2020初中数学课题开题报告
初中数学小组合作课题研究开题报告范文

初中数学小组合作课题研究开题报告范文下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!初中数学小组合作课题研究开题报告一、前言随着教育教学方式的不断改革和创新,小组合作在教学中扮演日益重要的角色。
初中数学小课题开题报告(通用5篇)

初中数学小课题开题报告(通用5篇)初中数学小课题开题报告(通用5篇)在生活中,报告使用的频率越来越高,写报告的时候要注意内容的完整。
我敢肯定,大部分人都对写报告很是头疼的,以下是小编整理的初中数学小课题开题报告,欢迎大家借鉴与参考,希望对大家有所帮助。
初中数学小课题开题报告篇1一、课题提出1、研究背景(1)地理因素本课题组所在学校——乐善学校是武胜县最大的九年一贯制学校,虽然地理位置相对优越,但地处乡镇,属农村学校,在农村学校系列中,教学质量位居全县前列,但与县城学校相比,教学质量仍有一定差距。
因身处农村,见闻、资讯相对闭塞,学生的学习方法单一、学习效率低下,老师的教学理念更新慢,课堂教学仍属“教师中心式”模式,学生参与度低下,学生的主观能动性并未充分调动起来,课堂教学效果差。
要提高教学质量,必须提高学生的学习效率、课堂教学的实效性。
(2)教学因素自主学习、小组合作学习、探究性学习在城市数学课堂教学中,已被广泛采用,师生由此而受益的报道、案例层出不穷。
但在农村初中数学课堂中,这种“学生中心式”的教学模式,少之又少,课堂沉闷,缺乏生机与活力,效率低下。
对于农村的数学教师,应尽快更新相对滞后的教育理念,改变以教师为中心的教学观,让数学课堂成为生生互动、师生互动的学习环境,从而提高数学教学质量。
(3)科研因素长期以来,我们农村的老师习惯于教学,习惯于教书育人,却很少思考,很少研究,只满足于学习现有的理论,很少理论联系实际,很少进行理性思考,更不要说进行教学研究,这种状况长此已往,我们农村学校的数学教学不落后才怪。
提高教学质量,就得在学生学习的主阵地——课堂上下手,还课堂于学生,学生活动、让学生思考、让学生做主人,对于数学,让他们携手合作,去观察、去发现、去归纳、去探究、去应用,从而认识数学、感悟数学、学习数学,进而发现问题、解决问题,发展数学。
2、教育现状教育发展到现在,教育专家和教育部门提出了许多课改意见、方案。
数学小课题开题报告(精选3篇)

数学小课题开题报告(精选3篇)数学小课题篇1论文题目:关于泰勒公式的应用课题研究意义在初等中,多项式是最简单的函数。
因为多项式函数的运算只有加、减、乘三种运算。
如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。
那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具。
文献综述主要内容Taylor公式的应用Taylor公式在计算极限中的应用对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题。
满足下列情况时可考虑用泰勒公式求极限:(1)用洛比达法则时,次数较多,且求导及化简过程较繁;(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;(3)所遇到的函数展开为泰勒公式不难。
当确定了要用泰勒公式求极限时,关键是确定展开的阶数。
如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。
如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。
Taylor公式在证明不等式中的应用有关一般不等式的证明针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。
证明思路:(1)写出比最高阶导数低一阶的Taylor公式;(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。
有关定积分不等式的证明针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。
证题思路:直接写出的Taylor展开式,然后根据题意对展开式进行缩放。
初中数学课题开题报告

初中数学课题开题报告初中数学课题开题报告(通用14篇)初中数学课题开题报告篇1一、课题的提出《数学新课程标准》中明确提出,学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
我县抓住新课改的有利时机,积极探索合作学习的基本内涵和科学实质,以期全面提高学生的学业成绩。
尤其以安图三中数学学科课堂教学改革为翘楚,小组互动,六步达标课堂教学模式已在全县全面铺开,我校也积极响应,首先在数学学科尝试采用小组互动,六步达标教学模式。
但小组合作不能真正发挥它的作用,小组内缺乏有能力的组织者,不会进行合理的分工,不知道怎么进行合作学习,有的甚至不知道小组活动的目标是什么。
目标不明确原因一个可能是学生没有认真听讲,另一个原因可能是教师对目标描述的不够清楚。
教师也缺乏适当的组织和指导,所以六步教学通常只能完成四步或五步,在这种情况下,我们提出了初中数学有效合作学习方式的研究的课题研究。
二、课题研究的意义本课题的研究,旨在改变小组合作只重形式,追求表面热闹,不求实效的现象。
通过有效的合作学习,调动学困生的学习积极性,提高课堂教学的效率,提高学生成绩。
本课题的研究既培养了学生的合作能力,又培养了学生独立思考的能力,从而促进学生的全面发展。
三、课题关键概念界定小组合作学习是以异质小组为基本形式,即组间同质、组内异质,也就是说小组内的成员是由性别不同、性格不同、成绩不同的学生组成的,从而使小组间的整体素质相仿,差别不大,具有可比性。
四、课题研究的指导思想《新课程标准》中明确指出学会与人合作,并能与他人交流思维的过程和结果。
即:倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。
初中数学 开题报告

初中数学开题报告初中数学开题报告一、研究背景数学作为一门学科,在初中阶段是学生们学习的重点之一。
通过学习数学,学生们可以培养逻辑思维能力、数学思维能力以及解决问题的能力。
然而,由于数学知识的抽象性和复杂性,许多学生对数学产生了抵触情绪,导致学习效果不佳。
因此,我们需要深入研究初中数学教学方法,以提高学生的数学学习兴趣和成绩。
二、研究目的本研究旨在探讨有效的初中数学教学方法,以提高学生的数学学习兴趣和成绩。
具体目标包括:1. 分析当前初中数学教学中存在的问题和挑战;2. 探索有效的数学教学策略,如启发式教学、游戏化教学等;3. 实施教学实验,评估不同教学方法对学生学习效果的影响;4. 提出改进初中数学教学的建议和措施。
三、研究方法本研究将采用定量和定性相结合的研究方法。
首先,我们将收集和分析相关文献,了解当前初中数学教学中存在的问题和挑战。
其次,我们将设计教学实验,选择不同的教学方法进行比较,并通过测验和问卷调查等方式收集数据。
最后,我们将对数据进行统计分析和综合评估,得出结论并提出改进初中数学教学的建议和措施。
四、预期结果通过本研究,我们期望能够得出以下结论和结果:1. 分析当前初中数学教学中存在的问题和挑战,如学生对数学的抵触情绪、学习兴趣不高等;2. 探索有效的数学教学策略,如启发式教学、游戏化教学等,以激发学生的学习兴趣和提高学习效果;3. 实施教学实验,评估不同教学方法对学生学习效果的影响,并得出结论;4. 提出改进初中数学教学的建议和措施,以促进学生的数学学习兴趣和成绩的提高。
五、研究意义本研究的意义在于:1. 对当前初中数学教学中存在的问题和挑战进行深入分析,为教师提供改进教学的思路和方法;2. 探索有效的数学教学策略,为教师提供教学参考和借鉴;3. 通过实施教学实验,为学校和教育部门提供改进初中数学教学的依据和建议;4. 提高学生对数学的兴趣和学习成绩,为他们未来的学习和发展奠定良好基础。
数学课题开题报告

数学课题开题报告数学课题开题报告一、选题背景数学作为一门基础学科,无论在理论研究还是实际应用中都发挥着重要的作用。
在学习过程中,我们常常遇到各种各样的数学问题,有些问题看似简单,但实际上却蕴含着深刻的数学原理和思想。
因此,我选择了一个有趣且具有挑战性的数学课题进行研究。
二、选题目的通过选题研究,我希望能够提高自己对数学的理解和应用能力,培养自己的逻辑思维和问题解决能力。
同时,我也希望通过研究的结果,能够为同学们提供一些有益的数学启示,让大家对数学产生更多的兴趣和热爱。
三、选题内容我选择的数学课题是“费马大定理的证明尝试”。
费马大定理是数学史上最著名的问题之一,由法国数学家费马在17世纪提出,直到1994年才被英国数学家安德鲁·怀尔斯证明。
费马大定理主要是关于勾股数的问题,即对于任意大于2的整数n,是否存在正整数x、y和z,使得x^n + y^n = z^n成立。
四、研究方法为了尝试证明费马大定理,我将采用数学推理和证明的方法。
首先,我将对费马大定理进行深入的研究,了解已有的证明方法和研究成果。
然后,我将尝试运用不同的数学理论和方法,如数论、代数等,来寻找可能的证明路径。
在研究过程中,我还将结合计算机模拟和数值计算等方法,通过大量的实验和数据分析,来验证和检验我的研究结果。
五、预期成果通过对费马大定理的研究,我希望能够得到以下几个方面的成果:1. 对费马大定理的证明进行初步的尝试,并找到一些可能的证明路径。
2. 对费马大定理的证明方法进行总结和归纳,为后续的研究提供参考。
3. 对费马大定理的相关问题进行深入的探讨和研究,如勾股数的性质、数论中的其他重要问题等。
4. 通过研究的过程,提高自己的数学素养和解决问题的能力,为将来的学习和研究打下良好的基础。
六、研究计划为了保证研究的顺利进行,我将按照以下计划进行:1. 阅读相关文献和资料,了解费马大定理的研究历史和现状。
2. 学习和掌握数论、代数等相关数学理论和方法,为后续的研究做好准备。
数学开题报告(精选5篇)

数学开题报告数学开题报告(精选5篇)随着个人素质的提升,报告的使用频率呈上升趋势,我们在写报告的时候要注意逻辑的合理性。
我们应当如何写报告呢?下面是小编精心整理的数学开题报告(精选5篇),仅供参考,希望能够帮助到大家。
数学开题报告11.研究背景与研究目的:函数的一致连续性是在使用连续函数的过程中发展起来的一个概念,它是比函数在区间上连续更强的的一种连续性。
而关于函数一致连续性与函数在区间上连续这两个概念令许多人容易混淆。
本文通过对函数一致连续性的概念、判别方法进行较为系统和全面的论述,并在二元函数上加以推广,使得对函数一致连续的内涵有了更全面更深刻的理解和认识。
最后结合一些具体实例,对其判别条件和方法加以应用。
2.研究内容与进度安排:研究内容:一元函数一致连续性的概念(与函数连续进行对比)函数一致连续性的几种判别条件和方法一致连续性推广到二元函数一致连续性的应用(具体例题)进度安排:(1) 12月初至12月25日查阅资料,讨论论文题目;(2) 12月26日至12月31日阅读文献,最终确定论文选题,完成开题报告;(3) 1月1日至3月31日论文写作,完成论文的初稿;(4) 4月1日至4月29日对论文的格式及内容进行修改;(5)4月3日论文最后定稿。
3.拟采取的研究方法:查阅文献确定一元函数一致连续性的定义、判别方法、性质等概念,并与“函数在区间上连续”进行对比;将一致连续性推广到二元函数的情形;最后选用一些例题,应用一致连续性的判别法、性质等概念解决4.已完成的准备工作(含文献资料查阅与调研情况):[1] 复旦大学数学系(第二版)上册. 数学分析[M]. 高等教育出版社,1983[2] 贺自树,刘学文,杜昌友,朱大钧. 数学分析习题课选讲[M]. 重庆大学出版社,27[3] 邱德华,李水田. 函数一致连续的几个充分条件[J].大学数学,26, 22(3):136~138.[4] 高智明,刘慧瑾,蒋佩佩.关于连续性和一致连续性的一个定理[J]. 高等数学研究,28,11(4)[5] 钱吉林.数学分析题解精粹[M].武汉:崇文书局,23[6] 陈文灯,黄先开. 211版考研数学复习指南:经济类[M]. 世界图书出版公司,21[7] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育数出版社,21[8] 刘勇. 关于一元函数一致连续性的讨论[J]. 赤峰学院学报:自然科学版,29,25(11)[9] 翟明清. 浅析二元函数的一致连续性[J]. 滁州学院学报,24,6(3)[1] 常明. 一元函数一致连续性的判定及性质[J]. 数学教学,29,7 数学开题报告2课题名称小学生数学作业常见错例分析研究课题研究的背景和意义对于小学生来说,每天的数学作业必不可少,而作业中出现的一些习惯性错误总是困扰着他们,每次学生考试结束后,不难发现学生解题错误大同小异……这些现象令老师十分头疼,同时阻碍着学生的进步。
2020年数学小课题研究开题报告范文

2020年数学小课题研究开题报告范文下文为大家整理带来的2020年数学小课题研究开题报告范文,希望内容对您有帮助,感谢您得阅读。
数学教学中学生自主学习能力培养的研究篇一:1.课题研究的目的与意义让教师学会放手,以学生的学路来设计和实现教学,充分发挥学生主观能动性,激励学生主动自觉学习。
教师只做学生学习的促进者,让学生不仅有良好的学业成绩,更有可持续学习发展的本领学会学习。
开发出学生潜在的能力,而且能激活、诱导出学生学习的积极性,养成良好的学习态度和学习习惯。
2.课题研究的具体内容构建新的教师角色,以培养学生的自主学习能力,最终提高教育教学质量为出发点和归宿。
1、改变教师传统的教学观念,探索新型的课堂教学模式,引导学生自主、探究、合作的学习。
2、尝试以学生为主体的情境式、任务型、问题式的教学方式。
从学情出发,以学生年龄特点,已有经验和能力出发,设计教学过程和方法,培养学生自主学习能力。
2.研究进程安排:2020年2月至3月:提出课题,并进行可行性认证。
2020年4月至2020年1月:①学习有关教育理论,收集各类原始材料。
②提出具体措施,开展有效研究,整理典型案例。
2020年2月至20XX年1月:结合上一阶段课题开展的情况,开展反思活动,改进实验方法,继续进行课题研究。
20XX年2月至2020年1月:继续开展的课题研究,同时,收集好实验数据和素材,做好课题结题的准备工作。
初二数学成绩分化的成因及对策研究篇二:课题研究的背景和意义(提出有待解决和重视的现实问题,论述本研究的价值或重要性)一、研究背景初二数学成绩两极分化成因:1、缺乏学习数学的兴趣和学习意志薄弱是造成分化的主要内在心理因素。
对于初中学生来说,学习的积极性主要取决于学习兴趣和克服学习困难的毅力。
2、掌握知识、技能不系统,没有形成较好的数学认知结构,不能为连续学习提供必要的认知基础。
3、思维方式和学习方法不适应数学学习要求。
初二阶段是数学学习分化最明显的阶段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020初中数学课题开题报告
美国教育界特别强调以“探究”为特征的教学策略和方法。
在美国的大、中、小“以项目为中心的学习”(project-based learning)和“以问题为中心的学习”(problem-based learning)逐渐成为一种积极、有效的教与学的策略与手段。
日本学者把“课题学习”英译为“problem situation learning”,实质上就是问题解决的深化。
大阪教育大学松宫哲夫先生还提出了crm(posite real mathematics)型课题学习,他们十分重视课题的现实性,积极主张从现实中的问题出发进行课题学习。
他们提出了“湖水中的数学”、“田径上的数学”、“交通安全中的数学”、“铁路运输中的数学”、“高层建筑中的数学”等课题,并结合中学生的数学水平的实际,开展了实践研究,收到了良好的效果。
英国国家数学课程将成绩目标分成几大块并据此安排数学内容,打破了传统的中学数学体系,明显的体现了注重应用这一特点。
它不仅将“运用和应用数学”单独列为一项成绩目标,而且贯穿于整个数学课程之中。
“运用和应用数学”十分注意面对解决实际问题与日常生活中的问题,包括提出问题、设计任务、作出计划、收集信息、选用数学、运用策略、获得结论、检验和解释结果等环节,而不是局限在书本上现成的“问题”。
例如,为
研究最好的储蓄方式(或地点),就要去调查各家银行不同存款形式、期限的利率;研究公用电话的位置等。
国内研究现状:国内的课题学习多是以研究性学习的方式来进行的。
目前,对数学课题学习的研究较多地停留在理论层面,在实践(或操作)层面的探讨显得不足,理论研究也处于初级阶段,还没有形成具有影响的理论成果。
国内的不少数学教育期刊在近年都开设了数学知识应用和数学建模的专栏,近几年的中考题中,数学知识的应用题已成为稳定的出题内容。
一批面向中学生的数学建模的入门读物相继问世。
但是与国外相比,如果进行一下资料的搜索和比较分析的话,可以看出,在我国面向中小学数学教学的杂志是最多的,但如果统计一下一年里发表的,用于应用数学的篇目不到2%,特别是教师应该怎么做和做什么,还存在着很大的疑惑。
实践研究的范围还比较小,层次比较单一,目前这些研究还只是零散的、不成系统的,有的研究成果需要进一步地挖掘,有的还有待于更加科学的检验,因此,对数学课题学习的研究虽然已经起步,但还是很不成熟,需要我们积极地探索。
研究意义:课题学习是根据我国的国情和教学现状,改“学数学”为“做数学”,与国际教学接轨的一项举措,是一种全新的课程理念。
开展数学课题学习,有助于扩大学生的视野,拓宽学生的知识面,促进学生思维的发展;是培养学生数学的应用能力,大众化普及数学教育,全面提高学生综合数学素质,培养
学生创新实践能力的较好手段之一。
我认为“课题学习”虽然在教材的整个课时中占的比例不大,却为满足学生以上需要搭建了一个平台,而且它将对人才培养模式的改变,促进全面发展、提高学生的综合素质影响深远。
这应该是教材安排这一内容的出发点和落脚点。