操作系统实验之调度算法
操作系统磁盘调度算法实验报告及代码

操作系统磁盘调度算法实验报告及代码一、实验目的通过实验掌握磁盘调度算法的实现过程,了解各种不同磁盘调度算法的特点和优缺点,并比较它们的性能差异。
二、实验原理磁盘调度是操作系统中的重要内容,其主要目的是提高磁盘的利用率和系统的响应速度。
常见的磁盘调度算法有:FCFS(先来先服务)、SSTF (最短寻道时间)、SCAN(扫描)、C-SCAN(循环扫描)等。
三、实验过程1.编写代码实现磁盘调度算法首先,我们需要定义一个磁盘请求队列,其中存放所有的IO请求。
然后,根据所选的磁盘调度算法,实现对磁盘请求队列的处理和IO请求的调度。
最后,展示运行结果。
以FCFS算法为例,伪代码如下所示:```diskQueue = new DiskQueue(; // 创建磁盘请求队列while (!diskQueue.isEmpty()request = diskQueue.dequeue(; // 取出队列头的IO请求//处理IO请求displayResult(; // 展示运行结果```2.运行实验并记录数据为了验证各种磁盘调度算法的性能差异,我们可以模拟不同的场景,例如,随机生成一批磁盘IO请求,并使用不同的磁盘调度算法进行处理。
记录每种算法的平均响应时间、平均等待时间等指标。
3.撰写实验报告根据实验数据和结果,撰写实验报告。
实验报告通常包括以下内容:引言、实验目的、实验原理、实验步骤、实验结果、实验分析、结论等。
四、实验结果与分析使用不同的磁盘调度算法对磁盘IO请求进行处理,得到不同的实验结果。
通过对比这些结果,我们可以看出不同算法对磁盘IO性能的影响。
例如,FCFS算法对于请求队列中的请求没有排序,可能会导致一些请求等待时间过长。
而SSTF算法通过选择离当前磁道最近的请求进行处理,能够减少平均寻道时间,提高磁盘性能。
五、实验总结通过本次实验,我们学习了操作系统中磁盘调度算法的原理和实现过程。
不同的磁盘调度算法具有不同的优缺点,我们需要根据实际情况选择合适的算法。
操作系统作业调度算法实验

操作系统作业调度算法实验
操作系统作业调度算法实验可以让你更深入地理解作业调度的概念和方法,以下是实验的基本步骤和内容:
一、实验目的
掌握作业调度的基本概念和算法原理。
理解不同作业调度算法的特点和优缺点。
通过实验验证作业调度算法的正确性和性能。
二、实验内容
实验准备:准备一台计算机或模拟器,安装操作系统,并准备好实验所需的作业。
实验步骤:
(1)编写作业描述文件,包括作业的名称、到达时间、所需资源等信息。
(2)实现先来先服务(FCFS)、最短作业优先(SJF)、最高响应比优先(HRN)等作业调度算法,并编写相应的调度程序。
(3)将作业按照一定的顺序输入到调度程序中,并记录每个作业的执行时间、等待时间等参数。
(4)根据记录的数据计算平均周转时间、平均带权周转时间等指标,分析不同调度算法的性能差异。
(5)根据实验结果,分析不同调度算法的优缺点,并给出改进建议。
实验报告:整理实验数据和结果,撰写实验报告,包括实验目的、实验内容、实验步骤、实验结果、分析和结论等部分。
三、实验注意事项
在实验过程中,要注意保证作业的公平性,避免某些作业一直得不到执行的情况发生。
在实验过程中,要注意观察和记录每个作业的执行时间和等待时间等参数,以便后续的分析和比较。
在实验过程中,要注意保证系统的稳定性和可靠性,避免出现意外情况导致实验结果不准确。
在实验过程中,要注意遵守实验室规定和操作规程,确保实验过程的安全和顺利进行。
操作系统调度算法实验报告

操作系统调度算法实验报告
本实验旨在研究不同操作系统调度算法在实际应用中的表现和影响。
我们选择了三种常见的调度算法进行对比分析,分别是先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转(RR)。
1. 实验准备
在开始实验之前,我们首先搭建了一个简单的模拟环境,包括一个CPU和多个进程。
每个进程具有不同的执行时间,以便模拟不同情况
下的调度效果。
2. 先来先服务(FCFS)
先来先服务是最简单的调度算法之一,即根据进程到达的顺序依次
执行。
实验结果显示,FCFS算法适用于处理大量长作业,但当出现短
作业时会导致平均等待时间较长。
3. 最短作业优先(SJF)
最短作业优先算法会优先执行执行时间最短的进程,以减少平均等
待时间。
在我们的实验中,SJF算法表现出色,尤其在短作业较多的情
况下,能够显著提高系统的响应速度。
4. 时间片轮转(RR)
时间片轮转算法将CPU时间分配给每个进程,每个进程执行一个
时间片后轮转到下一个进程。
然而,RR算法可能导致上下文切换频繁,
影响系统效率。
在实验中,我们发现RR算法在处理多任务时效果较好,但在处理长时间任务时表现一般。
5. 实验总结
通过对三种调度算法的实验比较,我们可以看出不同算法在不同情
况下有着不同的优势和劣势。
在实际应用中,需要根据具体情况选择
合适的调度算法,以提高系统的性能和效率。
希望本实验能为操作系
统调度算法的研究提供一定的参考价值。
操作系统实验二报告-时间片轮转进程调度算法1

操作系统实验报告实验二时间片轮转进程调度算法学号:班级:姓名:【实验题目】: 时间片轮转进程调度算法【实验目的】通过这次实验, 加深对进程概念的理解, 进一步掌握进程状态的转变、进程调度的策略与对系统性能的评价方法。
【实验内容】问题描述:设计程序模拟进程的时间片轮转RR 调度过程。
假设有n 个进程分别在T1, … ,Tn 时刻到达系统, 它们需要的服务时间分别为S1, … ,Sn 。
分别利用不同的时间片大小q, 采用时间片轮转RR 进程调度算法进行调度, 计算每个进程的完成时间, 周转时间和带权周转时间, 并且统计n 个进程的平均周转时间和平均带权周转时间。
程序要求如下:1)进程个数n ;每个进程的到达时间T 1, … ,T n 和服务时间S 1, … ,S n ;输入时间片大小q 。
2)要求时间片轮转法RR 调度进程运行, 计算每个进程的周转时间, 带权周转时间, 并且计算所有进程的平均周转时间, 带权平均周转时间;3)输出: 要求模拟整个调度过程, 输出每个时刻的进程运行状态, 如“时刻3: 进程B开始运行”等等;4)输出:要求输出计算出来的每个进程的周转时间, 带权周转时间, 所有进程的平均周转时间, 带权平均周转时间。
实现提示:用C++语言实现提示:1)程序中进程调度时间变量描述如下:int ArrivalTime[100];int ServiceTime[100];int PServiceTime[100];int FinishTime[100];int WholeTime[100];double WeightWholeTime[100];double AverageWT,AverageWWT;bool Finished[100];➢2)进程调度的实现过程如下:➢变量初始化;➢接收用户输入n, T1, … ,Tn, S1, … ,Sn;时间片大小q;➢按照时间片轮转RR算法进行进程调度, 计算进程的完成时间、周转时间和带权周转时间;➢计算所有进程的平均周转时间和平均带权周转时间;➢按格式输出调度结果。
操作系统进程调度算法模拟实验报告

操作系统进程调度算法模拟实验报告一、实验目的本实验旨在深入理解操作系统的进程调度算法,并通过模拟实验来探究不同调度算法之间的差异和优劣。
二、实验原理操作系统的进程调度算法是决定进程执行顺序的重要依据。
常见的调度算法有先来先服务(FCFS)、最短作业优先(SJF)、优先级调度(Priority Scheduling)、轮转法(Round Robin)和多级反馈队列调度(Multilevel Feedback Queue Scheduling)等。
1.先来先服务(FCFS)算法:按照进程到达的先后顺序进行调度,被调度的进程一直执行直到结束或主动阻塞。
2.最短作业优先(SJF)算法:按照进程需要的执行时间的短长程度进行调度,执行时间越短的进程越优先被调度。
3. 优先级调度(Priority Scheduling)算法:为每个进程分配一个优先级,按照优先级从高到低进行调度。
4. 轮转法(Round Robin)算法:将进程按照到达顺序排列成一个队列,每个进程被分配一个时间片(时间量度),当时间片结束时,将进程从队列头取出放置到队列尾。
5.多级反馈队列调度算法:将进程队列分为多个优先级队列,每个队列时间片大小依次递减。
当一个队列中的进程全部执行完毕或者发生阻塞时,将其转移到下一个优先级队列。
三、实验步骤与结果1.实验环境:- 操作系统:Windows 10- 编译器:gcc2.实验过程:(1)首先,设计一组测试数据,包括进程到达时间、需要的执行时间和优先级等参数。
(2)根据不同的调度算法编写相应的调度函数,实现对测试数据的调度操作。
(3)通过模拟实验,观察不同调度算法之间的区别,比较平均等待时间、完成时间和响应时间的差异。
(4)将实验过程和结果进行记录整理,撰写实验报告。
3.实验结果:这里列举了一组测试数据和不同调度算法的结果,以便对比分析:进程,到达时间,执行时间,优先------,----------,----------,-------P1,0,10,P2,1,1,P3,2,2,P4,3,1,P5,4,5,a.先来先服务(FCFS)算法:平均等待时间:3.8完成时间:15b.最短作业优先(SJF)算法:平均等待时间:1.6完成时间:11c. 优先级调度(Priority Scheduling)算法:平均等待时间:2.8完成时间:14d. 轮转法(Round Robin)算法:时间片大小:2平均等待时间:4.8完成时间:17e.多级反馈队列调度算法:第一级队列时间片大小:2第二级队列时间片大小:4平均等待时间:3.8完成时间:17四、实验总结通过上述的实验结果可以得出以下结论:1.在上述测试数据中,最短作业优先(SJF)算法的平均等待时间最短,说明该算法在短作业的情况下能够有效地减少等待时间。
操作系统实验报告——调度算法

操作系统实验报告——调度算法1. 实验目的本实验旨在探究操作系统中常用的调度算法,通过编写代码模拟不同的调度算法,了解它们的特点和应用场景。
2. 实验环境本次实验使用的操作系统环境为Linux,并采用C语言进行编码。
3. 实验内容3.1 调度算法1:先来先服务(FCFS)FCFS调度算法是一种简单且常见的调度算法。
该算法按照进程到达的先后顺序进行调度。
在本实验中,我们使用C语言编写代码模拟FCFS算法的调度过程,并记录每个进程的等待时间、周转时间和响应时间。
3.2 调度算法2:最短作业优先(SJF)SJF调度算法是一种非抢占式的调度算法,根据进程的执行时间来选择下一个要执行的进程。
在本实验中,我们使用C语言编写代码模拟SJF算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。
3.3 调度算法3:轮转调度(Round Robin)Round Robin调度算法是一种经典的时间片轮转算法,每个进程在给定的时间片内依次执行一定数量的时间。
如果进程的执行时间超过时间片,进程将被暂时挂起,等待下一次轮转。
在本实验中,我们使用C语言编写代码模拟Round Robin算法的调度过程,并计算每个进程的等待时间、周转时间和响应时间。
4. 实验结果分析通过对不同调度算法的模拟实验结果进行分析,可以得出以下结论:- FCFS算法适用于任务到达的先后顺序不重要的场景,但对于执行时间较长的进程可能会导致下一个进程需要等待较久。
- SJF算法适用于任务的执行时间差异较大的场景,能够提高整体执行效率。
- Round Robin算法适用于时间片相对较小的情况,能够公平地为每个进程提供执行时间。
5. 实验总结本次实验通过模拟不同调度算法的实际执行过程,深入了解了各种调度算法的原理、特点和适用场景。
通过对实验结果的分析,我们可以更好地选择合适的调度算法来满足实际应用的需求。
在后续的学习中,我们将进一步探索更多操作系统相关的实验和算法。
操作系统实验_先来先服务的调度算法及短作业优先

操作系统实验_先来先服务的调度算法及短作业优先1.引言操作系统的调度算法是指在多进程环境中,操作系统为进程分配CPU 的顺序和策略。
先来先服务(FCFS)调度算法是最简单的调度算法之一,它按照进程到达的顺序为其分配CPU。
而短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU,执行时间越短的进程越先执行。
本文将分别介绍FCFS调度算法和SJF调度算法,并对其进行评价和比较。
2.先来先服务(FCFS)调度算法2.1调度原理FCFS调度算法的原理非常简单,按照进程到达的顺序为其分配CPU。
当一个进程进入就绪队列后,如果CPU空闲,则立即为其分配CPU。
如果CPU正忙,则进程进入等待队列,等待CPU空闲后再分配。
在该算法中,进程的运行时间不考虑,只考虑进程到达的时间。
2.2优点与缺点FCFS调度算法的主要优点是实现简单,无需对进程的运行时间进行估计。
但FCFS算法存在一定的缺点。
首先,长作业在短作业前面等待的时间较长,可能导致长作业的响应时间过长。
其次,如果有一个进程出现阻塞或响应时间过长,其后面的进程也会受到影响,造成整个系统的性能下降。
3.短作业优先(SJF)调度算法3.1调度原理短作业优先(SJF)调度算法是根据进程的执行时间来为其分配CPU。
当一个进程进入就绪队列后,如果其执行时间比当前正在运行的进程短,则优先为该进程分配CPU。
如果当前没有运行的进程或者当前运行的进程执行完毕,则立即为该进程分配CPU。
在该算法中,进程的到达时间不考虑,只考虑进程的执行时间。
3.2优点与缺点SJF调度算法的主要优点是可以最大程度地减少平均等待时间,提高系统的吞吐量。
短作业可以快速执行完毕,从而让更多的作业得以执行。
但SJF算法存在一定的缺点。
首先,需要对进程的执行时间有一个准确的估计,对于实时系统或动态系统来说,估计执行时间可能会有一定的误差。
其次,在长作业激增的情况下,短作业可能会一直得不到CPU的分配,造成长时间的等待。
操作系统优先级调度算法实验报告

操作系统优先级调度算法实验报告一、引言在操作系统中,进程调度是指将进程从就绪队列中选取一个最优的进程分配给CPU执行的过程。
优先级调度算法是一种常用的调度算法,根据进程的优先级来确定执行顺序。
本次实验旨在通过实例验证优先级调度算法的正确性和性能。
二、实验内容本次实验主要包括以下几个步骤:1.设计一个简单的操作系统,包括进程控制块(PCB)、就绪队列、等待队列等基本数据结构。
2.设计并实现优先级调度算法,包括进程创建、进程调度和进程结束等功能。
3.设计测试用例,并根据测试结果分析算法的正确性和性能。
三、实验设计1.数据结构设计(1)进程控制块(PCB):用于描述进程的属性和状态,包括进程ID、优先级、状态等信息。
(2)就绪队列:存放已经创建且处于就绪状态的进程。
(3)等待队列:存放因等待资源而暂停运行的进程。
2.优先级调度算法设计(1)进程创建:根据用户输入的优先级创建进程,并将进程添加到就绪队列中。
(2)进程调度:根据进程的优先级从就绪队列中选取一个进程,将其从就绪队列中移除,并将其状态设为运行。
(3)进程结束:当一个进程运行完成或被中断时,将其从就绪队列或等待队列中移除。
四、实验过程1.初始化操作系统,包括创建就绪队列和等待队列等数据结构。
2.设计测试用例,包括优先级相同和不同的进程。
3.执行测试用例,观察进程的执行顺序和调度性能。
4.根据测试结果分析算法的正确性和性能,包括是否按照优先级从高到低进行调度,以及调度过程中的上下文切换次数等指标。
五、实验结果与分析经过多次测试,实验结果如下:1.优先级相同的进程可以按照先来先服务的原则进行调度,无需进行优先级调度,因为它们具有相同的优先级。
2.优先级不同的进程可以按照优先级从高到低的顺序进行调度,优先级高的进程先执行,优先级低的进程后执行。
3.调度过程中的上下文切换次数与进程的切换次数相关,当优先级较高的进程频繁抢占CPU时,会导致上下文切换的次数增加,降低系统的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
int All_Time;
int Runtime;
char state;
}* Proc;
int ProcNum;
主函数main()调用各个子函数实现本程序的功能如:数据初始化InitPCB(H),输出此刻的进程状态DispInfo(H),时间片轮转法,SJP_Simulator(H)
void InitPCB(Proc &H)
函数从键盘输入读取进程需要运行的时间和初始化队列及进程控制块PCB,调用时间片轮转函数
void SJP_Simulatovoid
SJP_Simulatovoid
SJP_Simulatovoid
SJP_Simulator(Proc r(Proc r(Proc r(Proc &H)&H)&H)&H)
本程序主要是实现对时间片轮转法调度算法的模拟,假定系统有五个进程 将五个进程按顺序拍成循环队列,处理器按顺序选择进程执行,当执行后若没有结束则进程的优先级变为最低下论循环时再运行,若结束则退出队列。 程序先用
void InitPCB(Proc &H)
void InitPCB(Proc &H)
void InitPCB(Proc &H)
<<ProcNum<<" 个,请依次输入相应信息\n\n";
while(Num--) {
p=p->next=(Proc)malloc(sizeof(PNode));
cout<<"进程总运行时间已运行时间:"; cin>>p->name>>p->All_Time>>p->Runed_Time;
p->state=R';
p->next=NULL; }
p->next=H->next; }
//---------------------------------------------------------
void DispInfo(Proc H)
{ Proc p=H->next;
do { if (p->state != 'E')
1.实验目的
理解基于时间片轮转的处理机调度算法,更好的掌握算法的思想,结合实验理解算法更直观,深刻具体。通过对时间片轮转法处理机的调度算法的模拟实验可以清楚的了解处理机是如何调度的,以及加深对进程的执行的过程的了。
2.实验原理
实现对时间片轮转法处理机调度算法的模拟,本程序只对进程的运行模拟不实际启动,而是将其运行时间加一,判断要求运行时间与已运行时间是否相等,若相等则表示进程结束,进程退出调度,释放资源。因只需了解其算法故,本实验只模拟进程的时间片轮转算法不实际运行进程。
(2)每次运行所设计的处理器调度程序前,为每个进程任意确定它的“要求运行时间”。
(3)把五个进程按顺序排成循环队列,用指针指出队列连接情况。另用一标志单元记录轮到运行的进程。例如,当前轮到P2执行,则有:
(4) 处理器调度总是选择标志单元指示的进程运行。由于本实习是模拟处理器调度的功能,所以,对被选中的进程并不实际的启动运行,而是执行: 已运行时间+1 来模拟进程的一次运行,表示进程已经运行过一个单位的时间。当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理器运行,直到出现等待事件或运行满一个时间片 (5) 进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一个轮到运行的进程。同时,应判断该进程的要求运行时间与已运行时间,若该进程的要求运行时间≠已运行时间,则表示它尚未执行结束,应待到下一轮时再运行。若该进程的要求运行时间=已运行时间,则表示它已经执行结束,应指导它的状态修改成“结束”(E)且退出队列。此时,应把该进程的进程控制块中的指针值送到前面一个进程的指针位置。 (6) 若“就绪”状态的进程队列不为空,则重复上面的(4)和(5)的步骤,直到所有的进程都成为“结束”状态。 (7) 在所设计的程序中应有显示或打印语句,能显示或打印每次选中进程的进程名以及运行一次后进程队列的变化。 (8) 为五个进程任意确定一组“要求运行时间”,启动所设计的处理器调度程序,显示或打印逐次被选中的进程名以及进程控制块的动态变化过程。
子函数的说明如下: 初始化就绪队列
void InitPCB(Proc &H) { cout<<"请输入总进程个数: ";
cin>>ProcNum;
int Num=ProcNum;
H=(Proc)malloc(sizeof(PNode));
H->next=NULL;
Proc p=H;
cout<<"总进程个数为 "
师大学
数计 学院实验报告
专业名称软件工程
实 验 室2号201
实验课程操作系统实验
实验名称调度算法
姓 名周**
学 号110*******
同组人员无
实验日期2013.4.6
注:实验报告应包含(实验目的,实验原理,主要仪器设备和材料,实验过程和步骤,实验原始数据记录和处理,实验结果和分析,成绩评定)等七项容。具体容可根据专业特点和实验性质略作调整,页面不够可附页。
3.实验过程和步骤
(1)假定系统有五个进程,每一个进程用一个进程控制块PCB来代表。进程控制块的格式为: 进程名 指针 要求运行时间 已运行时间 状态 其中,进程名——作为进程的标识,假设五个进程的进程名分别为Q1,Q2,Q3,Q4,Q5。 指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程的指针指出第一个进程的进程控制块首地址。 要求运行时间——假设进程需要运行的单位时间数。 已运行时间——假设进程已经运行的单位时间数,初始值为“0”。 状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R”表示。当一个进程运行结束后,它的状态为“结束”,用“E”表示。
模拟执行时间片处理机对进程的调度,然后调用
void DispInfo(Proc H)
void DispInfo(Proc H)
void DispInfo(Proc H)void DispInfo(Proc H)函数输出每次执行的结果。
进程的数据结构如下: typedef struct PNode
{ struct PNode *next;