB 和AC ,交BC 于点D ,E .若110BAC ∠=︒,则DAE =∠______︒.【答案】1【分析】依据DM 、EN 分别垂直平分AB 和AC ,即可得到AD=BD ,AE=EC ,进而得出∠B=∠BAD ,∠C=∠EAC ,依据∠BAC=110°,即可得到∠DAE 的度数.【详解】解:∵∠BAC=110°,∴∠B+∠C=180°-110°=70°,∵DM 是线段AB 的垂直平分线,∴DA=DB ,∴∠DAB=∠B ,同理,EA=EC ,∴∠EAC=∠C ,∴∠DAE=∠BAC-∠DAB-∠EAC=∠BAC-(∠B+∠C )=1°,故答案为:1.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,ABC 中,∠C=90°,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于点E ,如果AC=6cm ,BC=8cm ,那么DEB 的周长为_________cm .【答案】1【分析】依据△ACD≌△AED(AAS),即可得到AC=AE=6cm,CD=ED,再根据勾股定理可得AB的长,进而得出EB的长;设DE=CD=x,则BD=8-x,依据勾股定理可得,Rt△BDE中,DE2+BE2=BD2,解方程即可得到DE的长,再利用BC-CD得出BD的长,最后把BE,DE和BD相加求解即可.【详解】解:∵AD平分∠CAB,∴∠CAD=∠EAD,又∵∠C=90°,DE⊥AB,∴∠C=∠AED=90°,又∵AD=AD,∴△ACD≌△AED(AAS),∴AC=AE=6cm,CD=ED,∵Rt△ABC中,22(cm),AC BC∴BE=AB-AE=10-6=4(cm),设DE=CD=x,则BD=8-x,∵Rt△BDE中,DE2+BE2=BD2,∴x2+42=(8-x)2,解得x=3,∴DE=CD=3cm,∴BD=BC-CD=8-3=5cm,∴BE+DE+BD=3+4+5=1cm,故答案为:1.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义以及勾股定理的运用,利用直角三角形勾股定理列方程求解是解决问题的关键.三、解答题18.计算:(x﹣2)2﹣(x﹣3)(x+3)【答案】﹣4x+1.【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【详解】解:(x﹣2)2﹣(x﹣3)(x+3)=x 2﹣4x+4﹣(x 2﹣9)=x 2﹣4x+4﹣x 2+9=﹣4x+1.【点睛】此题考查了平方差公式,以及完全平方公式,熟练掌握公式是解本题的关键.19.新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10辆汽车全部装满,每辆汽车只能装运同一种水果,且装运每种水果的车辆都不少于2辆,根据下表提供的信息,解答以下问题:()1设装运苹果的车辆为x 辆,装运芦柑的车辆为y 辆,求y 与x 之间的函数关系式,并直接写出x 的取值范围()2用w 来表示销售获得的利润,那么怎样安排车辆能使此次销售获利最大?并求出w 的最大值.【答案】 (1)()y 2x 102x 4=-+≤≤;(2)见解析. 【解析】()1设装运苹果的车辆为x 辆,装运芦柑的车辆为y 辆,则运香梨的车辆()10x y --辆.根据表格可列出等量关系式()7651060x y x y ++--=,化简得()21024y x x =-+≤≤;()2由利润=车辆数⨯每车水果获利可得150030000w x =-+,因为24x ≤≤,所以当2x =时,w 有最大值27000,然后作答即可.【详解】解:()1设装运苹果的车辆为x 辆,装运芦柑的车辆为y 辆,则运香梨的车辆()10x y --辆. ()7x 6y 510x y 60++--=,()y 2x 102x 4∴=-+≤≤;()()2w 2500x 30002x 102000=+-++【()10x 2x 10---+】, 即w 1500x 30000=-+,当x 2=时,w 有最大值27000,∴装运苹果的车辆2辆,装运芦柑的车辆6辆,运香梨的车辆2辆时,此次销售获利最大,最大利润为27000元.【点睛】考查了函数关系式以及函数最大值,根据题意找出对应变量之间的关系式解题的关键. 20.如图,Rt ABC ∆中,90,6,8C AC BC ∠===.(1)在BC 边求作一点D ,使点D 到AB 的距离等于CD (尺规作图,保留作图痕迹); (2)计算(1)中线段CD 的长.【答案】(1)见解析;(2)1【分析】(1)根据角平分线上的点到角的两边的距离相等可知,作出∠A 的平分线即可; (2)设CD x =,然后用x 表示出DB 、DE 、BF ,利用勾股定理得到有关x 的方程,解之即可.【详解】(1)如图所示:(2)设CD x =,作DE AB ⊥于E ,如图所示:则DE CD x ==,∵90,6,8C AC BC ∠=︒==,∴10AB =,∴1064EB =-=,∵222DE BE DB∴()22248x x +=-,解得3x =,即CD长为1.【点睛】此题考查了尺规作图角平分线以及勾股定理的运用,解题关键是利用其列出等量关系.21.如图,四边形ABCD的顶点坐标为A(—5,1),B(—1,1),C(—1,6),D(—5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出坐标.【答案】详见解析【解析】根据平面直角坐标系,分别找出点A、B、C、D关于x轴的对称点A′、B′、C′、D′的位置,然后顺次连接即可,根据关于x轴对称的点的横坐标相同,纵坐标互为相反数写出各点的坐标即可,根据平面直角坐标系,分别找出点A、B、C、D关于y轴的对称点A″、B″、C″、D″的位置,然后顺次连接即可,根据关于y轴对称的点的横坐标互为相反数,纵坐标相同写出各点的坐标即可.【详解】解:如图所示,四边形A′B′C′D′即为所求作的关于x轴的对称图形,A′(-5,-1),B′(-1,-1),C′(-1,-6),D′(-5,-4),四边形A″B″C″D″即为所求作的关于y轴的对称图形,A″(5,1),B″(1,1),C″(1,6),D″(5,4).【点睛】本题主要考查了利用轴对称变换作图和关于x轴对称的点的横坐标相同,纵坐标互为相反数,关于y轴对称的点的横坐标互为相反数,纵坐标相同,解决本题的关键是准确找出各对称点的位置.22.化简求值(1)求(2)(2)(2)(2)x y x y y x y x -+-+-的值,其中2x =,1y =;(2)求2226314422x x x x x x x ++÷--+--的值,其中21x =+. 【答案】(1)2255x y -,15;(2)1x-, 12-. 【分析】(1)原式利用平方差公式计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;(2)原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值.【详解】(1)原式()222244=---x y y x2255=-x y .当2x =,1y =时,原式22525115=⨯-⨯=.(2)原式22(3)21(2)(3)2x x x x x x +-=⋅--+- 21(2)2x x x =--- 2(2)(2)x x x x x =--- 1x=-. 当21x =+时,原式()211221=-=--=-+. 【点睛】本题考查分式的化简求值,以及整式的混合运算-化简求值,熟练掌握运算法则是解题的关键. 23.如图,△ABC 是等边三角形,△ACE 是等腰三角形,∠AEC =120°,AE =CE ,F 为BC 中点,连接AE . (1)直接写出∠BAE 的度数为 ;(2)判断AF 与CE 的位置关系,并说明理由.【答案】(1)90°;(2)AF ∥EC ,见解析【分析】(1)分别利用等边三角形的性质和等腰三角形的性质求出∠BAC ,∠CAE 的度数,然后利用∠BAE =∠BAC+∠CAE 即可解决问题;(2)根据等边三角形的性质有AF ⊥BC ,然后利用等边三角形的性质和等腰三角形的性质得出,∠BCE =90°则有EC ⊥BC ,再根据垂直于同一条直线的两直线平行即可得出结论.【详解】解:(1)∵△ABC 是等边三角形,∴∠BAC =∠ACB =60°,∵EA =EC ,∠AEC =120°,∴EAC =∠ECA =30°,∴∠BAE =∠BAC+∠CAE =90°.故答案为90°.(2)结论:AF ∥EC .理由:∵AB =AC ,BF =CF ,∴AF ⊥BC ,∵∠ACB =60°,∠ACE =30°,∴∠BCE =90°,∴EC ⊥BC ,∴AF ∥EC .【点睛】本题主要考查等边三角形和等腰三角形的性质,平行线的判定,三角形内角和定理,掌握等边三角形和等腰三角形的性质,平行线的判定,三角形内角和定理是解题的关键.24.如图,(1)画出ABC ∆关于y 轴对称的图形'''A B C ∆.(2)请写出点'A 、'B 、'C 的坐标:'A ( , ) 'B ( , ) 'C ( , )【答案】(1)见解析;(2)'A (3,2)'B (4,-3)'C (1,-1)【分析】(1)根据对称的特点,分别绘制A 、B 、C 的对应点,依次连接对应点得到对称图形; (2)根据对称图形读得坐标.【详解】(1)图形如下:(2)根据图形得:'A(3,2)'B(4,-3)'C(1,-1)【点睛】本题考查绘制轴对称图形,注意,绘制轴对称图形实质就是绘制对称点,然后将对称点依次连接即为对称图形.25.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°,故答案为90°;(Ⅱ)如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM,故答案为AE=BE+2CM.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD 的长为()A.3 B.5 C.6 D.7【答案】B【解析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF=4+(3-2)=5.【详解】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选B.【点睛】本题考查了全等三角形的判定与性质,熟练掌握性质是解题的关键.2.下列各组线段中(单位:cm),能组成三角形的是()A.5,15,20 B.6,8,15 C.2,2.5,3 D.3,8,15【答案】C【分析】根据三角形三边长的关系:“三角形任意两边之和大于第三边”,逐一判断选项,即可得到答案. 【详解】∵5+15=20,∴长为5,15,20的线段,不能组成三角形,即:A错误;∵6+8<15,∴长为6,8,15的线段,不能组成三角形,即:B错误;∵2+2.5>3,∴长为2,2.5,3的线段,能组成三角形,即:C正确;∵3+8<15,∴长为3,8,15的线段,不能组成三角形,即:D错误;故选C.【点睛】本题主要考查三角形三边关系,熟记三角形三边关系定理是解题的关键.3.下列运算正确的是()A.x2+x2=2x4B.a2•a3=a5C.(﹣2a2)4=16x6D.a6÷a2=a3【答案】B【分析】直接利用积的乘方运算以及同底数幂的乘除运算法则分别化简得出答案.【详解】A、x2+x2=2x2,故此选项错误;B、a2•a3=a5,正确;C、(﹣2a2)4=16x8,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题主要考查了轴对称图形与中心对称图形,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.5.已知□ABCD 的周长为32,AB=4,则BC 的长为( )A .4B .12C .24D .28 【答案】B【分析】根据平行四边形的性质得AB=CD ,AD=BC ,根据2(AB+BC )=32即可求解【详解】∵四边形ABCD 是平行四边形∴AB=CD ,AD=BC∵平行四边形ABCD 的周长是32∴2(AB+BC )=32∴BC=12故正确答案为B【点睛】此题主要考查平行四边形的性质6.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠∠=;③三角形的一个外角大于任何一个内角;④若22a b =,则a b =.A .1个B .2个C .3个D .4个 【答案】A【解析】两条平行线被第三条直线所截,内错角相等,故①是假命题;如果∠1和∠2是对顶角,那么∠1=∠2,②是真命题;三角形的一个外角大于任何一个不相邻的内角,③是假命题;若a 2=b 2,则a=±b ,④是假命题,故选A .7.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形 【答案】B【解析】n 边形的内角和是(n ﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n 边形的内角和公式,得(n ﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B .【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.8.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠ABC =∠DCBB .∠ABD =∠DCAC .AC =DBD .AB =DC【答案】D 【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD+∠DBC =∠ACD+∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS . 9.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=2 22=4 23=8 … 31=3 32=9 33=27 … 新运算 log 22=1 log 24=2 log 28=3 … log 33=1 log 39=2 log 327=3 … 根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 212=﹣1.其中正确的是 A .①②B .①③C .②③D .①②③ 【答案】B【解析】422log 16log 24== ,故①正确;255log 25log 52== ,故②不正确;122log 0.5log 21-==- ,故③正确;故选B.10.已知:如图,在△ABC 中,D 为BC 的中点,AD ⊥BC ,E 为AD 上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A .10°B .15°C .20°D .25°【答案】C 【详解】解:∵D 为BC 的中点,AD ⊥BC ,∴EB=EC ,AB=AC∴∠EBD=∠ECD ,∠ABC=∠ACD .又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选C .【点睛】本题考查等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系.二、填空题11.若a 的3倍与2的差是负数,则可列出不等式______.【答案】320a -<【分析】根据题意即可列出不等式.【详解】根据题意得320a -<故答案为:320a -<.【点睛】此题主要考查列不等式,解题的关键是根据题意找到不等关系.12.当m=____时,关于x 的分式方程2x m -1x-3+=无解. 【答案】-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.13.在平面直角坐标系中,(2,0)A ,(0,3)B ,若ABC ∆的面积为6,且点C 在坐标轴上,则符合条件的点C 的坐标为__________.【答案】()2,0-或()6,0或()0,3-或()0,9【分析】根据C 点在坐标轴上分类讨论即可.【详解】解:①如图所示,若点C 在x 轴上,且在点A 的左侧时,∵(0,3)B∴OB=3∴S △ABC =12AC ·OB=6 解得:AC=4∵(2,0)A∴此时点C 的坐标为:()2,0-;②如图所示,若点C 在x 轴上,且在点A 的右侧时,同理可得:AC=4∴此时点C 的坐标为:()6,0;③如图所示,若点C 在y 轴上,且在点B 的下方时,∵(2,0)A∴AO=2∴S △ABC =12BC ·AO=6 解得:BC=6∵(0,3)B∴此时点C 的坐标为:()0,3-;④如图所示,若点C 在y 轴上,且在点B 的上方时,同理可得:BC=6∴此时点C 的坐标为:()0,9.故答案为()2,0-或()6,0或()0,3-或()0,9.【点睛】此题考查的是平面直角坐标系中已知面积求点的坐标,根据C 点的位置分类讨论是解决此题的关键. 14.已知a 2+b 2=18,ab=﹣1,则a+b=____.【答案】±1.【分析】根据题意,计算(a+b)2的值,从而求出a+b的值即可.【详解】(a+b)2=a2+2ab+b2= (a2+b2)+2ab=18﹣2=16,则a+b=±1.故答案为:±1.【点睛】本题考查了代数式的运算问题,掌握完全平方公式和代入法是解题的关键.15.如图,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°.∠BOC的度数是_________.【答案】100°【分析】延长BO交AC于E,根据三角形内角与外角的性质可得∠1=∠A+∠ABO,∠BOC=∠ACO+∠1,再代入相应数值进行计算即可.【详解】解:延长BO交AC于E,∵∠A=50°,∠ABO=20°,∴∠1=∠A+∠ABO =50°+20°=70°,∵∠ACO=30°,∴∠BOC=∠1+∠ACO=70°+30°=100°故答案为:100°【点睛】此题主要考查了三角形内角与外角的关系,关键是掌握三角形内角与外角的关系定理.16.要使分式12x +有意义,则x 的取值范围为_____. 【答案】x≠﹣2【解析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为x≠﹣2.【点睛】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.17.已知29x mx ++是完全平方式,则m =_________.【答案】6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.三、解答题18.ABC 在平面直角坐标系中的位置如图所示.()1在图中画出ABC 与关于y 轴对称的图形111A B C ,并写出顶点1A 、1B 、1C 的坐标;()2若将线段11A C 平移后得到线段22A C ,且()()2222A a C b ,,,-,求a b +的值.【答案】(1)作图见解析,A 1(2,3)、B 1(3,2)、C 1(1,1);(2)a+b=-1.【分析】(1)根据轴对称的性质确定出点A 1、B 1、C 1的坐标,然后画出图形即可;(2)由点A 1、C 1的坐标,根据平移与坐标变化的规律可规定出a 、b 的值,从而可求得a+b 的值.【详解】解:(1)如图所示:A 1(2,3)、B 1(3,2)、C 1(1,1).(2)∵A 1(2,3)、C 1(1,1),A 2(a ,2),C 2(-2,b ).∴将线段A 1C 1向下平移了1个单位,向左平移了3个单位.∴a=-1,b=2.∴a+b=-1+2=-1.【点睛】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a 、b 的值是解题的关键.19.如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了1.8m ,当他把绳子下端拉开4m 后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?【答案】旗杆的高度为9.6 m ,见解析.【分析】设旗杆高为x 米,那么绳长为()08x +.米,由勾股定理得()222408x x ++=.,解方程即可; 【详解】解:设旗杆高为x 米,那么绳长为()08x +.米, 由勾股定理得()222408x x ++=.,解得9.6x =.答:旗杆的高度为9.6 m .【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方,即222a b c +=.20.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14. 【答案】-3.【解析】根据平方差公式和单项式乘以多项式,然后再合并同类项即可对题目中的式子化简,然后将x=1 4代入化简后的式子,即可求得原式的值.【详解】解:原式=x2-4+4x-x2=4x-4.当x=14时,原式=4×14-4=-3.故答案为:-3.【点睛】本题考查整式的混合运算—化简求值.21.某商店销售篮球和足球共60个.篮球和足球的进价分别为每个40元和50元,篮球和足球的卖价分别为每个50元和65元.设商店共有x个足球,商店卖完这批球(篮球和足球)的利润为y.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)商店现将篮球每个涨价a元销售,足球售价不变,发现这批球卖完后的利润和x的取值无关.求卖完这批球的利润和a的值.【答案】(1)y=5x+600(0≤x≤60);(2)a=5,900元【分析】(1)设商店共有x个足球,则篮球的个数为(60-x),根据利润=售价-进价,列出等量关系即可;(2)将(1)中的(50-40)换成(50+a-40)进行整理,分析即可.【详解】解:(1)设商店共有x个足球,依题意得:y=(65-50)x+(50-40)(60-x)即:y=5x+600(0≤x≤60);(2)根据题意,有y=(65-50)x+(50+a-40)(60-x)=(5-a)x+60(10+a)∵y的值与x无关,∴a=5,∴y=60×(10+5)=900,∴卖完这批球的利润为900元.【点睛】本题考查一次函数的应用,熟练掌握利润与售价、进价之间的关系是关键.22.已知:如图,∠AGD=∠ACB,∠1=∠2,CD与EF平行吗?为什么?【答案】平行,见解析.【分析】先判定GD//CB,然后根据平行的性质得到∠1=∠BCD,然后利用同位角相等、两直线平行即可证明.【详解】解:平行. 理由如下:∵ ∠AGD =∠ACB , (已知)∴ GD ∥BC (同位角相等,两直线平行)∴∠1=∠BCD (两直线平行,内错角相等)∵∠1=∠2,(已知)∴∠2=∠BCD (等量代换)∴ CD ∥EF (同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,灵活运用同位角相等、两直线平行是解答本题的关键.23.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y (个)与甲加工时间x h ()之间的函数图象为折线OA AB BC ﹣﹣,如图所示. (1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;(2)当36x ≤≤时,求y 与x 之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?【答案】(1)270,20,40;(2)6090=-y x ()36x ≤≤;(3)甲加工1.5h 或4.5h 时,甲与乙加工的零件个数相等.。
浙江省宁波市八年级上学期期末考试数学试题(有答案)浙教版

第一学期八年级数学期末试卷(满分100分,考试时间90分钟)、选择题(每小题3分,共30分)A.(1,2)B.(1,-2)C.(-1,-2)D.(-1,2)2下列语句是命题的是3.下列不等式对任何实数 x 都成立的是( 2 2A.x+1>0B.x +1>0C.x +1<0D. I x I2 24.若一个三角形三边 a,b,c 满足(a+b ) =c +2ab,则这个三角形是5.平面直角坐标系内有点 A (-2,3), B (4,3),则A,B 相距(6•下列条件中不能判定三角形全等的是 7•不等式-2x+6>0的正整数解有(A.5B.6C.7D.81•在平面直角坐标系中 ,下列各点在第一象限的是(A.延长线段ABB.过点A 作直线a 的垂线C.对顶角相等D.x 与y 相等吗?A.等边三角形B.钝角三角形C.等腰直角三角形D. 直角三角形 9•平面直角坐标系中,将直线 向右平移1个单位长度得到的直线解析式是 A.y=3x+2 B.y=2x+4 C.y=2x+1 D.y=2x+3 10.如图,△ ABC 中,/ A=67.5,BC=4,BE 丄 CA 于 E,CF 丄 AB F,D 是BC 的中点•以 F 为原点,FD 所在直线为x 轴构造平 直角坐标系,则点E 的横坐标是( A. 2-、一 2 B. ,2 -1 C.2- 3 D. 1 二、填空题(每小题3分,共24分)11.函数y= •. x -1中,自变量x 的取值范围是12.如图,△ ABC 中,AB=AC, / B=70 °,则/ A=y=2x+2,则原来的直线解析式是于 面+1<0A. 4个单位长度B. 5个单位长度C. 6个单位长度D. 10个单位长度A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等A.无数个B.0个C.1个D.2个8.如图,△ ABC 中,AB=AC. 将^ ABC沿AC 方向平移到△ DEF 连结 BF.若 AD=4,BF=8, / ABF=90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年浙江省宁波市镇海区八年级(上)期末数学试卷
一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符
合题目要求)
1.(4分)在平面直角坐标系中,点P(3,﹣2)在()
A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()
A.3cm B.4cm C.7cm D.11cm
3.(4分)下列二次根式属于最简二次根式的是()
A.B.C.D.
4.(4分)一个正比例函数的图象经过点(﹣2,4),它的表达式为()A.y=﹣2 x B.y=2 x C.y=﹣x D.y=x
5.(4分)若a<b,则下列各式中一定成立的是()
A.ac<bc B.a2<b2C.a+1<b+1D.>
6.(4分)下列函数中,y随x的增大而减小的是()
A.y=2x B.y=2x﹣1C.y=2x+1D.y=﹣2x
7.(4分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()
A.3、4、5B.6、8、10C.、2、D.5、12、13 8.(4分)如图,∠C=∠D,DE=EC,则以下说法错误的是()
A.AD=BC B.OA=AC C.∠OAD=∠OBC D.△OAD≌△OBC 9.(4分)如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是()
A.24°B.30°C.32°D.36°
10.(4分)如果不等式>
<
的解集是x<2,那么m的取值范围是
()
A.m=2B.m>2C.m<2D.m≥2 11.(4分)某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率,该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()
A.150 m2B.300 m2C.330 m2D.450 m2 12.(4分)如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…
则第n个等边三角形的边长等于()
A.B.C.D.
二、填空题(每小题4分,共24分)
13.(4分)x与的差的一半是正数,用不等式表示为.
14.(4分)盖房子时,木工师傅常常先在窗框上斜钉一根木条,这是利用三角形的性.
15.(4分)请写出“三个角都相等的三角形是等边三角形”的逆命题:.16.(4分)如图,若△ABC≌△ADE,且∠B=65°,则∠BAD=.
17.(4分)将一次函数y=﹣2x+4的图象向左平移个单位长度,所得图象的函数关系式为y=﹣2x.
18.(4分)根据三角形外心的概念,我们可引入下一个新定义:
定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.
根据准外心的定义,探究如下问题:如图,在Rt△ABC中,∠A=90°,BC=10,AB=6,如果准外心P在AC边上,那么PA的长为.
三、解答题(本题有8小题,共78分)
19.(8分)计算:
(1)
(2)
把不等式组的解集在数轴上表示出来,20.(8分)解不等式组:
>。