二次函数导学案-二次函数综合应用

合集下载

人教版数学九年级上册第22章《二次函数》全章导学案

人教版数学九年级上册第22章《二次函数》全章导学案

22.1.4 二次函数y ax2bx c 的图象学习目标:1. 能经过配方把二次函数y ax 2bx c 化成 y a( x h)2 + k 的形式,进而确立张口方向、对称轴和极点坐标。

2.熟记二次函数y ax 2bx c 的极点坐标公式;3.会画二次函数一般式学习要点:掌握二次函数y ax 2bx c 的图象.y ax2bx c 的图象和性质.学习难点:运用二次函数y ax2bx c 的图象和性质解决实质问题 .学习方法:问题式五步教课法 .学习过程一、出示目标二、预习检测1. 抛物线y2;对称轴是直2 x 31的极点坐标是线;当 x =时 y 有最值是;当 x时,y 随x的增大而增大;当x时, y 随x的增大而减小。

2.二次函数分析式 y a(x h)2 +k 中,很简单确立抛物线的极点坐标为,所以这类形式被称作二次函数的极点式。

三、怀疑互动:(1)你能直接出函数y x22 x 2的像的称和点坐?(2)你有法解决( 1)?解:y x22x 2 的点坐是,称是.(3)像我能够把一个一般形式的二次函数用的方法化点式进而直接获得它的像性 .(4)用配方法把以下二次函数化成点式:① y x 22x 2② y 1 x22x 5③2y ax2bx c(5):二次函数的一般形式y ax 2bx c 能够用配方法化成点式:,所以抛物y ax2bx c 的点坐是;称是,(6)用点坐和称公式也能够直接求出抛物的点坐和称,种方法叫做公式法。

用公式法写出以下抛物的张口方向、称及点坐。

① y 2x 23x 4② y2x 2x 2③ yx 24x四、达用描点法画出 y 1 x2 2 x 1的像 .(1)点坐2;(2)列表:点坐填在;(列表一般以称中心,称取.)x⋯⋯y1 x2 2x 1 ⋯2(3)描点,并 :6 y5 4 3 21 x7654321O1 2 312 3 4(4) 察:① 象有最点,即x =,y 有最是;② x,y 随 x 的增大而增大;xy 随x 的增大而减小。

二次函数全章导学案(不分版本,通用)

二次函数全章导学案(不分版本,通用)

26.1二次函数§26.1.1《二次函数》导学案【学习目标】1. 了解二次函数的有关概念.2. 会确定二次函数关系式中各项的系数。

3. 确定实际问题中二次函数的关系式。

【学法指导】类比一次函数,反比例函数来学习二次函数,注意知识结构的建立。

【学习过程】【活动一】知识链接(5分钟)1.若在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。

2. 形如___________y =0)k ≠(的函数是一次函数,当______0=时,它是 函数;形如 0)k ≠(的函数是反比例函数。

【活动二】自主交流 探究新知(25分钟)1.用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。

分析:在这个问题中,可设长方形生物园的长为x 米,则宽为 米,如果将面积记为y 平方米,那么y 与x 之间的函数关系式为y = ,整理为y = .2.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.3.用一根长为40cm 的铁丝围成一个半径为r 的扇形,求扇形的面积S 与它的半径r 之间的函数关系式是 。

4.观察上述函数函数关系有哪些共同之处?。

5.归纳:一般地,形如 ,(,,a b c a 是常数,且 )的函数为二次函数。

其中x 是自变量,a 是__________,b 是___________,c 是_____________.【活动三】课内小结 (学生归纳总结) (3分钟)(1)二次项系数a 为什么不等于0?答: 。

(2)一次项系数b 和常数项c 可以为0吗?答: . 【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.)1.观察:①26y x =;②235y x =-+;③y =200x 2+400x +200;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有 。

6.4二次函数的应用(3)导学案

6.4二次函数的应用(3)导学案

BAh6.4二次函数的应用(3)学习目标:1、能运用二次函数的解析式解决简单的实际问题。

2、结合具体情景体会二次函数的意义,体会二次函数是刻画现实世界的一个有效的数学模型,了解数学的建模思想。

3、在数学的学习过程中培养情感体验,了解数学给人们带来价值及美感。

学习过程: 一、情景创设拱桥造型美,应用广,常见的桥孔形状除半圆形,椭圆形,马蹄形,还有抛物线形,下面请大家欣赏一组图片。

二、探索活动问题1: 河北省赵县的赵州桥的桥拱是抛物线型,所示的坐标系,其函数的表达式为y= -251x 2,当水位线在AB 位置时,水面宽 AB = 30这时水面离桥顶的高度h 是( )A 、5米B 、6米;C 、8米;D 、9米问题2: AB 宽20m ,水位上升到警戒线CD 时,CD 到拱桥顶O 的距离仅为1m,这时水面宽度为10m 。

⑴在如图所示的坐标系中求抛物线的解析式; ⑵若洪水到来时,水位以每小时0.3m 的速度上升, 从正常水位开始,持续多少小时到达警戒水位线?三、典型例题。

问题3:如图,一座抛物线拱桥架在一条河流上,这座拱桥下的水面离桥孔顶部3m ,水面AB 宽6m 时,能建立适当的平面直角坐标系吗?并求出相应的函数关系式。

BAA思考与交流当水位上升1m 时,水面宽多少(精确到0.1m )?四、拓展与延伸一艘装满防汛器材的船,在“问题3”所说的河流中航行,露出水面部分的高为0.5米、宽为4米,当水位上升1米时 ,这艘船能从桥下通过吗?六、巩固练习1、闻名中外的赵州桥是我国隋朝工匠发明并建造的一座扁平抛物线形石拱桥,石拱跨37.02m ,拱高7.23m 。

试在恰当的直角坐标系中求出与该抛物线桥拱对应的二次函数关系式。

2、我国台湾南投县附近的高速公路,有一座结构柔和典雅的钢拱桥,索塔为抛物线,塔高60m ,塔底宽85m 。

试在恰当的直角坐标系中求出与该抛物线过塔对应的函数关系式,并与同学交流。

七、课堂作业1、如图所示,桥拱形状为抛物线,其函数关系式为y =-41x 2,当水位线在AB 位置时,水面的宽度为12m ,这时水面离桥拱顶的高度h 是( )A .3mB .26mC .43mD .9m2、如图所示,一桥拱呈抛物线形,桥的最大高度为16m,跨度为40m,在线段AB上离中点5m的地方M处桥的高度为m。

二次函数(导学案)九年级数学上册同步备课系列(人教版)(解析版)

 二次函数(导学案)九年级数学上册同步备课系列(人教版)(解析版)

22.1.1二次函数学习目标:1)从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,经一步体验如何用数学的方法去描述变量之间的数量关系。

2)理解二次函数的概念,掌握二次函数的形式。

学习重点:二次函数的概念和解析式。

学习难点:用数学的方法去描述变量之间的数量关系。

1)学习过程一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.目前,我们已经学习了哪种类型的函数?问题一正方体的六个面是全等的正方形,设正方体的棱长为a,表面积为S,则S与a之间有什么关系?问题二n个球队参加比赛,每两队之间进行一场比赛。

比赛的场次数m与球队数有什么关系?问题三某工厂一种产品现在的年产量是20吨,计划今后两年增加产量。

如果每一年都比上一年的产量增加x倍,那么两年后,这种产品的产量y与x之间的关系应怎样表示?观察这三个式子你发现了什么?等号左边是函数,右边是关于自变量x的二次式,x的最高次数是22)归纳小结一般地,形如�=ax2+푏 +�(a、b、c是常数,a≠0)的函数叫做二次函数。

二次函数的特殊形式:1)当b=0时,y=ax2+c2)当c=0时,y=ax2+bx3)当b=0,c=0时,y=ax23)自我测试(基础)1.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x 的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)2【详解】解:根据题意知y=100(1﹣x)2,故选:D.2.线段AB=5.动点以每秒1个单位长度的速度从点出发,沿线段AB运动至点B,以线段AP为边作正方形APCD,线段PB长为半径作圆.设点的运动时间为t,正方形APCD周长为y,⊙B的面积为S,则y与t,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.一次函数关系,正比例函数关系C.正比例函数关系,二次函数关系D.反比例函数关系,二次函数关系【详解】解:依题意:AP=t,BP=5-t,故y=4t,S=(5-t)2故选择:C3.下列函数表达式中,一定为二次函数的是()A.y=2x﹣5B.y=ax2+bx+c C.h=t22D.y=x2+1x【详解】解:A.是一次函数,故此选项错误;B.当a≠0时,是二次函数,故此选项错误;C.是二次函数,故此选项正确;D.含有分式,不是二次函数,故此选项错误;故选:C.4.对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+c B.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+c D.以上说法都不对【详解】A.当b=0,a≠0时.二次函数是y=ax2+c,故此选项错误;B.当c=0,a≠0时,二次函数是y=ax2+bx,故此选项错误;C.当a=0,b≠0时.一次函数是y=bx+c,故此选项错误;D.以上说法都不对,故此选项正确.故选D.5.设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0B.a=﹣1,b=0,c=3C.a=﹣1,b=3,c=3D.a=1,b=0,c=3【详解】解:二次函数y=﹣x2+3的二次项系数是a=﹣1,一次项系数是b=0,常数项是c=3;故选:B.6.y=mx m2+1是二次函数,则m的值是()A.m≠0B.m=±1C.m=1D.m=﹣1【详解】解:∵y=mx m2+1是二次函数,∴m≠0且m2+1=2,解得:m=±1.故选:B.7.已知函数y=m−2x m2−2+2x−7是二次函数,则m的值为()A.±2B.2C.-2D.m为全体实数【详解】解:∵函数y=m−2x m2−2+2x−7是二次函数∴m-2≠0,m2−2=2,解得:m=-2.故选:C.4)巩固练习(提高)8.一个二次函数y=(k−1)x k2−3k+4+2x−1.(1)求k的值.(2)求当x=3时,y的值?【详解】解:(1)依题意有k2−3k+4=2k−1≠0,解得:k=2,∴k的值为2;(2)把k=2代入函数解析式中得:y=x2+2x−1,当x=3时,y=14,∴y的值为14.5)本节课的收获、体会及存在问题。

初中数学《二次函数的应用》导学案

初中数学《二次函数的应用》导学案

二次函数的应用 第1课时
学习目标:
1、能够分析和表示实际问题中变量之间的二次函数关系;
2、会用二次函数知识求出实际问题的最值。

一、创意引入
问题1:如图,现有一块直角三角形废料,要想在它内部截一个面积最大的矩形,应该怎样截才符合要求?
问题2:生活中经常遇到“最大面积”“成本最低”“最划算”等问题,怎样用数学知识加以解决?这将是本节课我们一起探讨的问题。

二、知识生成
问题:求二次函数2422++=x x y 的最值。

追问(1)在上题中,如果增加一个条件:12≤≤-x ,其最值又是多少?
(2)如果取值范围变为25-≤≤-x 呢?
(3)如果取值范围变为4
171≤
≤x ,且x 为整数呢?
三、知识应用
例1、如图,用一段长为60米的篱笆围成一个一边靠墙的矩形
菜园,墙长32米,这个矩形的长、宽各位多少时,菜园的面积最大,
最大是多少?
变式训练:
1.引例
2.引例变式
四、反思感悟
五、当堂检测。

二次函数(2)导学案

二次函数(2)导学案

二次函数(2)导学案一、学习目标1.使学生会用描点法画出二次函数c bx ax y ++=2的图象; 2.使学生能结合图象确定抛物线c bx ax y ++=2的对称轴与顶点坐标; 二、课前准备:(一) 自主学习: 下面通过画二次函数216212+-=x x y 的图像,讨论一般的怎样画二次函数)0(2≠++=a c bx ax y 的图像。

配方可得:216212+-=x x y )()(+=221x y由此可知,抛物线216212+-=x x y 开口向 ,顶点坐标是 ,对称轴是利用对称性画21612+-=x x y 的图像。

(二)交流合作:(1)列表时选值,应以 为中心,函数值y 可由对称性得到. (2)描点画图时,要根据已知抛物线的特点,一般先找出 ,并用虚线画 ,然后再对称描点,最后用平滑曲线顺次连结各点.探索:对于二次函数c bx ax y ++=2,你能用配方法求出它的对称轴和顶点坐标吗?配方可得:c bx ax y ++=2 )()(+=2xa y 由此可知,抛物线c bx ax y ++=2对称轴 ,顶点坐标 .(三)尝试运用:1.二次函数x x y 22--=的对称轴是 . 2.二次函数1222--=x x y 的图象的顶点是 , 当x 时,y 随x 的增大而减小.3.抛物线642--=x ax y 的顶点横坐标是-2,则a = .4.抛物线c x ax y ++=22的顶点是)1,31(-,则a = .c= .(四)性质归纳:(1)c bx ax y ++=2(a ≠0)的图象的开口方向、对称轴、顶点坐标(2)抛物线c bx ax y ++=2(a ≠0)的图象上: ①当a>0时,抛物线c bx ax y ++=2开口向 .对称轴左侧(即x ), 函数值y 随x 的增大而 .对称轴右侧(即x ), 函数值y 随x 的增大而 . 函数有最 值,最 值y= .②当a<0时,抛物线c bx ax y ++=2开口向 .对称轴左侧(即x ), 函数值y 随x 的增大而 . 对称轴右侧(即x ), 函数值y 随x 的增大而 . 函数有最 值,最 值y= . (五)尝试运用:1.抛物线顶点为(2,3)过(3,1),求抛物线方程。

6.4二次函数的应用(4)导学案

6.4二次函数的应用(4)导学案

6.4二次函数的应用(4)学习目标:体会二次函数是一类最优化问题的数学模型.了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.学习重点:重点是应用二次函数解决实际问题中的最值.学习难点:难点在于能正确理解题意,找准数量关系.学习方法:在教师的引导下自主学习。

学习过程:一、有关利润问题:某种粮大户去年种植优质水稻360亩,今年计划增加承租x (100≤x ≤150)亩。

预计,原种植的360亩水稻今年每亩可收益440元,新增地今年每亩的收益为(440-2x )元。

试问:该种粮大户今年要增加承租多少亩水稻,才能使总收益最大?最大收益是多少?二、做一做:某果园有100棵橙子树,每一棵平均结600个橙子。

现准备多种一些橙子树以提高产量,但是如果多种树,树之间的距离和每一棵树所接收的阳光就会减少,根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

⑴假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子? ⑵如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式;⑶y 与x 是怎样的函数关系?自变量x 的取值范围有何限制?三、举例:【例题】某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +a b 2)2+ab ac 442 的形式,写出顶点坐标,在图所示的坐标系中画出草图.观察图象,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?四、随堂练习:1.某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?2.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现,若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数表达式(注明范围);(2)求出商场平均每天销售这种年奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数表达式;(每箱利润=售价-进价)(3)求出(2)中二次函数图象的顶点坐标,并求出当x=40,70时W的值,在直角坐标系中画出函数图象的草图;(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润是多少?五、课后练习1.将进货为40元的某种商品按50元一个售出时,能卖出500个.已知这时商品每涨价一元,其销售数就要减少20个.为了获得最大利益,售价应定为多少?2.某医药研究所进行某一治疗病毒新药的开发,经过大量的服用试验后知,成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10-3毫克)随时间x小时的变化规律与某一个二次函数y=ax2+bx+c(a≠0)相吻合.并测得服用时(即时间为0时)每毫升血液中含药量为0微克;服用后2小时每毫升血液中含药量为6微克;服用后3小时,每毫升血液中含药量为7.5微克.(1)试求出含药量y(微克)与服药时间x(小时)的函数表达式,并画出0≤x≤8内的函数图象的示意图.(2)求服药后几小时,才能使每毫升血液中含药量最大?并求出血液中的最大含药量.3.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:(1)求y与x(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S(10万元)与广告费x (10万元)函数表达式;(3)如果投入的广告费为10万元~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?。

二次函数(1)导学案

二次函数(1)导学案

mm xm y -+=2)1(二次函数——导学案一、学习目标:1、理解并掌握二次函数的概念;2、会用描点法和平移法画出二次函数2ax y =的图象;3、结合图像归纳并记住二次函数2ax y =性质;二、学前准备 (一)梳理知识点1、概念:二次函数:我们把形如 (其中a,b,c 是常数,a ≠0)的函数叫做二次函数。

其中:ax 2叫做 ,a ,bx 叫做 ;b 为 ;c 为2、思考:(1)“一元二次方程”和“二次函数”在形式上有什么异同? (2)二次函数y=ax²+bx+c(其中a,b,c 是常数,a ≠0)中,为什么要规定a ≠0,b 和c 是否可以为零?(3)二次函数y=ax²+bx+c(其中a,b,c 是常数,a ≠0) 当a,b,c 满足什么条件时(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数? 3、下列函数中,哪些是二次函数?(1)y=3x 3+2x 2; (2)y=2x 2-2x+1; (3)y=x 2-x(1+x); (4)y=x -2+x. (5)y =(x +2)(2-x) (6) 652++=x x y (7)12312++=x x y 4、说出下列二次函数的二次项系数a ,一次项系数b 和常数项c . (1)y=x 2中a= ,b= ,c= ; (2)y=5x 2+2x 中a= ,b= ,c= ; (3)y=(2x-1)2中a= ,b= ,c= ;例1: 关于x 的函数是二次函数求m 的值.(一) 自主探究:利用描点法画二次函数2x y =、221x y =和22x y =的图像。

注意:列表时自变量取值要均匀和对称。

练习:画二次函数2x y -=、221x y -=和22x y -=的图像。

… -2 -1 0 1 2 …2x y -=22x y -=221x y -=… -2 -1 0 1 2 … 2x y =22x y =221x y =结合所画图像填空: 1、二次函数图像形如物体抛射时所经过的路线,我们把它叫做 ;这些抛物线都关于 轴对称, 轴是它的对称轴;对称轴与抛物线的交点叫做 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13课时二次函数综合应用
一、复习二次函数的基本性质
二、学习目标:
灵活运用二次函数的性质解决综合性的问题.
三、课前训练
1.二次函数y=kx2+2x+1(k<0)的图象可能是()
2.如图:
(1)当x为何范围时,y1>y2?
(2)当x为何范围时,y1=y2?
(3)当x为何范围时,y1<y2?
3.如图,是二次函数y=ax2-x+a2-1的
图象,则a=____________.
4.若A (-134 ,y 1),B (-1,y 2),C (53
,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1、y 2、y 3的大小关系是( )
A .y 1<y 2<y 3
B .y 3<y 2<y 1
C .y 3<y 1<y 2
D .y 2<y 1<y 3
5.抛物线y =(x -2) (x +5)与坐标轴的交点分别为A 、B 、C ,则△ABC 的面积为__________.
6.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,
AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从A 点出发以每秒1个单位长度沿A →B →C →D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形ABCD 也随之停止运动.
(1)求点P 从点A 运动到点D 所需的时间.
(2)设点P 运动时间为t (秒)
①当t =5时,求出点P 的坐标.
②若△OAP 的面积为S ,试求出S 与
t 之间的函数关系式(并写出相应
的自变量t 的取值范围).
五、目标检测
如图,二次函数y =ax 2+bx +c 的图像经过A (-1,0),B (3,0)两交点,且交y 轴于
点C .
(1)求b 、c 的值;
(2)过点C 作CD ∥x 轴交抛物线于点D ,点M 为此抛物线的顶点,试确定△MCD 的形状.。

相关文档
最新文档