一次函数课题学习、_选择方案__教案

合集下载

《一次函数》数学教案

《一次函数》数学教案

《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。

2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。

3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。

二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。

2. 重点:一次函数的概念、图象和性质。

3. 难点:一次函数的应用。

三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。

2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。

3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。

4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。

四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。

2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。

3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。

五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。

2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。

六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。

课题学习 一次函数中的方案选择

课题学习   一次函数中的方案选择
A城有肥料200吨
C乡需要肥料240吨
每吨20元
B城有肥料300吨
D乡需要肥料260吨
每吨24元
思考:影响总运费的变量有哪些?由A、B城分别运往C、D乡的
肥料量共有几个量?这些量之间有什么关系?
情景引入
喜欢打电话的同学可能会遇到下面这种问题,如:
1)还没到月底的时候免费的通话分钟数没有了。
2)月末的时候考虑我该换什么样的套餐合适呢?
x
(3)结合函数解析式及其图像说明水的最佳调运方案。
水的最小调运量为多少?
情景引入
你能在同一直角坐标系中画出它们的图象吗?
(0 x 25)
30,
y1
3x 45. ( x>25)
(0 x 50)
50,
y2
3x 100. ( x>50)
y3=120 (x≥0)
Goodbye~
感谢聆听,下期再会
得的费用相同,每月通话时间少于110分钟时,选择B
类收费比较适当.
课堂测试
某电脑经销商,今年二,三月份型和型电脑的销售情况,如下表所示:
(1)直接写出每台型电脑和型电脑的销售利润分别为____________;
(2)该商店计划一次购进两种型号的电脑共100台,其中型电脑的进货量不超过型电脑的2倍.设购进型电脑
10840·
小值,最小值为
y=4x+10040
(0≤x≤200)
10040·
4×0+10040=10040,
所以这次运化肥的
方案应从A城调往C
乡0吨,调往D乡
200吨;从B城调往
·
C乡240吨,调往D
o
x
200

“一次函数”课题学习方案选择教学设计

“一次函数”课题学习方案选择教学设计

数学 问题 . 我们一起看 看题 目中的数量关 系 ,师 画四 ( 点图 , 生读题并填充 四点图 )
他做几道题 . 同学们 , 我们也来做一做?
() 1购买一些饮 料 , 一瓶 饮料单 价 3 5元 , 买 . 购
瓶饮料需支付 Y元 . 可列函数解析式—
2 一 4



() 2购买 一些饮 料和 一些 面包 ( 饮料 和面 包共 1 O
质, 尤其问题 4让学 生进 一步 感悟并 总结 比例 系数 k
的 大 小 与 函数 值 的 最 值 的 关 系. 一
运用 四点图和表格分析 多个变量 的实 际问题 , 列 出函数关系式 , 运用 函数的性质得到最佳方案 .
四 、 学 难点 教
2 探索发现 , 出模 型. . 列 故事情节 2 小宋 也顺 利做 出了这 几道题 , 正当 他暗 自纳 闷: 数学题 和物流公 司有何相 干?叔叔 要他

中 小 学 数 学 ・中学版) (
思考 : ‘
初中 讨论 1 “ 当 为 一10时 总 运 费 y最 小 ” “ 为 0 ,
1 总运费 由哪几部分构成 ? .
5O时总运费 l最小” O , 是否 正确? 讨 论 2 计算 为 0 为 10 为 20时 y也就是总 、 0、 0 运 费等 于多少?这三种情况哪个总运费是最小 的?
大 而
这节课是人教 版八年级 教材 第 1 4章一 次函数 中 安排的最后一个内容. 为进 一步提 高学生实践 意识 与

个, 可列 函数解析式—
所 以 Y随 的 增



综合应用数学知识 的能力 , 教材安排 了这一内容. 这节

一次函数的应用——方案选择问题“微课”教案

一次函数的应用——方案选择问题“微课”教案

一次函数的应用——方案选择问题“微课”教案一. 教材分析本次微课的主题为“一次函数的应用——方案选择问题”,教材选自人教版初中数学八年级上册第五章“一次函数与不等式”部分。

本节课的主要内容是一次函数在实际生活中的应用,通过解决实际问题,让学生掌握一次函数的性质,提高学生运用数学知识解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了一次函数的基本知识,包括一次函数的定义、图像和性质。

但学生在解决实际问题时,往往不能将数学知识与实际问题相结合,因此,在教学过程中,需要教师引导学生将数学知识运用到实际问题中,提高学生的应用能力。

三. 教学目标1.理解一次函数在实际生活中的应用;2.掌握一次函数的性质;3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.一次函数在实际生活中的应用;2.一次函数的性质。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过设置实际问题,引导学生运用一次函数的知识解决问题,从而提高学生的应用能力。

同时,通过小组合作,让学生在讨论中巩固知识,提高学生的合作能力。

六. 教学准备1.准备相关的实际问题,如购物问题、行程问题等;2.准备一次函数的图像和性质的相关资料;3.准备PPT,用于展示问题和知识点。

七. 教学过程1.导入(5分钟)通过一个购物问题引入本节课的主题,让学生思考如何运用一次函数解决实际问题。

2.呈现(15分钟)呈现一系列实际问题,如购物问题、行程问题等,让学生独立思考如何运用一次函数解决这些问题。

3.操练(20分钟)学生分组讨论,每组选择一个实际问题,运用一次函数的知识解决。

教师巡回指导,帮助学生解决问题。

4.巩固(10分钟)教师总结一次函数在实际问题中的应用,强调一次函数的性质,并通过PPT展示相关实例。

5.拓展(10分钟)学生分组讨论,尝试解决更复杂的实际问题,如利润最大化问题、路程最短问题等。

6.小结(5分钟)教师引导学生总结本节课所学内容,让学生明确一次函数在实际生活中的应用和一次函数的性质。

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。

你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。

问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。

初二数学教案《一次函数》(优秀10篇)

初二数学教案《一次函数》(优秀10篇)

初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。

一次函数篇一教学目标:1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点:根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。

教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。

)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。

一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。

特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。

一次函数实施方案选择

一次函数实施方案选择————————————————————————————————作者:————————————————————————————————日期:《课题学习选择方案》教学设计湖北省咸宁市温泉中学黄娟廖文一、内容和内容解析1.内容用函数思想解决方案选择问题—选择哪种上网收费方式省钱?2.内容解析本课是在学习了函数概念、一次函数有关知识后,通过学生熟悉的宽带上网收费方式的选择,让学生经历体会费用随时间的变化关系是一次函数的关系,确定实际数据整理成函数的模型,即建立了数学模型,从而利用函数图像求数学模型的解,还可以比较几个一次函数的变化率来解决方案选择问题,实现利用数学知识解决实际问题的方法.本课是明确给出多种方案,要求选择使问题解决最优的一种.综上所述,本节课教学的重点是:应用一次函数模型解决方案选择问题.二、目标和目标解析1.目标(1)会用一次函数知识解决方案选择问题,体会函数模型思想;(2)能从不同的角度思考问题,优化解决问题的方法;(3)能进行解决问题过程的反思,总结解决问题的方法.2.目标解析目标(1)要求能根据问题情景建立一次函数模型,并可以比较几个一次函数的变化率,应用一次函数的性质和图像解决问题,从而感受到函数模型的应用价值.目标(2)要求能从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.目标(3)要求在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.三、教学问题诊断分析八年级学生已经学会了用方程和不等式来解决生活中的简单的实际问题,但是用综合应用能力有待加强。

特别是由于本节内容具有较强的实际背景,分析实际背景中所包含的变量及其对应关系较复杂,分析起来显的理不清头绪,易迷失解决问题的方向,时间一长就不愿意去尝试了.在这方面要给他们创造机会,降低问题的坡度,使他们不难成功,体验成功的乐趣,激发学习兴趣.本课内容是学生熟悉的宽带上网收费方式的选择,如何选择,用什么方法选择很重要,特别是如何从数学的角度去分析.本课教学的难点是:分析实际问题背景中所包含的变量和对应关系建立函数模型,解决实际问题,从而使选择方案优化.四、教学过程1.创设情境,提出问题做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的。

一次函数课题学习--选择方案市公开课获奖课件省名师示范课获奖课件

买灯旳方案有三种:
1. 一种节能灯,一种白炽灯;
2. 两个节能灯;
3. 两个白炽灯.
练习
1、如图所示,L1反应了某企业产品旳销售收入 和销售数量旳关系, L2反应产品旳销售成本与 销售数量旳关系,根据图象判断企业盈利时销
售量(B)
A、不不小于4件
y/元
L 1
B、不小于4件
400
L2
C、等于4件
300 200
八年级 数学
第十四章 函数
14.4课题学习 选择方案 怎样调水
一次函数y = 5x +1275旳值 y随x 旳增大而增大,所以当 x=1时y 有最小值,最小值为5×1+1275=1280,所以这次 运水方案应从A地调往甲地1万吨,调往乙地14-1=13(万吨 从B地调往甲地15-1=14(万吨),调往乙地1-1=0(万吨)
14.4课题学习 选择方案 怎样调水
解:(1)设派往A地域x台乙型收割机, 每天取得旳 租金为y元则,
派往A地域(30-x)台甲型收割机, 派往机, 所以 y=1600x+1200(30-x)+1800(30-x)+1600(x-10)
60+0.6×0.01x =3+0.6×0.06x
解得:x=1900
即当照明时间等于1900小时,购置节能灯、白炽灯均可.
解:设照明时间是x小时, 节能灯旳费用y1元表达,白炽灯旳费用y2 元表达,则有:y1 =60+0.6×0.01x; y2 =3+0.6×0.06x .
若y1< y2 ,则有
60+0.6×0.01x <3+0.6×0.06x
八年级 数学
第十四章 函数
14.4课题学习 选择方案 怎样调水

一次函数课题学习:选择方案

鸡西市第十九中学学案
、为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在玉溪市范围内每月(
话时间x(min)与通话费y(元)的关系如图所示:
分别求出通话费1y(便民卡)2(如意卡)与通话时间x
系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜?6、如图一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象)
下列问题:
⑴请分别求出表示轮船和快艇行驶过程的函数解析式。

范围)
⑵轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?
⑶问快艇出发多长时间赶上轮船?
鸡西市第十九中学学案
鸡西市第十九中学学案。

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇一次函数的优秀教学设计篇一课题:14.2.2一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y 与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x(x≥0)当然,这个函数也可表示为:y=-6x+15(x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c 的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.3 课题学习选择方案
(第1课时)
一、教学目标
(1)进一步了解一次函数的解析式和图象在解决简单实际中的应用.(2)尝试解决最佳方案设计问题.建立函数模型解决实际问题. 二、教学重点、难点:
重点:建立函数模型选择最佳方案.
难点:建立函数模型选择最佳方案.
三、教学过程:
活动一.方案设计: 问题1 怎样选取上网收费方式?
如下表给出A,B,C三种上宽带网的收费方式。

选取哪种方式能节省上网费?
分析:1.哪种方式上网费是会变化的?哪种不变?
答:A、B会变化,C不变
2.在A、B两种方式中,上网费由哪些部分组成?
答:上网费=月使用费+超时费
3.影响超时费的变量是什么?
答:上网时间
4.这三种方式中有一定最优惠的方式吗?
答:没有一定最优惠的方式,与上网的时间有关。

设月上网时间为x,则方式A、B的上网费y1、y2都是x的函数,要比较它们,需在 x > 0 时,考虑何时
(1) y1 = y2;(2) y1 < y2;(3) y1 > y2. 上网费=月使用费+超时费
5.在方式A中,超时费一定会产生吗?什么情况下才会有超时费?答:超时费不是一定有的,只有在上网时间超过25h时才会产生.
当0≤x≤25时,y1=30;
当x>25时,y1=30+0.05×60(x-25)=3x-45.
合起来可写为:
30,⎧ 45.-3x⎩⎨=25)y1≤x≤(0 (x>25)
6.你能自己写出方式B的上网费y2关于上网时间 x之间的函数关系式吗?
50,⎧ 100.-3x⎩⎨=50)y2≤x≤(0 (x>50)
7.方式C的上网费y3关于上网时间x之间的函数关系式呢?
当x≥0时,y3=120.
8.你能在同一直角坐标系中画出它们的图象吗?
解:略。

活动二. 方案设计:问题2 怎样租车?
某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现在有甲、乙两种大客车,它们的载客量和租金如下表:
(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.
分析:
(1)从乘车人数的角度考虑租多少辆汽车条件
①要保证240名师生有车坐,则汽车总数不能小于6辆
②要使每辆汽车至少要有1名教师.则汽车总数不能大于6辆
∴ 汽车总数只有6辆
(2)如果设租用 x 辆甲种客车,则租用乙种客车是(6- x)辆
根据租车费用(单位:元)是x的函数,可得y=400x+280(6-x)
即 y=120x+1680
讨论:x的取值范围
第2/3页①保证240名师生有车坐则4≤x≤6 ②租车费不超2300元则0≤x<6 ∴ x的取值范围是4 ≤x ≤5即x=4或5两种可能.为节省应选甲车4辆,乙车2辆方案.
四、课堂小结:
归纳:解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取有代表性的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型。

五、布置作业:
1. 课堂:复习题19 第12、15题
2. 家庭:数学作业本。

——冯小龙。

相关文档
最新文档