第二章 地球体与地图投影

合集下载

七年级地理知识点第二章

七年级地理知识点第二章

七年级地理知识点第二章地理学是以地球为研究对象的学科,是人类认识世界和改造世界的基础性学科之一。

地理学分为人文地理学和自然地理学两大类。

其中,人文地理学主要研究人类活动与自然环境相互联系的规律,而自然地理学则研究自然环境的分布和特征。

第二章:地球与地图地球是人类生存的基础,具有多种自然环境,包括陆地、海洋、大气层、水文圈等。

为了更好地研究和认识地球,人类发明了地图。

地图是地球表面缩小后的图形表示,可以反映地球上各种自然和人文环境的空间分布,为人类认识世界提供了重要的信息。

一、地球的基本特征地球是太阳系中唯一有生命存在的行星,具有以下的基本特征:1. 地球是一个球体,其平均半径为6371公里,有两极和一个赤道;2. 地球有自己的轨道,围绕太阳运转,需要365.24天;3. 地球的自转轴与公转轴有23.5度的倾角,导致了季节的变化;4. 地球有一个大气层,包括对地球有益的氧气、二氧化碳等气体。

二、地球的地图表示地球有很多不同的地图表示方式,包括球形地图和平面地图等。

其中,球形地图更符合地球真实的表面形状和大小,而平面地图则常用于地图的传输和制作。

常见的地图投影方式包括:1. 等角投影方式,如横轴等角、兰勃特等角、黄牛座等角等;2. 等积投影方式,如墨卡托投影、冯·诺依曼投影等;3. 等距投影方式,如柱状投影、等距圆锥投影等。

三、地图上的比例尺和坐标系地图上通常会标注比例尺和坐标系,以方便使用者理解地图的大小和位置。

比例尺是地图上距离与实际距离的比值,一般表示为1:N的形式。

坐标系则是地图上的定位系统,以经度和纬度来表示地球上任何一点的位置。

四、地球的经纬度和标准时区地球的经度线和纬度线的交点处即为地球上任何一点的坐标,以东经和北纬为正方向。

另外,为了方便地球上不同地区的时间对比,世界上被分为24个时区,每个时区宽度约为15度,被称为标准时区。

总结地球是人类生存的基础,通过地图可以更好地认识我们的地球。

★地理坐标与地图投影要点

★地理坐标与地图投影要点

★地理坐标与地图投影要点地理坐标与地图投影第⼀节地球体⼀、地球体的基本特征地球是⼀个极半径略短、⾚道半径略长,北极略突出、南极略扁平,近于梨形的椭球体体。

地球重⼒场的原理说明,地球空间任⼀质点,都受到地球引⼒和由于⾃转产⽣离⼼⼒的影响,这两种⼒的作⽤形成合⼒,称为地球重⼒。

铅垂线的⽅向就是重⼒⽅向,但是由于地球的质量不均衡,铅垂线的⽅向既不平⾏也不指向地球质⼼。

和重⼒⽅向线相垂直的,形成了⽆数个曲⾯,每个曲⾯上重⼒位相等,我们把重⼒⾯相等的⾯称为重⼒等位⾯,即⽔准⾯。

⼆、我国主要采⽤的地理坐标1.1954年北京坐标系(Beijing Geodetic Coordinate System,l954)该坐标系是通过与原苏联1942年坐标系联测⽽建⽴的,其原点不在北京,⽽是在苏联普尔科沃。

该坐标系采⽤克拉索夫斯基椭球体(Krasovsky-1940)作为参考椭球体,⾼程系统采⽤正常⾼,以1956年黄海平均海⽔⾯为基准。

2.1980年西安坐标系其⼤地原点设在西安西北的永乐镇,简称西安原点。

椭球体体参数选⽤1975年国际⼤地测量与地球物理联合会第16届⼤会的推荐值。

简称IUGG-75地球椭球体参数或IAG-75地球椭球体。

2000年后的空间数据常采⽤该坐标系。

3.WGS84坐标系(WGS⼀84 Coordinate System)在GPS定位中,定位结果属于WGS-84(世界⼤地坐标系统,G873)坐标系。

该坐标系是使⽤了更⾼精度的VLBL、SLR等成果⽽建⽴的。

坐标系原点位于地球质⼼,Z轴指向BIH1984.0协议地极(CTP)。

⽤于GPS定位系统的空间数据采⽤该坐标系。

第⼆节地图投影⼀、地图投影的基本概念地图投影是实现球⾯向平⾯转换的⽅法。

地图投影的实质,是通过⼀定的数学法则使球⾯坐标与平⾯坐标(或极坐标)建⽴起⼀对⼀的函数关系。

地图投影必然产⽣变形。

长度变形是最主要的变形,它制约着⾓度变形和⾯积变形。

地图投影第二章地图投影方法变形分类

地图投影第二章地图投影方法变形分类



a b=r2


CHENLI
a> r,b=r 5
a≠b≠r 6
23
CHENLI
24
三、投影变形的性质和大小
长度比和长度变形:
投影面上一微小线段(变形椭圆半径)和球 面上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
m表示长度比, Vm表示长度变形
m ds' ds
Vm m 1
Q(0,0),球面上的各点便以新极点Q为原点,以方
位角和天顶距 Z 表示其位置,从而构成球面极坐标系。
CHENLI
32
球面极坐标系
第二节 地理坐标
在地图测制中是把地球表面作为旋转椭球面处理。 地球椭球面上各点的位置,是以地理坐标即经度 和纬度来确定。经纬度是一种绝对的坐标系统。
P,P1—北、南极
CHENLI
2
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
3
二、投影方式: 1.平行投影
CHENLI
4
2.透视投影
CHENLI
5
3. 广义投影
CHENLI
6
三、地图投影实质: 建立平面上的点(用平面直角坐标或极坐标
CHENLI
16
2. 投影变形的概念 地图投影不能保持平面与球面之间在
长度(距离)、角度(形状)、面积等方 面完全不变。
地球仪上经纬线网格和地图上比较:
CHENLI
17
球面经纬网经过投影之后,其几何特征 受到扭曲——地图投影变形:长度(距离)、 角度(形状)、面积。

《地图学》课程教学大纲

《地图学》课程教学大纲

《地图学》课程教学大纲Cartology一、课程基本信息(一)知识目标培养学生掌握地图学的基本概念、基本理论、基本技术和应用方法。

(二)能力目标使学生初步掌握地图设计制作的方法、步骤和地图产品输出和地图分析应用技能。

(三)素质目标培养学生具有大比例尺地形图测绘能力、地形图修测能力、阅读和应用各类地图的能力、编绘专题地图的知识等,以此为后续课程的学习打下基础。

— 1 —三、基本要求(一)了解现代地图学的科学概念和发展体系。

(二)理解地图的构成要素和基本特征,地图的分类系统和功用。

(三)掌握地图基本知识、地图投影等地图的数学基础、地图设计制作的方法、步骤和地图产品输出、专题地图的编绘制作及在环境资源分析中的应用四、教学内容与学时分配第一章导论2学时第一节地图的特征及定义知识点:地图的基本特征、地图的定义、地图的构成要素第二节地图的功能和分类知识点:地图的功能、地图的类型第三节地图的历史与现代发展(自学)第四节地图的成图方法知识点:实测成图法、编绘成图法第五节地图学的定义与相关学科知识点:地图学的定义、地图学的学科体系、与地图学相联系的学科本章小结重点:地图的基本特征和定义、地图的构成要素、地图的分类难点:地图的简要制作过程思考题:地图、地图学的定义;地图的基本特征、分类(按内容分类、按比例尺分类等)及功能;测制地图的方法;地图的构成要素作业:名词解释:地图学、地图、地理图、地形图、普通地图、专题地图1、地图具有哪些基本特征?2、简述地图的构成要素及其作用。

3、地图的分类建议教学方法:理论与实际结合,以实际应用为主— 2 —第二章地球体与地图投影6学时第一节地球体2学时知识点:地球体的基本特征、地理坐标第二节大地测量系统知识点:我国的大地坐标系统、大地控制网第三节地图投影4学时知识点:地图投影的概念、地图投影的变形、地图投影的分类、地图投影的选择第四节地图比例尺知识点:地图比例尺的含义、地图比例尺的表示、变比例尺本章小结重点:地图投影基本概念和地图投影方法难点:地图投影变化和地形图投影思考题:多圆锥投影的概念;普通多圆锥投影、等差分纬线投影、桑逊投影、彭纳投影的特点和应用;地图投影判别的方法;地图投影的选择依据;地图比例尺的含义、变化、表现形式和特殊比例尺作业:名词解释:地图比例尺、主比例尺、变比例尺、地图投影、长度比、长度变形、面积比、面积变形、方位投影、圆锥投影,圆柱投影1、如何理解地图投影对地图比例尺概念的影响?2、传统上地图比例尺表现为哪几种形式?3、地图比例尺的作用?4、地图投影变形分布的规律是什么?5、什么是变形椭圆?研究变形椭圆有何意义?5、地图投影按变形性质分为哪几类?各类投影有何特点?6、地图投影按构成方式分为哪几类?经纬网的构成有何特点?7、方位投影有何特点?适合何种区域制图?8、在实际航海中,为什么要把等角航线和大圆航线结合起来航行?— 3 —教学方法:理论与实际结合,以实际应用为主第三章地图概括2学时第一节概述知识点:地图概括的性质、影响地图概括的因素第二节地图概括的内容和方法知识点:选取、简化、夸张、符号化本章小结重点:地图概况的性质和地图概况的数量分析方法难点:开方根规律的应用思考题:地图概括的概念和意义;影响地图概括的因素;实施地图概括的步骤;.地图概括的基本方法作业:名词解释:地图概括、简化、移位/位移1、影响地图概括的主要因素有哪些?2、地图概括中分类的基本方法有哪些?3、在地图概括中简化的基本方法有哪些?4、在地图概括中夸张的基本方法有哪些?教学方法:理论与实际结合,以实际应用为主第四章地图符号化4学时第一节地图符号———地图的语言2学时知识点:地图符号的特征和功能第二节符号的分类与量表知识点:地理现象的空间维度及其符号化、属性特征度量标准及其符号化第三节符号的视觉变量知识点:视觉变量、视觉变量的组合第四节色彩2学时知识点:色彩的三属性、色彩的命名、地图用色设计第五节符号与图形的心理感受特点— 4 —知识点:图形视觉的心理效应第六节注记知识点:注记的作用、注记的设计本章小结重点:地图符号的分类和构成符号的视觉变量。

第二章下 常用地图投影

第二章下 常用地图投影

(2)变形规律

切点没变形,离切点越远,变形越 大。 等变形线是以切点为圆心的同心圆。 切点向任意一点的方位角没变形。
斜轴等积方位投影
(3)用途

主要用于绘制水、陆半球,除非洲、南极洲以外的各 大洲(例如亚洲、欧洲、大洋洲、北美洲、南美洲)。 适合中高纬地区呈圆形区域的国家或地区。(例如包 含南海诸岛的中国全国)
(2)经纬线形状
纬线投影成一组平行直 线,经线投影成与纬线垂 直的平行直线。 纬线间距,从赤道向两极 放大,经线间距相等。
(3)变形特点

角度没有变形。 赤道没有变形,离赤道越远,面积变形越大。 等变形线是平行于纬线的直线。
(4)用途
常用于绘制世界时区图、世界交通图。 适合绘制赤道附近沿东西延伸的国家或地区 由于等角航线投影为直线,所以广泛用来绘制 海图。
2、正轴割圆锥投影(南海诸岛作插图的中国全图)

正轴等角割圆锥投影(Lambert conformal projection兰勃特) 正轴等积割圆锥投影(Albers projection亚尔勃斯)
(1)投影的几何概念
以圆锥投影作为投影面,使圆锥面与球面相割 (两条割线为标准线),按等角或等积条件将球面 上的经纬线投影到圆锥面上,然后将圆锥面展为平 面而成。

纬线投影为同心圆弧,经线投影为放射状直线。纬 线间隔从标准纬线向南向北是逐渐缩小的。
(3)变形规律
①两条标准线没有变形,离标 准线越远变形越大。 ②等变形线是平行于纬线的圆 弧。 ③在两条标准线之间,长度比 小于 1 ,为负变形;而在两 条标准线之外,长度比大于 1,为正变形。
中国地图(南海诸岛作插图)的标准线: ϕ 1=25°,ϕ 2=45/47°

新编地图学教程全套完整版

新编地图学教程全套完整版

对地球形状 a,b,f 测定后,还必须确定大地水准面与椭球 体面的相对关系。即确定与局部地区大地水准面符合最好的一个 地球椭球体 —— 参考椭球体,这项工作就是参考椭球体定位。
通过数学方法将地球 椭球体摆到与大地水准面 最贴近的位置上,并求出 两者各点间的偏差,从数 学上给出对地球形状的三 级逼近。
新编地图学教程 第2章 地图的数学基础
2.2 中国的大地坐标系统
1.中国的大地坐标系 1980年以前:参见电子教案本章第十三页; 1980年选用1975年国际大地测量协会推荐的参考 椭球: ICA-75椭球参数 a = 6 378 140m b = 6 356 755m f = 1/298.257
陕西省泾阳县永乐镇 北洪流村为 “1980 西安坐标系” 大地 坐标的起算点——大 地原点。
新编地图学教程 第2章 地图的数学基础
§2 地球坐标系与大地定位
地球表面上的定位问题,是与人类的生产活动、科学 研究及军事国防等密切相关的重大问题。具体而言,就 是球面坐标系统的建立。
2.1 地理坐标
—— 用经纬度表示地面点位的球面坐标。
① 天文经纬度 ② 大地经纬度 ③ 地心经纬度
新编地图学教程 第2章 地图的数学基础
2.1 地理坐标 ① 天文经纬度:表示地面点在大地水准面上的位
置,用天文经度和天文纬度表示。
天文经度:观测点天顶子午面与格林尼治天顶 子午面间的两面角。
在地球上定义为本初子午面与观测点之间 的两面角。 天文纬度: 在地球上定义为铅垂线与赤道平面 间的夹角。
椭球体 三要素: 长轴 a(赤道半径)、短轴 b(极半径)和椭球的扁率 f
WGS [world geodetic system] 84 ellipsoid:

地球体与地图投影讲义

地球体与地图投影讲义
L K O
b θ n a m
K
有:
m2 + n2 = a2 + b2
m· n· sinq = a· b
椭圆′称内任一条直径d的平行弦中点在椭圆内的轨迹 形成另一直径d ′, 则d为d的共轭直径。
第二章 地球体与地图投影 41
三、地图投影的变形
在分析地图投影时,可借助对变形椭圆和微小圆
的比较,说明变形的性质和大小。椭圆半径与小 圆半径之比,可说明长度变形。很显然,长度变 形随方向的变化而变化,其中有一个极大值,即 椭圆长轴方向,一个极小值,即椭圆短轴方向。 这两个方向是相互垂直的,称为主方向。椭圆面 积与小圆面积之比,可说明面积变形。椭圆上两 方向线的夹角和小圆上相应两方向线的夹角的比 较,可说明角度变形。
第二章 地球体与地图投影 22
三、全球定位系统
地面控制部分由1个主控站,5 个全球监测站
和3 个地面控制站组成。
第二章 地球体与地图投影
23
三、全球定位系统
用户接收部分的基本设备是GPS信号接收机,
其作用是接收、跟踪、变换和测量GPS卫星 所发射GPS信号,以达到导航和定位的目的。
第二章 地球体与地图投影
克拉索夫斯基 1975IUGG WGS-84
a b α e2 e‘2
6 378 245.000 6 356 863.019 1/298.3 0.006 693 422 0.006 738 525
6 378 140.000 6 356 755.288 1/298.257 0.006 694 385 0.006 739 502
x=f1(φ,λ)
y=f2(φ,λ)
第二章 地球体与地图投影 32
三、地图投影的变形

地图学作业总结

地图学作业总结

新编地图学教程作业第一章导论1为什么说在现代,地图的功能已经漂移了?答:地图从最初的信息获取功能逐步推移到信息存储的功能,进化到信息检索功能,移向分析、模拟、设计预测的功能。

2比较纸质地图和电子地图的异同。

答:同:都具有地图的基本特征:遵循特定的数学法则,具有完整的符号系统,并经过地图概括的地理信息载体。

异:通常我们所看到的地图是以纸张、布或其他可见真实大小的物体为载体的,地图内容是绘制或印制在这些载体上。

而电子地图是存储在计算机的硬盘、软盘、光盘或磁带等介质上的,地图内容是通过数字来表示的,需要通过专用的计算机软件对这些数字进行显示、读取、检索、分析。

电子地图上可以表示的信息量远远大于普通地图,如公路在普通地图上用线划来表示位置,线的形状、宽度、颜色等不同符号表示公路的等级及其他信息。

3为什么说地图学已进入地球空间信息科学的范畴?答:信息科学是指以信息为主要研究对象,以信息的运动规律和应用方法为主要研究内容,以计算机等技术为主要研究工具,以扩展人类的信息功能为主要目标的一门新兴的综合性学科。

20 世纪70 年代以后的30 年, 是地图学从理论到方法和技术都获得飞速发展的时期, 特别是地图制图技术取得了重大突破。

计算机制图已广泛应用于各类地图生产, 多媒体电子地图集与互联网地图集迅速推广。

随着互联网的迅速发展和普及, W W W 已经成为快速传播所有知识的重要渠道。

其中作为空间信息图形表达形式的地图, 越来越受到各网站和广大用户的欢迎。

近十多年来, 互联网地图(也称互联网络地图、网络地图、webMaP ) 得到极其迅速地发展。

互联网地图经历了从简单地图到复杂地图, 从静态地图到动态地图, 从二维平面地图到三维立体地图的发展过程。

而且随着互联网技术、W eb G IS 技术的迅速发展, 互联网地图的传输与浏览速度逐步提高。

目前互联网地图主要有: 城市地图、旅游地图(包括旅游路线与景点图, 旅游设施图、旅游区导游图) 、公路交通图、全国与区域普通地图、专题地图、国家与区域综合地图集等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们学习投影的目的主要是了解和掌握最常用、 最基本的投影性质和特点以及他们的变形分布规律, 从而能够正确的辨认使用各种常用的投影。
3.1地图表面和地球球面的矛盾
地图通常是绘在平面介质上的,而地球体表面是曲面,因此制图时 首先需要把曲面展成平面,然而,球面是个不可展的曲面,要把球面直 接展成平面,必然要发生断裂或褶皱。无论是将球面沿经线切开,或是 沿纬线切开,或是在极点结合,或是在赤道结合,他们都是有裂隙的。
对地球形状的很好近似,其面上高出与面下缺 少的质量相当。
2. 起伏波动在制图学中可忽略:
对大地测量和地球物理学有研究价值,但在制 图业务中,均把地球当作正球体。
3. 实质是重力等位面:
可使用仪器测得海拔高程(某点到大地水准面 的高度)。
1.3
地球的数学表面
即人们假想,将大地体绕短 轴飞速旋转,形成一个表面
等级
一等三角锁 二等三角网 三等三角网 四等三角网
边长
分布密度
分布方向
20~ 25km 13km
8km
4km
锁与锁间距200km
沿经纬线分布
150km2有一控制点(1:10万,1: 5万》3点)
50km2有一控制点(1:5万2~3 点)
20km2有一控制点(1:1万1~2 点)
在一等加密 在二等加密 在三等加密
1988年国家测绘局公布:启用《1985国家高程基准》取代 《黄海平均海水面》,其比《黄海平均海水面》上升29毫米 。(72.260m)
国家测绘局
国家测绘局
国家测绘局
国家测绘局
2.3 全球定位系统 - GPS
授时与测距导航系统/全球定位系统 (Navigation Satellite Timing and Ranging/Global Positioning System--GPS): 是以人造卫星为基础的无线电导航系统,可提供高精度、全天 候、实时动态定位、定时及导航服务。
① 天文经纬度:表示地面点在大地水准面上的位 置,用天文经度和天文纬度表示。
天文经度:观测点天顶子午面与格林尼治天顶 子午面间的两面角。
在地球上定义为本初子午面与观测点之间的两 面角。
天文纬度: 在地球上定义为铅垂线与赤道平面 间的夹角。
② 大地经纬度:表示地面点在参考椭球面上的位置,
用大地经度l 、大地纬度 和大地高 h 表示。
把地图上和地球仪上的经纬线网进行比较,可以 发现变形表现在长度、面积和角度三个方面。
研究各种投影的变形规律是通过把 投影后的经纬线网与地球仪上经纬线网 格比较而实现的。地球仪是地球的真实 缩小。通过比较就会发现地球仪上的经 纬网形状与投影后经纬网的形状是不相 同的。为了研究变形,首先让我们分析 一下地球仪上经纬网的特点:
Equator
Polar Axis
b
a
Equatorial Axis
f = —aa-—b = —63—781—63377—8-16—3375—67—52.—3
South Pole
—1f = 298.257
对 a,b,f 的具体测定就是近代 大地测量的一项重要工作。
对地球形状 a,b,f 测定后,还必须确定大地水准面与椭球
我国在1953年前,使用海福特椭球参数,1953后改用克拉索夫斯基椭球参数, 1978年开始,我国决定在西安对地球椭球体重新定位。
地球表面上的定位问题,是与人类的生产活动、科 学研究及军事国防等密切相关的重大问题。具体而言, 就是球面坐标系统的建立。
2.1 地理坐标
—— 用经纬度表示地面点位的球面坐标。
将无线电信号发射台从地面点搬到卫星 上,组成一个卫星导航定位系统,应用无线 电测距交会的原理,便可由三个以上地面已 知点(控制站)交会出卫星的位置,反之利用 三个以上卫星的已知空间位置又可交会出地 面未知点(用户接收机)的位置,如图所示。 这便是GPS (Global Positioning System) 卫星定位的基本原理。
1.所有经线都是通过两极的大圆且长 度相等;所有纬线都是圆,圆半径由赤 道向两极递减,极地成为一点。
2.经线和纬线是相互垂直的。 3.同一条纬线上经差相等的纬线弧长 相等,在不同的纬线上,经差相等的纬 线弧长不等,由赤道向两极递减。
5.同一纬度带内,经差相同的经纬线网格面积相等,同一经度带内,纬差相同 的经纬线网格面积不等,纬度越高,梯形面积越小(由低纬向高纬逐渐缩小)。
—— 珠穆朗玛峰与太平洋的马里亚纳海沟之间高差近20km。
事实是(天文测量、地球重力测量、卫星大地测量):
地球不是一个正球体,而是一个极半径略短、赤道半 径略长,北极略突出、南极略扁平,近于梨形的椭球体。
地球南北半径之差仅在几十米范围内,相比地球极半径与赤道半径之差 (20公里)是十分微小的。
1.2 地球的物理表面
沿铅垂线投影到大地水准面上得P‘,使旋转椭球面与大地水准面在该点相切, 这时椭球面上P’点的法线(过P‘点与椭球面正交的直线)与过该点的大地水准面 的铅垂线重合,这样椭球体与大地体之间的关系就确定好了。切点P’称为大地 原点,该点的大地坐标就是全国其他点球面坐标的起算数据。
由于国际上在推求年代、方法及测定的地区不同,故 地球椭球体的元素值有很多种。
新编地图学教程
电子教案
第 2 章 地球体与地图投影
第 2 章 地球体与地图投影
§ 1 地球体 § 2 大地测量系统 § 3 地图投影 § 4 地图比例尺
§1 地球体
1.1 地球的自然表面
浩瀚宇宙之中 : 地球是一个表面光滑、蓝色美丽的圆球体。
机舱窗口俯视大地 : 地表是一个有些微起伏、极其复杂的表面。
§ 3 地图投影
地图投影是地图学重要组成部分之一,是构成 地图的数学基础,在地图学中的地位是相当重要的。 地图投影研究的对象就是如何将地球体表面描写到平 面上,也就是研究建立地图投影的理论和方法,地图 投影的产生、发展、直到现在,已有一千多年的历史, 研究的领域也相当广泛,实际上它已经形成了一门独 立的学科。
高程控制网 : 按统一规范,由精确测定高程的地面点组成,以水 准测量或三角高程测量完成。依精度不同,分为四等。
绝对高程(海拔):地面点到似大地水准面的垂直距离。
相对高程:地面点到任一水准面的垂直距离。
高差:某两点的高程之差。 中国高程起算面是黄海平均海水面。
水 准 原 点
青 岛 观 象 山
1956年在青岛观象山设立了水准原点(72.289m),其他各 控制点的绝对高程均是据此推算,称为1956年黄海高程系。
监控卫星沿着预定轨道运行;保持各颗卫星处于GPS时间系 统及监控卫星上各种设备是否正常工作等。
用户设备部分:GPS接收机——接收卫星信号,经数据 处理得到接收机所在点位的导航和定位信息。通常会显示出
用户的位置、速度和时间。还可显示一些附加数据,如到航
路点的距离和航向或提供图示。
GPS卫星定位的基本原理:
3.2 地图投影的定义
地球椭球体表面是不可展曲面,要将曲面上的客观事物 表示在有限的平面图纸上,必须经过由曲面到平面的转换。
地图投影:在地球椭球面和平面之间建立点与点之间函数关 系的数学方法。
地图投影的实质:是将地球椭球面上的经纬线网按照一定的 数学法则转移到平面上。
3.3 地图投影变形
1.投影变形的概念
WGS [world geodetic system] 84 ellipsoid:
North Pole
a = 6 378 137m
b = 6 356 752.3m equatorial diameter(赤道直径) = 12 756.3km polar diameter(极径) = 12 713.5km equatorial circumference(周长) = 40 075.1km surface area = 510 064 500km2
在大地测量学中,常以 天文经纬度定义地理坐标。
在地图学中,以大地经 纬度定义地理坐标。
在地理学研究及地图学 的小比例尺制图中,通常将 椭球体当成正球体看,采用 地心经纬度。
§2 大地测量系统
1.中国的大地坐标系统
中国1953年前采用海福特(Hayford)椭球体 ; 1953—1980年采用克拉索夫斯基椭球体(坐标原点是前苏 联普尔科沃) ; 自1980年开始采用 GRS 1975(国际大地测量与地球物理 学联合会 IUGG 1975 推荐)新参考椭球体系,并确定陕西泾 阳县永乐镇北洪流村为“1980西安坐标系”大地坐标的起算 点。
当海洋静止时,自由水面与该面上各点的重力方向(铅垂 线)成正交,这个面叫水准面。
大地水准面:假定海水静止不动,将海水面无限延伸,穿出陆 地、岛屿,形成一个封闭曲面。
它实际是一个起伏不平的重力等位面——地球物理表面。 大地体:大地水准面包围的形体(地球形体的一级逼近)。
大地水准面的意义
1. 地球形体的一级逼近__大地体:
2.变形椭圆
取地面上一个微分圆(小到可忽略地球曲面的 影响,把它当作平面看待),它投影到平面上通常 会变为椭圆,通过对这个椭圆的研究,分析地图投 影的变形状况。这样的椭圆就叫变形椭圆。
天文经纬度 大地经纬度 地心经纬度
球面坐标系统的建立
首先可以假想地球绕—个想象中的地轴旋转, 轴的北端称为地球的北极,轴的南端为地球的南 极;想象中有一个与地轴相垂直的平面能将地球 截为相等的两半,这个平面与地球相交的交线是 一个圆,这个圆就是地球的赤道。我们将一个过 英国格林尼治大文台旧址和地轴所组成的平面与 地球球面的交线定义为本初子午线。以地球的北 极、南极、赤道以及本初子午线作为基本要素, 即可构成地球球面的地理坐标系统。
在测量和制图中就用旋转椭球光体滑的来球代体替,即大旋地转球椭球体体,
这个旋转椭球体通常称为地球椭球体,简称椭球体。
相关文档
最新文档