4.直角三角形全等判定(基础)知识讲解

合集下载

直角三角形全等的判定课件

直角三角形全等的判定课件
E P D C
Q
F
说一说
• 这节课我的收获是„„


一般三 角形全 等的判 定
“ “ “SAS”“ ASA ” AAS ” SSS ”
直角三 角形全 等的判 定
“ “ SAS “ ASA ” AAS ” SSS “ HL ” ” “ ”
灵活运用各种方法证明直角三角形全等
(动点问题)如图在Rt△ABC中 ,∠C=90°,AC=10cm,BC=5cm, 一条线段PQ=BA,点P、Q分别在AC和过点A且垂直于AC的射线AX 上运动,问点P运动到什么位置时,才能使ΔABC与ΔAPQ全等?
因此,“HL” 只适合判定直角三角形全等。
巩固练习
一、判断命题真假
1.一个锐角及这个锐角的对边对应相等的 两个直角三角形全等. (√ )
(AAS)
2.一个锐角及这个锐角相邻的直角边对应 相等的两个直角三角形全等.( √ )
( ASA)
3.一个锐角及斜边对应相等的两个直角 (√ ) 三角形全等.
P D C
E
Q
F
Hale Waihona Puke 思维拓展已知:如图,在△ABC和△DEF中,AP、DQ分别是高, 并且AB=DE,AP=DQ,∠BAC=∠EDF, 求证:△ABC≌△DEF A
变式1:若把∠BAC=∠EDF,改为BC=EF , △ABC与△DEF全等吗?请说明思路。 变式2:若把∠BAC=∠EDF,改为AC=DF, △ABC与△DEF全等吗?请说明思路。 B 变式3:请你把例题中的∠BAC=∠EDF改 为另一个适当条件,使△ABC与△DEF仍能 全等。还能怎样改动?
E A F G
C
D
问题:老师想测量教室的高度,可是只有一根竹

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。

全等三角形的判定(HL)(知识梳理与考点分类讲解)(人教版)(学生版) 24-25学年八年级数学上册

全等三角形的判定(HL)(知识梳理与考点分类讲解)(人教版)(学生版) 24-25学年八年级数学上册

专题12.7全等三角形的判定(HL)(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】直角三角形全等的判定方法——斜边、直角边(HL)(1)判定方法:斜边和一条直角边分别对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).(2)书写格式:如图,在Rt△ABC 和△Rt DEF 中,AB DE AC DF=⎧⎨=⎩ABC DEF ∴∆≅∆(HL)【知识点二】判定两个直角三角形全等的方法判定一般三角形全等的方法对判定两个直角三角形全等全部适用,因此我们可以根据“HL”“SSS”“SAS”“ASA”“AAS”这五种方法来判定两个直角三角形全等.【知识点三】判定两个直角三角形全等的思路(1)已知一条直角边对应相等,可用判定方法“SAS”“HL”“ASA”或“AAS”;(2)已知斜边对应相等,可用判定方法“HL”“AAS”;(3)已知一锐角对应相等,可用判定方法“ASA”或“AAS”.第二部分【题型展示与方法点拨】【题型1】用“HL”证明直角三角形全等【例1】(23-24八年级上·广西南宁·期中)已知,如图,点A 、E 、F 、B 在同一条直线上,CA AB ⊥,DB AB ⊥,AE FB =,CF DE=(1)求证:CAF DBE ≌ ;(2)若25AFC ∠=︒,求D ∠的度数【变式1】如图,已知AB BD ⊥,CD BD ⊥,若用HL 判定Rt △ABD 和Rt BCD 全等,则需要添加的条件是()A .AD CB =B .AC ∠=∠C .BD DB =D .AB CD=【变式2】(23-24八年级上·北京朝阳·阶段练习)如图,BD CF =,FD BC ⊥于点D ,DE AB ⊥于点E ,BE CD =,若145AFD ∠=°,则EDF ∠=.【题型2】全等的性质与“HL”综合【例2】(23-24八年级下·山东青岛·期中)已知:如图AD 为ABC 的高,E 为AC 上一点,BE 交AD 于F 且有BF AC =,ED CD =.(1)问BF 与AC 的数量和位置关系分别是什么?并说明理由.(2)直接写出ABC ∠的度数.【变式1】(23-24八年级上·山东菏泽·期末)如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,EF AB ⊥于点F ,交AC 于点E ,BC BF =,连接BE 交CD 于点G .下列结论:①CE EF =;②CG EF =;③BGC AEB ∠=∠.其中正确的有()A .0个B .1个C .2个D .3个【变式2】(23-24八年级上·吉林·期末)如图,在ABC 中,M 为边BC 的中点,ME AB ⊥于点E ,MF AC ⊥于点F ,且BE CF =.若25BME ∠=︒,则A ∠=°.【题型3】全等三角形的综合问题【例3】(23-24七年级下·广东佛山·阶段练习)如图,ABC 中,AC AB >,D 是BA 延长线上一点,点E 是CAD ∠的平分线上一点,过点E 作EF AC ⊥于F ,EG AD ⊥于G .(1)求证:EGA EFA ≌△△;(2)若2BEC GEA ∠=∠,3AB =,5AC =,求AF 的长.【变式1】(23-24八年级上·河北保定·期末)如图,EB 交AC 于点M ,交FC 于点D ,90E F ∠=∠=︒,B C ∠=∠,AE AF =,给出下列结论:12∠=∠①;②BE CF =;③ACN ABM ≌;CD DN =④,其中正确的有()A .①②③B .①②④C .①③④D .②③④【变式2】(23-24八年级上·江苏南京·阶段练习)如图,ABC 中,AH BC ⊥,BF 平分ABC ∠,BE BF ⊥,EF BC ∥,以下四个结论:①AH EF ⊥,②ABF EFB ∠=∠,③AF BE =,④E ABE ∠=∠.正确的是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2023·陕西·中考真题)如图,在ABC 中,50B ∠=︒,20C ∠=︒.过点A 作AE BC ⊥,垂足为E ,延长EA 至点D .使AD AC =.在边AC 上截取AF AB =,连接DF .求证:DF CB =.【例2】(2023·山东·中考真题)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A B C D E ,,,,均在小正方形方格的顶点上,线段,AB CD 交于点F ,若CFB α∠=,则ABE ∠等于()A .180α︒-B .1802α︒-C .90α︒+D .902α︒+2、拓展延伸【例1】(23-24八年级上·广东汕头·期中)如图,从点O 引射线OM ,ON ,点A ,B 分别在射线OM ,ON 上,点C 为平面内一点,连接AC ,BC ,有ACB O ∠=∠.(1)如图1,若AO BC ∥,则AC 和ON 的位置关系是______;(2)如图2,若ABC ABO ∠=∠,AC OM ⊥,请求出CBD ∠和O ∠的度数的等量关系式;(3)在(2)的条件下,过点C 作CD OM ∥交射线ON 于点D ,当8CDN CBD ∠=∠时,求ABC ∠的度数.【例2】(22-23九年级下·山东滨州·期中)(1)如图1,在四边形ABCD 中,120AB AD BAD =∠=︒,,90ABC ADC ∠=∠=︒,且60EAF ∠=︒,求证:EF BE FD =+.(2)如图2,若在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E F 、分别是BC CD 、上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立?请说明理由.。

三角形全等的判定知识点讲解

三角形全等的判定知识点讲解


AF: C E.
AD = C . B

在 △A D与 AC B中 . A = / C. F E
AF :CE .

图 2
AF △C B S ) D E (AS .
点 拨 解 题的关键是 寻找两个 I 二角形全等 的条件.已知 A c .i D= 1 _ = } A fB D C可 得 A = C 由 A , E=c F可 得 A ,=C , 合边 角 边定 理 . E符 所
对边 , 且 B=AD, 并 . AC= E, 合 角 角边 定 理 , 以得 到 AA C AA E A 符 所 B D .
叠斜 和 爸 甬对 逾 一 直 逾
应 相 等 ∞ 两 个 直 角 三 角 形 全 等 ( L. H)
Байду номын сангаас
如 图 5 已知 /AC , B=AD F=9 。 A E 0 , B=D , E= F F曰 c ,
和C E所在 的两个 三角形全 等. 已知 A A , A D= A , B= C / B 再寻找两个 _
角 相 等 即 可 证 全 等 了 . 已 知 可 知 由
边 角 边 定理 , AA D 故 B AAC . E
两 个 角 和 苒 中 一 个 角 的 对 逾 对 应 相 等 曲 两 个 三 角 形 全 等 ( S) AA .
C= AD E, /B A 故 AD= iC E, 合 A 符
如 图 4 已知 AC= , AE, AB=/D,请 问 : B - AA C 9 AA E全 等吗? 为什 么? D
解 △A C AA E 理 由如下 : 曰 D
曰= D.
在 AA C和 AA E 中 . B D

《三角形全等的判定》 知识清单

《三角形全等的判定》 知识清单

《三角形全等的判定》知识清单一、三角形全等的概念两个三角形能够完全重合,就说这两个三角形全等。

全等三角形的对应边相等,对应角相等。

二、三角形全等的判定方法1、“边边边”(SSS)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

例如:在三角形 ABC 和三角形 DEF 中,AB = DE,BC = EF,AC = DF,那么三角形 ABC 全等于三角形 DEF。

这个判定方法是三角形全等判定的基础,因为三条边确定了,三角形的形状和大小也就确定了。

2、“边角边”(SAS)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

比如:在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么三角形 ABC 全等于三角形 DEF。

需要注意的是,这里的角必须是两条边的夹角。

3、“角边角”(ASA)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

假设在三角形 ABC 和三角形 DEF 中,∠B =∠E,BC = EF,∠C =∠F,那么三角形 ABC 全等于三角形 DEF。

同样,这里的边必须是两个角的夹边。

4、“角角边”(AAS)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。

例如:在三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么三角形 ABC 全等于三角形 DEF。

这一判定方法是由“角边角”推导而来的。

三、直角三角形全等的特殊判定方法1、“斜边、直角边”(HL)对于两个直角三角形,如果斜边和一条直角边分别对应相等,那么这两个直角三角形全等。

比如在直角三角形 ABC 和直角三角形 DEF 中,∠C =∠F = 90°,AB = DE,AC = DF,那么直角三角形 ABC 全等于直角三角形 DEF。

四、三角形全等判定的应用1、证明线段相等如果两个三角形全等,那么它们的对应边相等。

直角三角形全等的判定+-+说课演示课件

直角三角形全等的判定+-+说课演示课件


B、斜边和一锐角对应相等
C、斜边和一条直角边对应相等 D、两个锐角对应相等
Zhi jiao san jiao xing quan deng de pan ding
直 角 三 角 形 全 等 的 判 定
教学过程分析
当堂检测 C E A B F D
2、如图,CE⊥AE,DF⊥BF,垂足分别为E、F.
小结归纳
环节
本节课 设计意图: 的收获 (1)反馈本节课重难点的突破情况 练习1、2 P21 习 与疑惑 题1); (2)分层作业,各显身手,消除被迫感和压抑感。 ? 选做题(教材P21
练习5、6)
布置作业: 必做题(教材P20
Zhi jiao san jiao xing quan deng de pan ding
SAS ASS ASA SSS
直角三角形的性质
“HL”定理
轴对称、等腰三角形、四边形等… …
Zhi jiao san jiao xing quan deng de pan ding
直 角 三 角 形 全 等 的 判 定
教材分析
本班学情
思维 活跃
知识遗 忘率高
Zhi jiao san jiao xing quan deng de pan ding
1 2 3
教材分析 教学目标分析
课堂结构设计
教学过程分析 教学评价分析
4
5
Zhi jiao san jiao xing quan deng de pan ding
直 角 三 角 形 全 等 的 判 定
课堂结构设计
观察
猜想
推理
论证
应用
Zhi jiao san jiao xing quan deng de pan ding

知识卡片-直角三角形全等的判定

直角三角形全等的判定
能量储备
“斜边、直角边”定理
1.斜边和一条直角边分别相等的两个直角三角形全等.简述为“斜边、直角边”或“HL”定理.
2.判定一般三角形全等的所有方法对判定两个直角三角形全等全部适用,至此我们可以根据SSS,SAS,ASA,AAS和HL五种方法去判定两个直角三角形全等.
通关宝典
★基础方法点
1.直角三角形全等的判定
例:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,下列条件中能判定Rt△ABC≌Rt△A′B′C′的个数为()
①AC=A′C′,∠A=∠A′;②AC=A′C′,AB=A′B′;③AC=A′C′,BC=B′C′;④AB=A′B′,∠A=∠A′.
A.1B.2 C.3D.4
答案:D
★★易混易误点
1.忽略用“HL”定理证明三角形全等的前提
例:如图所示,在△ABC中,AB=AC,AD是△ABC的中线,试用“HL”定理证明:△ABD≌△ACD.
证明:∵ AB=AC,AD是△ABC的中线,
∴ AD⊥BC,
即△ABD和△ACD都是直角三角形.
在Rt△ABD和Rt△ACD中,
∵ AB=AC,AD=AD,
∴Rt△ABD≌Rt△ACD(HL).
常见错因:本题容易在未说明△ABD和△ACD是直角三角形的前提下,就直接用“HL”定理,导致错误.
蓄势待发
考前攻略
主要考查由不同的条件来判定两个直角三角形全等,题型多样,难度适中.
完胜关卡。

三角形全等的判定

1. 全等三角形判定1:三边对应相等的两个三角形全等。

2. 全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。

3. 全等三角形判定3:两角和它们的夹边对应相等的两个三角形全等。

4. 全等三角形判定4:两个角和其中一个角的对边对应相等的两个三角形全等。

5. 全等三角形判定5:斜边和一条直角边对应相等的两个直角三角形全等。

典型例题知识点一:全等三角形判定1例1:如图,在△AFD和△EBC中,点A,E,F,C 在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)DF=BE;(4)AD∥BC。

请将其中三个论断作为条件,余下的一个作为结论,编一道证明题,并写出证明过程。

解答过程:已知:如图,在△AFD和△EBC中,点A,E,F,C在同一直线上,AD=CB,AE=CF,DF=BE。

求证:AD∥BC。

知识点二:全等三角形判定2(2)由(1)知△OAB≌△OCD∴AB=CD例3:已知:如图,AB∥CD,AB=CD,求证:AD∥BC,AD=BC综上:AD∥BC,AD=BC例4:(1)在图1中,△ABC和△DEF满足AB=DE,AC=DF,∠A=∠D,这两个三角形全等吗?(2)在图2中,△ABC和△ABD满足AB=AB,AC=AD,∠B =∠B,这两个三角形全等吗?。

解答过程:(1)全等;(2)不全等。

解题后的思考:有两边和一角相等的两个三角形不一定全等,要根据所给的边与角的位置进行判断:(1)当两个三角形满足两边及夹角对应相等即“SAS”时,这两个三角形全等;(2)当两个三角形满足两边及其中一边的对角对应相等即“SSA”时,这两个三角形不一定全等。

在证明题中尤其要注意这一点。

知识点三:全等三角形判定3 例5:如图,BE⊥AE,CF⊥AE,ME=MF。

求证:AM是△ABC的中线。

解答过程:∵BE⊥AE,CF ⊥AE∴∠BEM=∠CFM=90°在△BME和△CMF中,解题后的思考:要证明AM是△ABC的中线,需要证明M是BC的中点,因此,转化为证明BM=CM,结合已知条件,应考虑证明与这两条相等线段有关的可能全等的两个三角形,结合题目中已有的条件和能够求出的相等关系,选择正确的判定方法来解决相关问题。

《直角三角形全等的判定》 讲义

《直角三角形全等的判定》讲义一、直角三角形全等的概念在平面几何中,如果两个直角三角形能够完全重合,那么它们就是全等的。

全等的直角三角形具有相同的形状和大小,对应的边和角都相等。

二、直角三角形全等的判定方法1、 SSS(边边边)如果两个直角三角形的三条边分别对应相等,那么这两个直角三角形全等。

2、 SAS(边角边)如果两个直角三角形的两条边及其夹角分别对应相等,那么这两个直角三角形全等。

3、 ASA(角边角)如果两个直角三角形的两个角及其夹边分别对应相等,那么这两个直角三角形全等。

4、 AAS(角角边)如果两个直角三角形的两个角和其中一个角的对边分别对应相等,那么这两个直角三角形全等。

5、 HL(斜边、直角边)如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。

这是直角三角形全等特有的判定方法。

因为在直角三角形中,斜边是最长的边,当斜边和一条直角边对应相等时,由勾股定理可以推出另一条直角边也对应相等,从而满足边边边(SSS)的判定条件。

三、HL 判定方法的证明已知:在 Rt△ABC 和 Rt△A'B'C' 中,∠C =∠C' = 90°,AB =A'B',AC = A'C' 。

求证:Rt△ABC ≌ Rt△A'B'C'证明:在 Rt△ABC 中,根据勾股定理:BC²= AB² AC²在 Rt△A'B'C' 中,根据勾股定理:B'C'²= A'B'² A'C'²因为 AB = A'B',AC = A'C' ,所以 BC = B'C'因为 AB = A'B',AC = A'C' ,BC = B'C' ,所以 Rt△ABC ≌Rt△A'B'C'(SSS)四、直角三角形全等判定方法的应用1、证明线段相等例如,已知两个直角三角形全等,那么它们对应的边相等,从而可以证明某些线段相等。

直角三角形全等判定(基础)知识讲解.doc

直角三角形全等判定(基础)责编:某老师【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL ”).2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.【要点梳理】【高清课堂:379111 直角三角形全等的判定,知识点讲解】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.举一反三:【高清课堂:379111 直角三角形全等的判定,例3】【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==, ∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS 、ASA 、AAS 、SSS 、HL. 举一反三:【变式】下列说法正确的有( )(1)一个锐角及斜边对应相等的两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等;(4)有两条边相等的两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等.A.2个B.3个C.4个D.5个【答案】C .解:(1)一个锐角及斜边对应相等的两个直角三角形全等,根据AAS 可判定两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等,根据AAS 或ASA 可判定两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等,缺少“边”这个条件,故不可判定两个直角三角形全等;(4)有两条边相等的两个直角三角形全等,根据SAS 或HL 可判定两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等,根据HL 可判定两个直角三角形全等.所以说法正确的有4个.故选C .3、(2016春•深圳校级月考)如图,AB ⊥AC 于A ,BD ⊥CD 于D ,若AC=DB ,则下列结论中不正确的是( ) O B C DAA .∠A=∠DB .∠ABC=∠DCBC .OB=OD D .OA=OD【思路点拨】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合已知条件与全等的判定方法逐一验证.【答案与解析】解:∵AB ⊥AC 于A ,BD ⊥CD 于D∴∠A=∠D=90°(A 正确)又∵AC=DB ,BC=BC∴△ABC ≌△DCB(HL)∴∠ABC=∠DCB (B 正确)∴AB=CD又∵∠AOB=∠C∴△AOB ≌△DOC(AAS)∴OA=OD (D 正确)C 中OD 、OB 不是对应边,不相等.故选C .【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、已知:如图1,在Rt△ABC 和Rt△A′B′C′中,AB=A′B′,AC=A′C′,C=∠C′=90° 求证:Rt△ABC 和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)将△ABC 和△A′B′C′拼在一起,请你画出两种拼接图形;例如图2:(即使点A 与点A′重合,点C 与点C′重合.)(3)请你选择你拼成的其中一种图形,证明该命题.【答案与解析】解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等.(2)如图:图②使点A与点A′重合,点B与点B′重合图③使点A与B′重合,B与点A′重合.(3)在图②中,∵A和A′重合,B和B′重合,连接CC′.∵∠ACB=∠A′C′B′=90°,∠ACB﹣∠ACC′=∠A′C′B′﹣∠AC′C,即∠BCC′=∠BCC′,∴BC=B′C′.在直角△ABC和直角△A′B′C′中,,∴△ABC≌△A′B′C′(SSS).【总结升华】本题考查了直角三角形的全等中HL定理的证明,正确利用等腰三角形的性质是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形全等判定(基础)
撰稿:康红梅责编:吴婷婷
【学习目标】
1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.
【要点梳理】
【高清课堂:379111 直角三角形全等的判定,知识点讲解】
要点一、判定直角三角形全等的一般方法
%
由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理
在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.
要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.
(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.
证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三
角形全等的证明方法.
(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三
角形这个条件,书写时必须在两个三角形前加上“Rt”.
【典型例题】
#
类型一、直角三角形全等的判定——“HL”
1、已知:如图,AB⊥BD,CD⊥BD,AD=BC.
求证:(1)AB=CD:
(2)AD∥BC.
【思路点拨】先由“HL”证Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.
【答案与解析】
'
证明:(1)∵AB⊥BD,CD⊥BD,
∴∠ABD=∠CDB=90°
在Rt△ABD 和Rt△CDB中,
AD BC
BD DB


=


∴Rt△ABD≌Rt△CDB(HL)
∴AB=CD(全等三角形对应边相等)
(2)由∠ADB=∠CBD

∴AD∥BC .
【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.
举一反三:
【高清课堂:379111 直角三角形全等的判定,例3】
【变式】已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.
求证:ED⊥AC.

【答案】
证明:∵AE⊥AB,BC⊥AB,
∴∠DAE=∠CBA=90°
在Rt△DAE 与Rt△CBA中,
ED AC
AE AB




=,
∴Rt△DAE≌Rt△CBA (HL)
∴∠E=∠CAB
{
∵∠CAB+∠EAF=90°,
∴∠E+∠EAF=90°,即∠AFE=90°
即ED⊥AC.
2、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明
理由:
(1)一个锐角和这个角的对边对应相等;()
(2)一个锐角和斜边对应相等;()
(3)两直角边对应相等;()

(4)一条直角边和斜边对应相等.()
【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.
【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.
举一反三:
【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.
(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()
;
(2)有两边和其中一边上的高对应相等的两个三角形全等.()
(3)有两边和第三边上的高对应相等的两个三角形全等.()
【答案】(1)√;
(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF
(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AE为第三边上的高,

【高清课堂:379111 直角三角形全等的判定,例4】
3、已知:如图,AC=BD,AD⊥AC,BC⊥BD.
求证:AD =BC ;
【思路点拨】如果想去证两个小的直角三角形全等的话,会发现除了直角和对顶角,就没有别的条件了,AC =BD 用不上,所以另想办法,连接DC ,在Rt △ADC 与Rt △BCD 中,问题迎刃而解.
【答案与解析】
证明:连接DC
∵AD ⊥AC ,BC ⊥BD
~
∴∠DAC =∠CBD =90°
在Rt △ADC 与Rt △BCD 中,
DC CD AC BD =⎧⎨⎩
= ∴Rt △ADC ≌Rt △BCD (HL )
∴AD =BC .(全等三角形对应边相等)
【总结升华】证明的时候要考虑所给的条件能用上,所给的线段不能割裂开.
举一反三:
'
【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .
求证:OC =OD.
【答案】∵∠C =∠D =90°
∴△ABD 、△ACB 为直角三角形
在Rt △ABD 和Rt △BAC 中
AB BA BD AC =⎧⎨=⎩
∴Rt △ABD ≌Rt △BAC(HL)
∴AD =BC
在△AOD 和△BOC 中
D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨
⎪=⎩
∴△AOD ≌△BOC(AAS)

∴OD =OC .
4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.
【答案与解析】
解:全等三角形为:△ACD ≌△CBE.
证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,
∴∠CAD=∠BCE
在△ACD 与△CBE 中,
90ADC CEB CAD BCE
AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
∴△ACD ≌△CBE (AAS ).
【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。

相关文档
最新文档