安徽省考试研究中心2014高考数学文科冲刺试卷(有答案)(六)
14年高考真题——文科数学(安徽卷)

页眉内容2014年普通高等学校招生全国统一考试(安徽卷)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 是虚数单位,复数321ii i+=+( ) (A )i - (B )i (C )1- (D )12.命题“x R ∀∈,2||0x x +≥”的否定..是( ) (A )x R ∀∈,2||0x x +< (B )x R ∀∈,2||0x x +≤ (C )0x R ∃∈,200||0x x +< (D )0x R ∃∈,200||0x x +≥3.抛物线214y x =的准线方程是( ) (A )1y =- (B )2y =- (C )1x =- (D )2x =- 4.如图,程序框图(算法流程图)的输出结果是( ) (A )34 (B )55 (C )78 (D )895.设3log 7a =, 1.12b =, 3.10.8c =,则( ) (A )b a c << (B )c a b << (C )c b a << (D )a c b <<6.过点()1P -的直线l 与圆221x y +=有公共点,则l 的倾斜角的取值范围是( ) (A )0,6π⎛⎤⎥⎝⎦(B )0,3π⎛⎤⎥⎝⎦(C )0,6π⎡⎤⎢⎥⎣⎦ (D )0,3π⎡⎤⎢⎥⎣⎦7.若将函数()sin 2cos2f x x x =+的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是( ) (A )8π (B )4π (C )38π (D )34π8.一个多面体的三视图如图所示,则该多面体的体积是( ) (A )233 (B )476(C )6 (D )7 9.若函数()|1||2|f x x x a =+++的最小值为3,则实数a 的值为( ) (A )5或8 (B )1-或5(C )1-或4- (D )4-或810.设,a b 为非零向量,||2||b a =,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和3个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24||a ,则a 与b 的夹角为( )(A )23π (B )π (C )6π (D )0二.填空题:本大题共5小题,每小题5分,共25分。
2014年安徽省高考数学冲刺试卷(文科)

2014年安徽省高考数学冲刺试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.设i是虚数单位,是复数z=+i的共轭复数,则z2•=()A.+iB.-iC.-+iD.--i【答案】A【解析】解:由z=+i,得,∴z2•===.故选:A.直接利用复数代数形式的除法运算化简求值.本题考查复数代数形式的除法运算,考查了复数模的求法,是基础题.2.设集合A={x|x2-x<0},B={x|-2<x<2}则()A.A∪B=AB.A∪B=RC.A∩B=AD.A∩B=∅【答案】C【解析】解:∵A={x|x2-x<0}={x|0<x<1},又B={x|-2<x<2},∴A⊆B.则A∩B=A.故选:C.求解一元二次不等式化简集合A,然后由交集及子集的运算性质得答案.本题考查交集及其运算,考查了一元二次不等式的解法,是基础题.3.命题“∀x∈R,x2-2x+4≤0”的否定为()A.∀x∈R,x2-2x+4≥0B.∃x∈R,x2-2x+4>0C.∀x∉R,x2-2x+4≤0D.∃x∉R,x2-2x+4>0【答案】B【解析】解:∵命题“∀x∈R,x2-2x+4≤0”,∴命题的否定是“∃x∈R,x2-2x+4>0”故选B.本题中的命题是一个全称命题,其否定是特称命题,依据全称命题的否定书写形式写出命题的否定即可.本题考查命题的否定,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.4.如图所示,程序框图(算法流程图)的输出结果是()A.94B.274C.282D.283【答案】D【解析】解:当a=3时,执行完循环体,a=10,不满足退出循环的条件;当a=10时,执行完循环体,a=31,不满足退出循环的条件;当a=31时,执行完循环体,a=94,不满足退出循环的条件;当a=94时,执行完循环体,a=283,满足退出循环的条件;故输出结果为283,故选:D由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.5.设向量,是同一平面内所有向量的一组基底,若(λ+)∥(-2),则实数λ的值为()A.2B.-2C.D.-【答案】D【解析】解:∵(λ+)∥(-2),∴存在实数k使得,化为=,∵向量,是同一平面内所有向量的一组基底,∴,解得λ=k=-.故选:D.利用向量共线定理和平面向量基本定理即可得出.本题考查了向量共线定理和平面向量基本定理,属于基础题.6.若x,y满足约束条件,则2x-y的最小值为()A.-6B.-4C.-3D.-1【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分).设z=2x-y,得y=2x-z,平移直线y=2x-z,由图象可知当直线y=2x-z经过点A时,直线y=2x-z的截距最大,此时z最小.由,解得,即A(-1,2)代入目标函数z=2x-y,得z=-2-2=-4.故选:B.作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.7.设公差不为0的等差数列{a n}的前n项和为S n,若S8=S21,a k=0,则k=()A.14B.15C.16D.21【答案】B【解析】解:在等差数列{a n}中,由S8=S21,得:a9+a10+…+a21=0,又a9+a21=a10+a20=…=2a15,∴13a15=0.即a15=0.∴k=15.故选:B.直接由已知结合等差数列的性质得答案.本题考查了等差数列的通项公式,考查了等差数列的性质,是基础题.8.某几何体的三视图如图所示,则该几何体的体积是()A.πB.πC.6πD.8+π【答案】A【解析】解:由三视图可知几何体是上部为底面半径与高为2的半圆锥,下部为底面半径为2,高为1的班圆柱,几何体的体积为:=.故选:A.由题意判断几何体的形状,结合三视图的数据,求解几何体的体积即可.本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.9.已知定义在R上函数f(x)满足f(x+2)=-f(x),当x∈[-2,0]时,f(x)=()x-,则f(2014)=()A.-B.-C.D.【答案】D【解析】解:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),即函数的周期是4,则f(2014)=f(503×4+2)=f(2)=-f(0)=-[()0-]=)=-1=,故选:D由f(x+2)=-f(x),得到函数的周期为4,利用函数的周期性将条件进行转化即可得到结论.本题主要考查函数值的计算,利用条件求出函数的周期性是解决本题的关键.10.若三个互不相等的正数x1,x2,x3满足方程x i+lnx i=m i(i=1,2,3),且m1+m3=2m2,则下列关系式正确的是()A.x1x3<x22B.x1x3≤x22C.x1x3>x22D.x1x3≥x22【答案】A【解析】解:设f(x)=x+lnx,f′(x)=1+>0,∴f(x)单调递增,f()=+ln>+ln=,∵m1+m3=2m2,∴f(x1)+f(x3)=2f(x2)<2f(),则<,又由f(x1)+f(x3)=2f(x2)可得ln=2x2-(x1+x3)<0,∴<,故选A.设f(x)=x+lnx,利用导数可判断f(x)递增,利用不等式可正f()>,又m1+m3=2m2,得f(x1)+f(x3)=2f(x2)<2f(),从而<,再由f(x1)+f(x3)=2f(x2)可得ln=2x2-(x1+x3)<0,于是可得答案.本题考查函数单调性及其应用、函数与方程思想,解决该题的关键构造函数f(x)=x+lnx,利用函数性质解决问题.二、填空题(本大题共5小题,共25.0分)11.椭圆+=1与双曲线-=1有相同的焦点,则实数m的值是______ .【答案】1【解析】解:椭圆得∴c1=,∴焦点坐标为(,0)(-,0),双曲线:的焦点必在x轴上,则半焦距c2=∴则实数m=1故答案为:1.先根据椭圆的方程求得焦点坐标,进而可知双曲线的半焦距,根据双曲线的标准方程,求得m,答案可得.此题考查学生掌握圆锥曲线的共同特征,考查椭圆、双曲线的标准方程,以及椭圆、双曲线的简单性质的应用,利用条件求出a,b,c值,是解题的关键.12.在某电视台举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图所示,去掉一个最高分和一个最低分后,所剩数据的方差是______ .【答案】【解析】解:去掉一个最高分和一个最低分后,所剩数据为84,84,86,84,87,其平均值为=(84+84+86+84+87)=85,方差为s2=[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=,故答案为.根据茎叶图所给的数据,利用平均数、方差公式直接计算即可.本题考查用样本的平均数、方差来估计总体的平均数、方差,属基础题,熟记样本的平均数、方差公式是解答好本题的关键.13.已知函数f(x)=2sin(2x+)(x∈[-,a]),若f(x)的值域是[-1,2],则a的最大值是______ .【答案】解:x∈[-,a]⇒-≤2x+≤+2a,因为f(x)的值域是[-1,2],所以≤+2a≤,解得≤a≤,即a的最大值是.故答案为:.x∈[-,a]⇒-≤2x+≤+2a,依题意,利用正弦函数的单调性可知≤+2a≤,从而可得≤a≤.本题考查正弦函数的单调性与最值,由f(x)的值域是[-1,2]得到≤+2a≤是关键,属于中档题.14.已知点A(0,-3),B(4,0),点P是圆x2+y2-2y=0上任意一点,则△ABP面积的最小值是______ .【答案】【解析】解:直线AB的方程为+=0,即3x-4y-12=0,圆心(0,1)到直线的距离为d==,则点P到直线的距离的最小值为d-r=-1=,∴△ABP面积的最小值为×AB×=,故答案为:.用截距式求直线的方程,用点到直线的距离公式求得圆心到直线AB的距离,再将此距离减去半径,可得△ABP面积最小时AB边上的高,从而求得△ABP面积的最小值.本题主要考查用截距式求直线的方程,点到直线的距离公式的应用,属于中档题.15.函数f(x)的定义域为D,若存在闭区间[a,b]⊆D,使得满足:f(x)在[a,b]上是单调函数且在[a,b]上的值域为[2a,2b],则称区间[a,b]为函数f(x)的“和谐区间”.下列函数中存在“和谐区间”的是______①f(x)=x3(x∈R)②f(x)=(x∈R,x≠0)③f(x)=(x∈R)④f(x)=e x(x∈R)⑤f(x)=lg|x|+2(x∈R,x≠0)【答案】①②③⑤解:对于①,易知f(x)x3在[a,b]上单调递增,由题意设,解得当或或时,满足条件;对于②f(x)在(0,+∞)上单调递减,取区间[a,b]⊆(0,+∞),由题意设,所以只需即可,满足条件;对于③,f(x)在[-1,1]上单调递增,取区间[a,b]⊆[-1,1],由题意设,解得当或或时,满足条件;对于④,易知f(x)=e x递增,由题意设,即a,b是方程e x=2x的两个根,由于两函数没有交点,故对应方程无解,所以不满足条件;对于⑤f(x)在(0,+∞)上单调递增,取区间[a,b]⊆(0,+∞),由题意设,即a,b是方程lgx+2=2x的两个根,由于两函数有两个交点,故对应方程有两个根,即存在a,b满足条件.所以存在“和谐区间”的是①②③⑤.故答案为:①②③⑤.根据“和谐区间”的定义只需逐个验证函数是否满足两个条件即可.本题考查函数的单调性、函数的值域求解,考查函数与方程思想,考查学生的阅读理解能力及解决新问题的能力.三、解答题(本大题共6小题,共75.0分)16.设△ABC的内角A、B、C所对边的长分别为a,b,c,且有sin(2A+)+sin(A+C+)=1+2cos2A.(Ⅰ)求A、B的值;(Ⅱ)若a2+c2=b-ac+2,求a的值.【答案】解:(Ⅰ)由已知得:sin2A+cos2A+sin(B-)=2+cos2A,即sin2A+sin(B-)=2,∵sin2A≤1,sin(B-)≤1,∴sin2A=1,sin(B-)=1,∵0<2A<2π,-<B-<,∴2A=,B-=,则A=,B=;(Ⅱ)∵cos B=-,∴由余弦定理得:b2=a2+c2-2accos B=a2+c2+ac,∵a2+c2=b-ac+2,∴b2-b-2=0,解得:b=2(负值舍去),则由正弦定理得:a===.【解析】(Ⅰ)已知等式变形后,根据正弦函数值域确定出sin2A与sin(B-)的值,进而确定出A与B的度数;(Ⅱ)由cos B的值,利用余弦定理列出关系式,结合已知等式求出b的值,再由b,sin A,sin B的值,利用正弦定理即可求出a的值.此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.17.为丰富广大中学生的课余文化生活,拓展知识面,某市教育局举办了太空天文知识竞赛活动.题目均为选择题,共50题,每答对一题得2分,满分100分,每题的正确答案只有一个,现随机抽取了某中学50名学生本次竞赛的成绩,整理并制成如表:(Ⅰ)绘制出被抽查的学生成绩的频率分布直方图;(Ⅱ)若从成绩在[40,50)中随机选出1名学生,从成绩在[90,100]中随机选出2名学生,共3名学生召开座谈会,求[40,50)组中的学生A1和[90,100]组中的学生B1同时被选中的概率.【答案】解:(Ⅰ)各组的概率分别为0.04,0.06,0.28,0.30,0.24,0.08,所以图中各组的纵坐标分别为:0.004,0.006,0.028,0.030,0.024,0.008.(Ⅱ)记[40,50)中的学生为A1、A2,[90,100)中的学生为B1、B2、B3、B4,由题意可得,基本事件为:A1B1B2,A1B1B3,A1B1B4,A1B2B3,A1B2B4,A1B3B4,A2B1B2,A2B1B3,A2B1B4,A2B2B3,A2B2B4,A2B3B4共12个事件“A1B1同时被选中”发生有:A1B1B2,A1B1B3,A1B1B4三个,所以由古典概型知,P(A)==.【解析】(Ⅰ)由题意可知各组的概率即图中各组的纵坐标,即可绘制出被抽查的学生成绩的频率分布直方图;(Ⅱ)分别列举出所有可能的基本事件的个数和所求事件所含的基本事件的个数,用古典概型的概率求法公式即可得解.本题考查频率分布直方图和古典概型,要求会用频率分布直方图,掌握古典概型的求法,属简单题.18.如图,四棱锥P-ABCD的底面ABCD是直角梯形,AD∥BC,AB⊥BC,平面PAB⊥底面ABCD,PA=AD=AB=1,BC=2.(Ⅰ)证明:平面PBC⊥平面PDC;(Ⅱ)若∠PAB=120°,求三棱锥P-BCD的体积.【答案】解:(1)证明:取PC、BC的中点E、F,连结DF,DE,EF,由已知得:PD=CD,∴DE⊥PC.∵平面PAB⊥底面ABCD,∴BC⊥平面PAB,∴BC⊥PB,又PC、BC的中点E、F,∴EF∥PB,DF∥AB,∴BC⊥平面DEF,∴BC⊥DE,∵BC∩PC=C,∴DE⊥平面PBC,又DE⊂平面PDC,∴平面PBC⊥平面PDC.(2)延长BA,过P作PG⊥BA,垂足为G,则PG⊥平面ABCD,由已知条件可得PG=,∴三棱锥P-BCD的体积.【解析】(1)取PC、BC的中点E、F,连结DF,DE,EF,证明DE⊥平面PBC,根据面面垂直判定定理,即可证出平面PBC⊥平面PDC;(2)延长BA,过P作PG⊥BA,垂足为G,得到PG⊥平面ABCD,算出PG,即可算出三棱锥P-BCD的体积.本题给出特殊四棱锥,求证面面垂直并求锥体的体积.着重考查了线面垂直、面面垂直的判定与性质和锥体体积求法等知识,属于中档题.19.如图,A1(-2,0),A2(2,0)是椭圆C:+=1(a>b>0)的两个端点,M是椭圆上不同于A1,A2的点,且MA1与MA2的斜率之积为-,F(c,0)为椭圆C的右焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线MA1,MA2分别与直线x=相交于点P,Q,证明:FP⊥FQ.【答案】(Ⅰ)解:设M(x,y),(x≠±2),则=,=,∵=-,∴,化简,得,(x≠±2),∵M在椭圆上,且A1(-2,0),A2(2,0)也适合上述方程,∴椭圆C的方程为.(Ⅱ)证明:∵椭圆C的方程为,∴=4,F(1,0),设P(4,y P),Q(4,y Q),∵MA1与MA2的斜率之积为-,∴=,解得y P•y Q=-9,∴k FP•k FQ=,∴FP⊥FQ.【解析】(Ⅰ)设M(x,y),(x≠±2),由已知条件推导出,由此能求出椭圆C 的方程.(Ⅱ)由椭圆C的方程为,得=4,F(1,0),设P(4,y P),Q(4,y Q),由已知条件推导出y P•y Q=-9,由此能证明FP⊥FQ.本题考查椭圆方程的求法,考查两直线的证明,解题时要认真审题,注意直线斜率、椭圆性质、直线与椭圆的位置关系等知识点的合理运用.20.已知等比数列{a n}各项都是正数,a1=2,a n•a n+1=m•4n,n∈N*(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求证:<4.【答案】解:(Ⅰ)由①得,n≥2时,,②①,得,得q2=4,又q>0,②∴q=2,又a1=2,∴a n=2n,n∈N*.(Ⅱ)===,∴••…•=••…•=,令,①则②①-②,得-=-<1,∴S<2,∴••…•=2S<22=4.【解析】(Ⅰ)由,得到当n≥2时,,两式相除,计算可得公比,再进一步算通项公式.(Ⅱ)由(Ⅰ),计算••…•=••…•=,令,利用错位相乘法计算S得表达式,得到S<2,从而使不等式得到证明.数列是高考题中的常见题型,本题的考查涉及到迭代的方法和错位相乘法,这两种方法是数列中经常考查的方法,除此之外,在数列求和时还有倒序相加法,分组求和法,裂项相消法,构造等比、等差数列法等等.21.已知函数f(x)=ax2+bx+c+lnx(a≠0),曲线y=f(x)在点(1,f(1))处的切线方程是y=x-1.(Ⅰ)试用a表示b、c;(Ⅱ)讨论f(x)的定义域上的单调性.【答案】解:(Ⅰ)∵f′(x)=2ax+b+,∴f′(1)=2a+b+1,又曲线y=f(x)在点(1,f (1))处的切线方程是y=x-1,∴2a+b+1=1,f(1)=a+b+c=0,∴b=-2a,c=a (Ⅱ)由(Ⅰ)可知f′(x)=2ax-2a+=(x>0),①当a<0时,1->0,令f′(x)=0得<,>,∴当,时,′>,f(x)单调递增,当,∞时,′<,f(x)单调递减;②当0<a≤2时,1-≥0,f′(x)≥0,f(x)在(0,+∞)上单调递增;③当a>2时,1-<,令f′(x)=0得>,,当x,时,′>,f(x)单调递增,当x,时,f′(x)<0,f(x)单调递减,当x∈,∞时,f′(x)>0,f(x)单调递增.【解析】第(1)问较简单,先将(1,f(1))代入切线方程求出f(1),再将(1,f(1))代入f(x)得到一个关于a,b,c的方程,再利用f′(1)=1得到第二个关于a,b,c的方程.联立即可用a表示b,c.第(2)问应该先求定义域,然后求导,将讨论单调性的问题转化为一个讨论不等式的问题,一般是将不等式化归为一元二次不等式的问题,然后结合二次函数的图象对不等式的解进行讨论.研究函数的单调性,本质上就是求解不等式的问题,一般的思路是求定义域、求导数、化简成一元二次不等式、解不等式.最后一个环节往往是借助于不等式所对应的二次函数图象分类讨论解决问题.这是一个高考的重点,也是热点问题.。
2014年高考试题:文科数学(安徽卷)

2014年普通高等学校招生全国统一考试(安徽卷)数学(文科)试题第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数321ii i++=( ) A.i - B. i C. 1- D. 1命题“0||,2≥+∈∀x x R x ”的否定是( )0||,2<+∈∀x x R x B. 0||,2≤+∈∀x x R x C. 0||,2000<+∈∃x x R x D. 0||,2000≥+∈∃x x R x3.抛物线241x y =的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x 【答案】A 【解析】试题分析:题中抛物线的标准形式为24x y =,则其准线方程为1y =-,故先A.考点:1.抛物线的准线方程.4.如图所示,程序框图(算法流程图)的输出结果是( ) A.34 B.55 C.78 D.895.设 1.1 3.13log 7,2,0.8a b c ===则( )A.c a b <<B.b a c <<C.a b c <<D.b c a <<6.过点(3,1)P -的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )A.]60π,(B.]30π,(C.]60[π,D.]30[π,【答案】D 【解析】试题分析:如下图,要使过点P 的直线l 与圆有公共点,则直线l 在PA 与PB 之间,因为1sin 2α=,所以6πα=,则23AOB πα∠==,所以直线l 的倾斜角的取值范围为]30[π,.故选D.考点:1.直线的倾斜角;2.直线与圆的学科网相交问题.7.若将函数x x x f 2cos 2sin )(+=的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是( ) A.8π B.4π C.83π D.43π8.一个多面体的三视图如图所示,则多面体的体积是( ) A.233B.476C.6D.79.若函数()12f x x x a =+++的最小值3,则实数a 的值为( ) A.5或8 B.1-或5 C. 1-或4- D.4-或8 【答案】D 【解析】10.设,a b 为非零向量,2b a =,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为( )A.23π B.3π C.6π D.0第I I 卷(非选择题 共100分)二.选择题:本大题共5小题,每小题5分,共25分.11.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________.12.如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩表示的平面区域的面积为________.【答案】4若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛f f .15.若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号) ①直线0:=y l 在点()0,0P 处“切过”曲线C :3y x = ②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y ③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =三.解答题:本大题共6小题,共75分.解答应写文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内 16.(本小题满分12分)设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且3,1b c ==,ABC ∆的面积为2,求co s A 与a 的值.17、(本小题满分12分)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(Ⅰ)应收集多少位女生样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”. 附:22()()()()()n ad bc K a b c d a c b d -=++++ 20()P K k ≥0.10 0.05 0.0100.005 0k2.7063.8416.6357.879【答案】(1)90;(2)0.75;(3)有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”. 【解析】由频率分布直方图得12(0.1000.025)0.75-⨯+=,该校学生每周平均体育运动时间超过4个小时的概率为0.75.由(2)知,300位学生中有3000.75225⨯=人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的.所以每周平均体育运动时间与性别列联表如下: 每周平均体育运动时间与性别列联表男生女生 总计 每周平均体育运动时间不超过4小时453075每周平均体育运动时间超过4小时 165 60225总计 21090300结合列联表可算得2300(456030165)1004.762 3.841752252109021K ⨯⨯-⨯==≈>⨯⨯⨯.有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”. 考点:1.频率分布直方图的应用;2.列联表的画法及2K 的求解.18.(本小题满分12分)数列{}n a 满足111,(1)(1),n n a na n a n n n N ++==+++∈证明:数列{}n an是等差数列;设3n n n b a =⋅,求数列{}n b 的前n 项和n S12123333n n n S n +-=+++-⋅113(13)(12)333132n n n n n ++⋅--⋅-=-⋅=-. 所以1(21)334n n n S +-⋅+=.考点:1.等差数列的证明;2.错位相减法求和. 19(本题满分13分)如图,四棱锥ABCD P -的底面边长为8的正方形,四条侧棱长均为172.点H F E G ,,,分别是棱PC CD AB PB ,,,上共面的四点,平面⊥GEFH 平面ABCD ,//BC 平面GEFH . 证明:;//EF GH若2=EB ,求四边形GEFH 的面积.再由PO ∥GK 得12GK PO =,即G 是PB 的中点,且142GH BC ==.由已知可得2242,68326OB PO PB OB ==-=-=,所以3GK =,故四边形G E F H 的面积4831822GH EF S GK ++=⋅=⨯=. 考点:1.线面平行的性质定理;2.平行的传递性;3.四边形面积的求解. 20(本小题满分13分)设函数23()1(1)f x a x x x =++--,其中0a > 讨论()f x 在其定义域上的单调性;当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.因为0a >,所以120,0x x <>.4a ≥时,21x ≥,由(1)知,()f x 在[0,1]上单调递增,所以()f x 在0x =和1x =处分别取得最小值和最大值.②当04a <<时,21x <.由(1)知,()f x 在2[0,]x 上单调递增,在2[,1]x 上单调递减,因此()f x 在21433ax x -++==处取得最大值.又(0)1,(1)f f a ==,所以当01a <<时,()f x 在1x =处取得最小值;当1a =时,()f x 在0x =和1x =处同时学科网取得最小只;当14a <<时,()f x 在0x =处取得最小值. 考点:1.含参函数的单调性;2.含参函数的最值求解. 21(本小题满分13分)设1F ,2F 分别是椭圆E :22221(0)x ya b a b+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =若2||4,AB ABF =∆的周长为16,求2||AF ; 若23cos 5AF B ∠=,求椭圆E 的离心率.解.。
2014年安徽省高考数学试卷(文科)学生版

2014 年安徽省高考数学试卷(文科)一、选择题(共本大题 10 小题,每题5 分,共 50 分)1.(5 分)(2014?安徽)设 i 是虚数单位,复数 i 3+ ()=A .﹣ iB .iC .﹣ 1D .12.(5 分)(2014?安徽)命题 “? x ∈ R ,| x|+ x 2≥ 0”的否认是()A .? x ∈R ,| x|+ x 2<0B .? x ∈ R , | x|+ x 2≤0C .? x 0∈ R , | x 0|+ x 02<0D .? x 0 ∈R ,| x 0|+ x 02≥03.(5 分)(2014?安徽)抛物线 y= x 2 的准线方程是()A .y=﹣ 1B .y=﹣2C .x=﹣1D .x=﹣24.( 5 分)(2014?安徽)如下图,程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .895 .( 5 分)( 2014? 安徽)设 3.3, c=0.81.1,则()a=log 37,b=2A .b <a <cB .c < a < bC .c <b <aD .a < c <b6.( 5分)( 安徽)过点 (﹣ ,﹣ )的直线 2+y 2 =1有公共点,2014?P 1 l 与圆 x则直线 l 的倾斜角的取值范围是( ).(,]B .(0, ]C .[ 0, ]D .[ 0, ]A 07.( 5 分)( 2014?安徽)若将函数 f( x)=sin2x+cos2x 的象向右平移φ个位,所得象对于 y 称,φ的最小正是()A.B.C.D.8.(5 分)(2014?安徽)一个多面体的三如所示,多面体的体()A.B.C.6D.79.(5 分)(2014?安徽)若函数 f(x)=| x+1|+| 2x+a| 的最小 3,数 a 的()A.5或 8B.1 或 5C. 1 或4D.4 或 810.(5分)(安徽),非零向量, | | =2|| ,两向量,,,2014?和,,,,均由 2个和 2个摆列而成,若?+ ? +?+ ?全部可能取中的最小 4|| 2,与的角()A.B.C.D.0二、填空(本大共 5 小,每小 5 分,共 25 分).(分)(安徽)()+log3 +log3=.11 52014?12.( 5 分)( 2014?安徽)如,在等腰直角三角形ABC中,斜 BC=2,点A 作BC的垂,垂足1,点A1作 AC 的垂,垂足 A2,点 A2作 A1A C的垂,垂足A3⋯,依此推,BA=a1,AA1=a2,A1A2=a3,⋯,A5A6=a7,则 a7=.13 .( 5 分)( 2014?安徽)不等式组表示的平面地区的面积为.14.( 5 分)(2014?安徽)若函数f(x)(x∈ R)是周期为 4 的奇函数,且在 [ 0,2]上的分析式为(),,则 f()+f()=.f x =,<15.( 5 分)(2014?安徽)若直线 l 与曲线 C 知足以下两个条件:( i)直线 l 在点 P( x0,y0)处与曲线 C 相切;(ii )曲线 C 在点 P 邻近位于直线 l 的双侧,则称直线l 在点 P 处“切过”曲线 C.以下命题正确的选项是(写出全部正确命题的编).①直线 l:y=0 在点 P(0,0)处“切过”曲线 C:y=x3②直线 l:x=﹣ 1 在点 P(﹣ 1,0)处“切过”曲线 C:y=(x+1)2③直线 l:y=x 在点 P(0,0)处“切过”曲线 C:y=sinx④直线 l:y=x 在点 P(0,0)处“切过”曲线 C:y=tanx⑤直线 l:y=x﹣1 在点 P(1,0)处“切过”曲线 C:y=lnx.三、解答题(本大题共 6 小题,共 75 分)16.(12 分)(2014?安徽)设△ ABC的内角 A,B,C 所对边的长分别为a,b,c,且 b=3,c=1,△ ABC的面积为,求cosA与a的值.17.( 12 分)(2014?安徽)某高校共有学生15000 人,此中男生 10500 人,女生4500 人.为检查该校学生每周均匀体育运动时间的状况,采纳分层抽样的方法,采集 300 位学生每周均匀体育运动时间的样本数据(单位:小时).(1)应采集多少位女生的样本数据?(2)依据这 300 个样本数据,获得学生每周均匀体育运动时间的频次散布直方图(如下图),此中样本数据的分组区间为:[ 0,2] ,(2,4] ,( 4,6] ,( 6,8] ,(8,10] ,(10,12] .预计该校学生每周均匀体育运动时间超出 4 小时的概率.( 3)在样本数据中,有 60 位女生的每周均匀体育运动时间超出 4 小时,请达成每周均匀体育运动时间与性别列联表,并判断能否有95%的掌握以为“该校学生的每周均匀体育运动时间与性别相关”.P(K2≥k0)0.100.050.0100.005k0 2.706 3.841 6.6357.879附: K2=.18.( 12 分)(2014?安徽)数列 { a n} 知足 a1=1,na n+1=( n+1)a n+n( n+1), n∈N*.(Ⅰ)证明:数列 {} 是等差数列;(Ⅱ)设 b n=3n?,求数列{ b n}的前n项和S n.19.( 13 分)( 2014?安徽)如图,四棱锥P﹣ABCD的底面是边长为 8 的正方形,四条侧棱长均为 2 ,点 G, E, F,H 分别是棱 PB,AB, CD, PC上共面的四点,平面 GEFH⊥平面 ABCD,BC∥平面 GEFH.(Ⅰ)证明: GH∥EF;(Ⅱ)若 EB=2,求四边形 GEFH的面积.20.( 13 分)( 2014?安徽)设函数 f( x) =1+(1+a)x﹣x2﹣x3,此中 a> 0.(Ⅰ)议论 f (x)在其定义域上的单一性;(Ⅱ)当 x∈ [ 0,1] 时,求 f( x)获得最大值和最小值时的x 的值.21.( 13 分)( 2014?安徽)设F1,F2分别是椭圆E:+ =1(a>b>0)的左、右焦点,过点 F1的直线交椭圆 E 于 A,B 两点, | AF1 | =3| F1B| .(Ⅰ)若 | AB| =4,△ ABF2的周长为 16,求 | AF2| ;(Ⅱ)若 cos∠AF2B= ,求椭圆 E 的离心率.。
2014年安徽省高考数学试卷(文科)教师版

2014 年安徽省高考数学试卷(文科)一、选择题(共本大题10 小题,每题 5 分,共 50 分)1.(5 分)(2014?安徽)设 i 是虚数单位,复数i3+()=A.﹣ i B.i C.﹣ 1D.1【剖析】由条件利用两个复数代数形式的乘除法,虚数单位i 的幂运算性质,计算求得结果.【解答】解:复数i3+=﹣ i+=﹣i+=1,应选: D.2.(5 分)(2014?安徽)命题“? x∈ R,| x|+ x2≥ 0”的否认是()A.? x∈R,| x|+ x2<0B.? x∈ R, | x|+ x2≤0C.? x0∈ R, | x0|+ x02<0D.? x0∈R,| x0|+ x02≥0【剖析】依据全称命题的否认是特称命题即可获得结论.【解答】解:依据全称命题的否认是特称命题,则命题“? x∈R,| x|+ x2≥0”的否定? x0∈R,| x0|+ x02< 0,应选: C.3.(5 分)(2014?安徽)抛物线 y= x2的准线方程是()A.y=﹣ 1B.y=﹣2C.x=﹣1D.x=﹣2【剖析】先化为抛物线的标准方程获得焦点在y 轴上以及 2p=4,再直接代入即可求出其准线方程.【解答】解:抛物线 y=x 2的标准方程为 x2,焦点在y轴上,,=4y2p=4∴ =1,∴准线方程 y=﹣﹣.= 1应选: A.4.( 5 分)(2014?安徽)以下图,程序框图(算法流程图)的输出结果是()A.34B.55C.78D.89【剖析】写出前几次循环的结果,不知足判断框中的条件,退出循环,输出z 的值.【解答】解:第一次循环得z=2,x=1, y=2;第二次循环得 z=3, x=2,y=3;第三次循环得 z=5, x=3,y=5;第四次循环得 z=8, x=5,y=8;第五次循环得 z=13,x=8,y=13;第六次循环得 z=21,x=13,y=21;第七次循环得 z=34,x=21,y=34;第八次循环得 z=55,x=34,y=55;退出循环,输出 55,应选: B.5.(5 分)(2014?安徽)设 a=log37,b=23.3, c=0.81.1,则(A.b<a<c B.c< a< b C.c<b<a)D.a< c<b【剖析】分别议论 a,b,c 的取值范围,即可比较大小.【解答】解: 1<log37<2,b=23.3> 2, c=0.81.1<1,则 c<a< b,应选: B..(分)(安徽)过点P(﹣,﹣)的直线2+y2=1有公共点,6 52014?1l 与圆 x则直线 l 的倾斜角的取值范围是().(,]B.(0, ]C.[ 0, ]D.[ 0, ]A 0【剖析】用点斜式设出直线方程,依据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,由此求得斜率k 的范围,可得倾斜角的范围.【解答】解:由题意可得点P(﹣,﹣1)在圆x2+y2=1 的外面,故要求的直线的斜率必定存在,设为k,则直线方程为y+1=k(x+),即kx﹣y+k﹣1=0.≤依据直线和圆有交点、圆心到直线的距离小于或等于半径可得1,即 3k2﹣2 k+1≤ k2+1,解得 0≤ k≤,故直线l的倾斜角的取值范围是[ 0,],应选: D.7.( 5 分)( 2014?安徽)若将函数 f( x)=sin2x+cos2x 的图象向右平移φ个单位,所得图象对于 y 轴对称,则φ的最小正当是()A.B.C.D.【剖析】利用两角和的正弦函数对分析式进行化简,由所获得的图象对于y 轴对称,依据对称轴方程求出φ的最小值.【解答】解:函数f(x)=sin2x+cos2x=sin( 2x+)的图象向右平移φ的单位,所得图象是函数y=sin(2x+ ﹣2φ),图象对于y 轴对称,可得﹣ 2φ=kπ+ ,即φ=﹣,当 k=﹣1 时,φ的最小正当是.应选: C.8.(5 分)(2014?安徽)一个多面体的三视图以下图,则该多面体的体积为()A.B.C.6D.7【剖析】判断几何体的形状,联合三视图的数据,求出几何体的体积.【解答】解:由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为 2,正三棱锥侧棱相互垂直,侧棱长为1,故几何体的体积为: V 正方体﹣2V 棱锥侧=.应选: A.9.(5 分)(2014?安徽)若函数 f(x)=| x+1|+| 2x+a| 的最小值为 3,则实数 a 的值为()A.5 或 8B.﹣1 或 5C.﹣ 1 或﹣4【剖析】分类议论,利用 f(x)=| x+1|+| 2x+a| 的最小值为出实数 a 的值.D.﹣4 或 83,成立方程,即可求【解答】解:<﹣ 1 时,x<﹣,f(x)=﹣x﹣1﹣2x﹣a=﹣3x﹣a﹣1>﹣1;﹣≤ x≤﹣ 1,f( x)=﹣x﹣1+2x+a=x+a﹣1≥ ﹣1;x>﹣ 1,f (x)=x+1+2x+a=3x+a+1> a﹣ 2,∴ ﹣ 1=3 或 a﹣ 2=3,∴a=8 或 a=5,a=5 时,﹣1<a﹣2,故舍去;≥﹣ 1 时, x<﹣ 1, f(x)=﹣x﹣1﹣2x﹣ a=﹣3x﹣ a﹣ 1> 2﹣ a;﹣1≤ x≤﹣,f( x)=x+1﹣2x﹣a=﹣x﹣a+1≥﹣ +1;x>﹣,f(x)=x+1+2x+a=3x+a+1>﹣+1,∴2﹣ a=3 或﹣ +1=3,∴a=﹣1 或 a=﹣4,a=﹣1 时,﹣ +1<2﹣a,故舍去;综上, a=﹣ 4 或 8.应选: D.10.(5 分)( 2014?安徽)设,为非零向量, || =2|| ,两组向量,,,和,,,,均由 2个和 2个摆列而成,若?+ ? +?+ ?全部可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.0【剖析】两组向量,,,和,,,,均由 2个和 2个摆列而成,联合其数目积组合状况,即可得出结论.【解答】解:由题意,设与的夹角为α,分类议论可得①?+?+?+?=?+?+?+?=10|| 2,不知足②?+?+?+?=? + ?+?+?=5|| 2 +4| | 2cos α,不知足;③?+?+?+?=4? =8|| 2cos α =4| | 2,知足题意,此时 cosα=∴与的夹角为.应选: B.二、填空(本大共 5 小,每小 5 分,共 25 分)11.( 5 分)(2014?安徽)()+log3 +log3 =.【剖析】直接利用数运算法以及有理指数的运算法化求解即可.【解答】解:()+log3 +log3 = +log3 5 log34+log34 log35=.故答案:.12.( 5 分)( 2014?安徽)如,在等腰直角三角形ABC中,斜 BC=2,点A 作 BC的垂,垂足 A1,点 A1作 AC 的垂,垂足 A2,点 A2作 A1C的垂,垂足A3⋯,依此推,BA=a1,AA1=a2,A1A2=a3,⋯,A5A6=a7,a7=.【剖析】依据条件确立数列 { a n } 是等比数列,即可获得.【解答】解:∵等腰直角三角形ABC中,斜 BC=2,∴ sin45 °=,即=,同理=,=,由推理可得 { a n} 是公比 q=的等比数列,首a1=2,a7== ,故答案:.13.(5 分)( 2014?安徽)不等式表示的平面地区的面4.【剖析】由不等式作出平面地区三角形ABC 及其内部,立方程求出B的坐标,由两点间的距离公式求出 BC的长度,由点到直线的距离公式求出 A 到BC边所在直线的距离,代入三角形面积公式得答案.【解答】解:由不等式组作平面地区如图,由图可知 A(2,0), C( 0, 2),联立,解得: B(8,﹣ 2).∴|BC|=.点 A 到直线 x+2y﹣4=0 的距离为 d=.∴.故答案为: 4.14.( 5 分)(2014?安徽)若函数f(x)(x∈ R)是周期为 4 的奇函数,且在 [ 0,2] 上的分析式为,,则 f() +f()=.f(x)=,<【剖析】经过函数的奇偶性以及函数的周期性,化简所求表达式,经过分段函数求解即可.【解答】解:函数 f(x)(x∈R)是周期为 4 的奇函数,且在 [ 0,2] 上的分析式,为 f(x)=,,<则 f()+f()=f( 8﹣) +f (8﹣)=f(﹣)+f(﹣)=﹣f()﹣ f()===.故答案为:.15.( 5 分)(2014?安徽)若直线 l 与曲线 C 知足以下两个条件:(i)直线 l 在点 P( x0,y0)处与曲线 C 相切;(ii )曲线 C 在点 P 邻近位于直线l 的双侧,则称直线 l 在点 P 处“切过”曲线 C.以下命题正确的选项是①③④(写出全部正确命题的编).①直线 l:y=0 在点 P(0,0)处“切过”曲线 C:y=x3②直线 l:x=﹣ 1 在点 P(﹣ 1,0)处“切过”曲线 C:y=(x+1)2③直线 l:y=x 在点 P(0,0)处“切过”曲线 C:y=sinx④直线 l:y=x 在点 P(0,0)处“切过”曲线 C:y=tanx⑤直线 l:y=x﹣1 在点 P(1,0)处“切过”曲线 C:y=lnx.【剖析】分别求出每一个命题中曲线 C 的导数,获得曲线在点 P 出的导数值,求出曲线在点 P 处的切线方程,再由曲线在点P 双侧的函数值与对应直线上点的值的大小判断能否知足( ii),则正确的选项可求.32,直线是过点(,)【解答】解:对于①,由 y=x ,得 y′=3x,则 y′|y=0x=0=0P 0 0的曲线 C 的切线,又当 x>0 时 y> 0,当 x<0 时 y< 0,知足曲线 C 在 P( 0, 0)邻近位于直线y=0双侧,∴命题①正确;对于②,由 y=( x+1)2,得 y′=2(x+1),则 y′|x=﹣1=0,而直线 l:x=﹣ 1 的斜率不存在,在点P(﹣ 1,0)处不与曲线 C 相切,∴命题②错误;对于③,由 y=sinx,得 y′=cosx,则 y′|x=0=1,直线 y=x 是过点 P( 0,0)的曲线的切线,又 x∈,时 x< sinx,x∈,时>sinx ,知足曲线C在(,)邻近x P 0 0位于直线 y=x 双侧,∴命题③正确;对于④,由 y=tanx,得,则y′|x=0=1,直线y=x是过点P(0,0)的曲线的切线,又 x∈,时tanx<x,x∈,时tanx>x,知足曲线C在P(0,0)邻近位于直线 y=x 双侧,∴命题④正确;对于⑤,由 y=lnx,得,则y′|,曲线在x=1=1P(1,0)处的切线为y=x﹣ 1,设 g(x) =x﹣1﹣lnx,得,当x∈(0,1)时,g′(x)<0,当 x∈( 1,+∞)时, g′(x)> 0.∴g( x)在( 0,+∞)上有极小值也是最小值,为 g(1)=0.∴y=x﹣ 1 恒在 y=lnx 的上方,不知足曲线 C 在点 P 邻近位于直线 l 的双侧,命题⑤错误.故答案为:①③④.三、解答题(本大题共 6 小题,共 75 分)16.(12 分)(2014?安徽)设△ ABC的内角 A,B,C 所对边的长分别为a,b,c,且 b=3,c=1,△ ABC的面积为,求cosA与a的值.【剖析】利用三角形的面积公式,求出sinA=,利用平方关系,求出利用余弦定理求出 a 的值.【解答】解:∵ b=3, c=1,△ ABC的面积为,∴=,cosA,∴ sinA=,又∵ sin2A+cos2A=1∴ cosA=±,由余弦定理可得a==2或2.17.( 12 分)(2014?安徽)某高校共有学生15000 人,此中男生10500 人,女生4500 人.为检查该校学生每周均匀体育运动时间的状况,采纳分层抽样的方法,采集 300 位学生每周均匀体育运动时间的样本数据(单位:小时).(1)应采集多少位女生的样本数据?(2)依据这 300 个样本数据,获得学生每周均匀体育运动时间的频次散布直方图(以下图),此中样本数据的分组区间为: [ 0,2] ,(2,4] ,( 4,6] ,( 6,8] ,(8,10] ,(10,12] .预计该校学生每周均匀体育运动时间超出 4 小时的概率.( 3)在样本数据中,有 60 位女生的每周均匀体育运动时间超出 4 小时,请达成每周均匀体育运动时间与性别列联表,并判断能否有95%的掌握以为“该校学生的每周均匀体育运动时间与性别相关”.P(K2≥k0)0.100.050.0100.005k0 2.706 3.841 6.6357.879附: K2=.【剖析】(1)依据频次散布直方图进行求解即可.(2)由频次散布直方图先求出对应的频次,即可预计对应的概率.(3)利用独立性查验进行求解即可【解答】解:(1)300×,所以应采集90位女生的样本数据.=90( 2)由频次散布直方图得1﹣ 2×( 0.100+0.025)=0.75,所以该校学生每周均匀体育运动时间超出 4 小时的概率的预计值为0.75.(3)由( 2)知, 300 位学生中有 300×0.75=225 人的每周均匀体育运动时间超出 4 小时, 75 人的每周均匀体育运动时间不超出 4 小时,又由于样本数据中有210 份是对于男生的, 90 份是对于女生的,所以每周均匀体育运动时间与性别列联表以下:每周均匀体育运动时间与性别列联表男生女生总计每周均匀体育运动时间453075不超出 4 小时每周均匀体育运动时间16560225超出 4小时总计21090300联合列联表可算得 K2== ≈4.762>3.841所以,有 95%的掌握以为“该校学生的每周均匀体育运动时间与性别相关”.18.( 12 分)(2014?安徽)数列 { a n} 知足 a1=1,na n+1=( n+1)a n+n( n+1), n∈N*.(Ⅰ)证明:数列 {} 是等差数列;(Ⅱ)设 b n=3n?,求数列 { b n } 的前 n 项和 S n.【剖析】(Ⅰ)将 na n+1()n+n( n+1)的两边同除以 n( n+1)得,由= n+1 a等差数列的定义得证.(Ⅱ)由(Ⅰ)求出b n=3n ?=n?3n,利用错位相减求出数列{ b n } 的前 n 项和S n.【解答】证明(Ⅰ)∵ na n+1=(n+1)a n+n(n+1),∴,∴,∴数列 { } 是以 1 为首项,以 1 为公差的等差数列;(Ⅱ)由(Ⅰ)知,,b n=3n?=n?3n,∴n﹣ 1n①?3 +n?3?3n+n?3n+1②①﹣②得3n﹣n?3n+1==∴19.( 13 分)( 2014?安徽)如图,四棱锥P﹣ABCD的底面是边长为 8 的正方形,四条侧棱长均为 2 ,点 G, E, F,H 分别是棱 PB,AB, CD, PC上共面的四点,平面 GEFH⊥平面 ABCD,BC∥平面 GEFH.(Ⅰ)证明: GH∥EF;(Ⅱ)若 EB=2,求四边形 GEFH的面积.【剖析】(Ⅰ)证明 GH∥EF,只要证明 EF∥平面 PBC,只要证明 BC∥ EF,利用BC∥平面 GEFH即可;(Ⅱ)求出四边形GEFH的上底、下底及高,即可求出头积.【解答】(Ⅰ)证明:∵ BC∥平面 GEFH,平面 GEFH∩平面 ABCD=EF,BC? 平面ABCD,∴BC∥EF,∵EF?平面 PBC,BC? 平面 PBC,∴ EF∥平面 PBC,∵平面 EFGH∩平面 PBC=GH,(Ⅱ)解:连结AC, BD交于点 O,BD 交 EF于点 K,连结 OP, GK.∵PA=PC,O 为AC中点,∴ PO⊥AC,同理可得 PO⊥ BD,又∵ BD∩ AC=O,AC? 底面 ABCD,BD? 底面 ABCD,∴PO⊥底面 ABCD,又∵平面 GEFH⊥平面 ABCD,PO?平面 GEFH,∴PO∥平面 GEFH,∵平面 PBD∩平面 GEFH=GK,∴PO∥GK,且 GK⊥底面 ABCD∴GK是梯形 GEFH的高∵AB=8, EB=2,∴,∴ KB=,即 K为 OB中点,又∵ PO∥ GK,∴ GK= ,即G 为PB中点,且GH=,PO由已知可得 OB=4,PO==,=6∴ GK=3,故四边形 GEFH的面积 S===18.20.( 13 分)( 2014?安徽)设函数 f( x) =1+(1+a)x﹣x2﹣x3,此中 a> 0.(Ⅰ)议论 f (x)在其定义域上的单一性;x 的值.(Ⅱ)当 x∈ [ 0,1] 时,求 f( x)获得最大值和最小值时的【剖析】(Ⅰ)利用导数判断函数的单一性即可;(Ⅱ)利用(Ⅰ)的结论,议论两根与1 的大小关系,判断函数在 [ 0,1] 时的单一性,得出取最值时的 x 的取值.【解答】解:(Ⅰ) f(x)的定义域为(﹣∞, +∞), f (′ x) =1+a﹣ 2x﹣3x2,由 f ′(x) =0,得x1=, x2=,x1<x2,∴由f ′(x)< 0 得x<, x>;由 f ′(x)> 0 得<x<;故 f( x)在(﹣∞,)和(,+∞)单一递减,在(,)上单一递加;(Ⅱ)∵ a>0,∴ x1<0,x2>0,∵ x∈ [ 0,1] ,当时,即a≥ 4①当 a≥4 时, x2≥1,由(Ⅰ)知, f(x)在 [ 0,1] 上单一递加,∴ f(x)在 x=0和 x=1 处罚别获得最小值和最大值.f( x)在 [ 0, x2] 单一递加,在[ x2,1] 上②当 0<a<4 时, x2<1,由(Ⅰ)知,单一递减,f(0)=1,f( 1) =a,所以 f (x)在 x=x2=处获得最大值,又∴当 0<a<1 时, f(x)在 x=1 处获得最小值;当 a=1 时, f( x)在 x=0 和 x=1 处获得最小值;当 1<a<4 时, f(x)在 x=0 处获得最小值.1,F2 分别是椭圆E:+(>>)的左、21.( 13 分)( 2014?安徽)设 F=1 a b0右焦点,过点 F1的直线交椭圆 E 于 A,B 两点, | AF1 | =3| F1.B|(Ⅰ)若 | AB| =4,△ ABF2的周长为 16,求 | AF2| ;(Ⅱ)若 cos∠AF2B= ,求椭圆 E 的离心率.【剖析】(Ⅰ)利用 | AB| =4,△ ABF2的周长为 16,| AF1| =3| F1B| ,联合椭圆的定义,即可求 | AF2| ;(Ⅱ)设 | F1B| =k(k>0),则 | AF1| =3k,| AB| =4k,由 cos∠AF2B= ,利用余弦定理,可得 a=3k,进而△ AF1F2是等腰直角三角形,即可求椭圆 E 的离心率.【解答】解:(Ⅰ)∵ | AB| =4,| AF1| =3| F1B| ,∴| AF1| =3,| F1B| =1,∵△ ABF 的周长为 16,2∴4a=16,∴| AF1|+| AF2| =2a=8,∴| AF2| =5;(Ⅱ)设 | F1B| =k(k>0),则 | AF1| =3k,| AB| =4k,∴| AF2| =2a﹣3k, | BF2| =2a﹣k∵cos∠ AF2B= ,在△ ABF2中,由余弦定理得, | AB| 2=| AF2| 2+| BF2 | 2﹣2| AF2| ?| BF2|cos∠AF2B,∴( 4k)2=(2a﹣ 3k)2+(2a﹣k)2﹣( 2a﹣3k)( 2a﹣k),化简可得( a+k)( a﹣ 3k)=0,而 a+k> 0,故 a=3k,∴| AF2| =| AF1| =3k, | BF2| =5k,∴| BF2| 2=| AF2| 2+| AB| 2,∴AF1⊥ AF2,∴△ AF1F2是等腰直角三角形,∴c= a,∴e= = .。
2014年安徽数学(文科)真题

2014年普通高等学校招生全国统一考试(安徽卷)数学(文)第I 卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数=++ii i 123( ) A. i - B. i C. 1- D. ABCD2. 命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R xD. 0||,2000≥+∈∃x x R x3.抛物线241x y =的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x4.如图所示,程序框图(算法流程图)的输出结果是( )A.34B.55C.78D.895.设,8.0,2,7log 3.33===c b a 则( )A.c a b <<B.b a c <<C.a b c <<D.b c a <<6. 学科网过点P )(1,3--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( ) A.]60π,( B.]30π,( C.]60[π, D.]30[π, 7.若将函数x x x f 2cos 2sin )(+=的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是( )A.8πB.4πC.83πD.43π 8.一个多面体的三视图如图所示,则多面体的体积是( ) A.233 B.476 C.6 D.79.若函数()12f x x x a =+++的最小值3,则实数a 的值为( )A.5或8B.1-或5C. 1-或4-D.4-或810.设,a b 为非零向量,2b a =,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为( )A.23π B.3π C.6π D.0 第I I 卷(非选择题 共100分)二.选择题:本大题共5小题,每小题5分,共25分.11.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 12.如图,学科网在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.13.不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩表示的平面区域的面积为________.(13)若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛f f (14)若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线0:=y l 在点()0,0P 处“切过”曲线C :2x y = ②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin =④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan =⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =三.解答题:本大题共6小题,共75分.解答应写文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内16.(本小题满分12分)学科网设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且3,1b c ==,ABC ∆的面积为2,求co s A 与a 的值.17、(本小题满分12分)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(Ⅰ)应收集多少位女生样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:18.(本小题满分12分)数列{}n a 满足111,(1)(1),n n a na n a n n n N ++==+++∈(1) 证明:数列{}n a n是等差数列; (2) 设3n n n b a =⋅,求数列{}n b 的前n 项和n S19(本题满分13分)如图,学科网四棱锥ABCD P -的底面边长为8的正方形,四条侧棱长均为172.点H F E G ,,,分别是棱PC CD AB PB ,,,上共面的四点,平面⊥GEFH 平面ABCD ,//BC 平面GEFH .(1)证明:;//EF GH(2)若2=EB ,求四边形GEFH 的面积.20(本小题满分13分)设函数23()1(1)f x a x x x =++--,其中0a >(1) 讨论()f x 在其定义域上的单调性;(2) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.21(本小题满分13分)设1F ,2F 分别是椭圆E :22221(0)x y a b a b +=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =(1) 若2||4,AB ABF =∆的周长为16,求2||AF ;(2) 若23cos 5AF B ∠=,求椭圆E 的离心率.。
2014届安徽省六校教育研究会高三素质测试文科数学试卷(带解析)
2014届安徽省六校教育研究会高三素质测试文科数学试卷(带解析) 一、选择题1.已知集合{}{}2lg 0,4M x x N x x =>=≤,则M N = ( ) A 、(1,2) B 、[1,2) C 、(1,2] D 、[1,2]2.设x y 、满足不等式组10102x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则22x y +的最小值为 ( )A 、1B 、5 CD 、123.某正三棱柱的三视图如图所示,其中正视图是边长为2的正方形,则该正三棱柱的表面积为( )A、6+ B、12+、12+、24+ 4.设数列{}n a 的前n 项和为n S ,若3122n n S a =-,则n a = ( ) A 、2n B 、3n C 、12n - D 、13n -5.函数3()24xf x x =+-的零点所在区间为( )A 、(1,0)-B 、(0,1)C 、(1,2)D 、(2,3)6.与圆222212:26260,:4240C x y x y C x y x y ++--=+-++=都相切的直线有( )A 、1条B 、2条C 、3条D 、4条 7.将函数sin(2)3y x π=+的图像平移后所得的图像对应的函数为cos 2y x =,则进行的平移是( )A 、向右平移12π个单位 B 、向左平移12π个单位 C 、向右平移6π个单位 D 、向左平移6π个单位8.若命题“[]1,1,1240x x x a ∀∈-++⋅<”是假命题,则实数a 的最小值为( )A 、2B 、34-C 、2-D 、6- 9.若直线1ax by +=经过点(cos ,sin )M αα,则( )A 、221a b +≥B 、221a b +≤C 、1a b +≥D 、1a b +≤ 10.函数1()(0)f x b a x a=->-的图像因酷似汉字的“囧”字,而被称为“囧函数”。
则方程2111x x =--的实数根的个数为( ) A 、1 B 、2 C 、3 D 、4二、填空题11.已知函数12,0()21,0x x x f x x -⎧-≥=⎨-<⎩,则((1))f f =________________,12.程序运行的结果为_________,13.已知等比数列{}n a 的前n 项和为n S ,48824S S ==,,则910111a a a a +++=__________ 14.已知函数2()21x mf x x +=-在(,)(2,)n n -∞++∞ 上为奇函数,则m n +=_________,15.在三棱锥A-BCD 中,AD BC ⊥且AB BD AC CD +=+.给出下列命题: ① 分别作△BAD 和△CAD 的边AD 上的高,则这两条高所在直线异面; ② 分别作△BAD 和△CAD 的边AD 上的高,则这两条高相等; ③AB AC =且DB DC =; ④.DAB DAC ∠=∠其中正确的命题有__________________,三、解答题16.已知(sin ,(cos(),1)3a xb x π==+ ,函数()f x a b =⋅ .(1)求()f x 的最值和单调递减区间;(2)已知在△ABC 中,角A 、B 、C 的对边分别为,,a b c,()0,f A a ==ABC 的面积的最大值.17.学校为了预防甲流感,每天上午都要对同学进行体温抽查。
2014年安徽省高考数学文科试卷(带解析)
2014年安徽省高考数学文科试卷(带解析)2014年安徽省高考数学文科试卷(带解析)第卷(选择题共50分)一. 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.[2014•安徽卷] 设i是虚数单位,复数i3+2i1+i=( )A.-i B.i C.-1 D.1 1.D [解析] i3+2i1+i=-i+2i(1-i)2=1. 2.[2014•安徽卷] 命题“∀x∈R,|x|+x2≥0”的否定是( ) A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0 C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥0 2.C [解析] 易知该命题的否定为“∃x0∈R,|x0|+x20<0”. 3.[2014•安徽卷] 抛物线y =14x2的准线方程是( ) A.y=-1 B.y=-2 C.x=-1 D.x =-2 3.A [解析] 因为抛物线y=14x2的标准方程为x2=4y,所以其准线方程为y=-1. 4.[2014•安徽卷] 如图11所示,程序框图(算法流程图)的输出结果是( ) 图11 A.34 B.55 C.78 D.89 4.B [解析] 由程序框图可知,列出每次循环过后变量的取值情况如下:第一次循环,x=1,y=1,z=2;第二次循环,x=1,y=2,z=3;第三次循环,x=2,y=3,z=5;第四次循环,x=3,y=5,z=8;第五次循环,x=5,y=8,z=13;第六次循环,x=8,y=13,z=21;第七次循环,x=13,y=21,z=34;第八次循环,x=21,y=34,z=55,不满足条件,跳出循环. 5.[2014•安徽卷] 设a=log37,b=21.1,c=0.83.1,则( ) A.b<a<c B.c<a<b C.c<b<a D.a<c<b 5.B [解析] 因为2>a=log37>1,b=21.1>2,c=0.83.1<1,所以c<a<b. 6.[2014•安徽卷] 过点P(-3,-1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是( ) A.0,π6 B.0,π3 C.0,π6 D.0,π3 6.D [解析] 易知直线l的斜率存在,所以可设l:y+1=k(x+3),即kx-y+3k-1=0.因为直线l圆x2+y2=1有公共点,所以圆心(0,0)到直线l的距离|3k-1|1+k2≤1,即k2-3k≤0,解得0≤k≤3,故直线l的倾斜角的取值范围是0,π3. 7.[2014•安徽卷] 若将函数f(x)=sin 2x+cos 2x的图像向右平移φ个单位,所得图像关于y轴对称,则φ的最小正值是( ) A.π8 B.π4 C.3π8 D.3π4 7.C [解析]方法一:将f(x)=2sin2x+π4的图像向右平移φ个单位,得到y =2sin2x+π4-2φ的图像,由所得图像关于y轴对称,可知sinπ4-2φ=±1,即sin2φ-π4=±1,故2φ-π4=kπ+π2,k∈Z,即φ=kπ2+3π8,k∈Z,又φ>0,所以φmin=3π8. 8.[2014•安徽卷] 一个多面体的三视图如图12所示,则该多面体的体积是( ) 图12 A.233 B.476 C.6 D.7 8.A [解析] 如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V=8-2×13×12×1×1×1=233.9.[2014•安徽卷] 若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为( ) A.5或8 B.-1或5 C.-1或-4 D.-4或8 9.D [解析] 当a≥2时, f(x)=3x+a+1(x>-1),x+a-1-a2≤x≤-1,-3x-a-1x<-a2. 由图可知,当x=-a2时,fmin(x)=f-a2=a2-1=3,可得a=8. 当a<2时,f(x)3x+a+1x>-a2,-x-a+1-1≤x≤-a2,-3x-a-1(x<-1). 由图可知,当x=-a2时,fmin(x)=f-a2=-a2+1=3,可得a=-4.综上可知,a的值为-4或8. 10.[2014•安徽卷] 设a,b为非零向量,|b|=2|a|,两组向量x1,x2,x3,x4和y1,y2,y3,y4均由2个a和2个b排列而成,若x1•y1+x2•y2+x3•y3+x4•y4所有可能取值中的最小值为4|a|2,则a与b的夹角为( ) A.2π3 B.π3 C.π6 D.0 10.B [解析] 令S=x1•y1+x2•y2+x3•y3+x4•y4,则可能的取值有3种情况:S1=2+2,S2=++2a•b,S3=4a•b.又因为|b|=2|a|.所以S1-S3=2a2+2b2-4a•b=2a-b2>0,S1-S2=a2+b2-2a•b=(a-b)2>0,S2-S3=(a-b)2>0,所以S3<S2<S1,故Smin =S3=4a•b.设a,b的夹角为θ,则Smin=4a•b=8|a|2cos θ=4|a|2,所以cos θ=12.又θ∈[0,π],所以θ=π3. 11.[2014•安徽卷] 1681-34+log354+log345=________. 11.278 [解析] 原式=234-34 +log354×45=23-3=278. 12.[2014•安徽卷] 如图13,在等腰直角三角形ABC中,斜边BC=22,过点A作BC的垂线,垂足为A1;过点A1作AC的垂线,垂足为A2;过点A2作A1C的垂线,垂足为A3;….依此类推,设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则a7=________.图13 12.14 [解析] 在等腰直角三角形ABC中,斜边BC=2 2,所以AB=AC=a1=2,由题易知A1A2=a3=12AB=1,…,A6A7=a7=123•AB=2×123=14. 13.[2014•安徽卷] 不等式组x+y-2≥0,x+2y-4≤0,x+3y-2≥0表示的平面区域的面积为________. 13.4 [解析] 不等式组所表示的平面区域如图中阴影部分所示,S△ABD=S△ABD+S△BCD=12×2×(2+2)=4.14.[2014•安徽卷] 若函数f(x)(x∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=x(1-x),0≤x≤1,sin πx,1<x≤2,则f294+f416=______. 14.516 [解析] 由题易知f294+f416=f -34+f-76=-f34-f76=-316+sin π6=516. 15.[2014•安徽卷] 若直线l与曲线C满足下列两个条件: (i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧.则称直线l在点P处“切过”曲线C. 下列命题正确的是________(写出所有正确命题的编号).①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3;②直线l:x=-1在点P(-1,0)处“切过”曲线C:y=(x+1)2;③直线l:y=x在点P(0,0)处“切过”曲线C:y =sin x;④直线l:y=x在点P(0,0)处“切过”曲线C:y=tan x;⑤直线l:y=x-1在点P(1,0)处“切过”曲线C:y=ln x. 15.①③④[解析] 对于①,因为y′=3x2,y′x=0=0,所以l:y=0是曲线C:y=x3在点P(0,0)处的切线,画图可知曲线C在点P附近位于直线l的两侧,①正确;对于②,因为y′=2(x+1),y′x=-1=0,所以l:x=-1不是曲线C:y=(x+1)2在点P(-1,0)处的切线,②错误;对于③,y′=cos x,y′x=0=1,所以曲线C在点P(0,0)处的切线为l:y=x,画图可知曲线C在点P附近位于直线l的两侧,③正确;对于④,y′=1cos2x,y′x=0=1,所以曲线C在点P(0,0)处的切线为l:y=x,画图可知曲线C在点P附近位于直线l 的两侧,④正确;对于⑤,y′=1x,y′x=1=1,所以曲线C在点P(1,0)处切线为l:y=x-1,又由h(x)=x-1-ln x(x>0)可得h′(x)=1-1x=x-1x,所以hmin(x)=h(1)=0,故x-1≥ln x,所以曲线C在点P附近位于直线l的下侧,⑤错误.16.[2014•安徽卷] 设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,△ABC的面积为2.求cos A与a的值. 16.解:由三角形面积公式,得12×3×1•sin A=2,故sin A=2 23. 因为sin2A+cos2A=1,所以cos A=±1-sin2A=±1-89=±13. ①当cos A=13时,由余弦定理得a2=b2+c2-2bccos A=32+12-2×1×3×13=8,所以a=2 2. ②当cos A=-13时,由余弦定理得a2=b2+c2-2bccos A=32+12-2×1×3×-13=12,所以a=2 3.17. [2014•安徽卷] 某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (1)应收集多少位女生的样本数据? (2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图14所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.图14 (3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.P(K2≥k0) 0.10 0.05 0.010 0.005 k0 2.706 3.841 6.635 7.879 附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d) 17.解:(1)300×450015 000=90,所以应收集90位女生的样本数据. (2)由频率分布直方图得每周平均体育运动超过4小时的频率为1-2×(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75. (3)由(2)知,300位学生中有300×0.75=225(位)的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:男生女生总计每周平均体育运动时间不超过4小时 45 30 75 每周平均体育运动时间超过4小时 165 60 225 总计 210 90 300 结合列联表可算得K2=300×(165×30-45×60)275×225×210×90=10021≈4.762>3.841. 所以有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.18.[2014•安徽卷] 数列{an}满足a1=1,nan+1=(n+1)an+n(n +1),n∈N*. (1)证明:数列ann是等差数列; (2)设bn=3n•an,求数列{bn}的前n项和Sn. 18.解: (1)证明:由已知可得an+1n+1=ann+1,即an+1n+1-ann=1,所以ann是以a11=1为首项,1为公差的等差数列. (2)由(1)得ann=1+(n-1)•1=n,所以an=n2,从而可得bn=n•3n. Sn=1×31+2×32+…+(n-1)×3n-1+n×3n,① 3Sn=1×32+2×33+…+(n-1)3n+n×3n+1.② ①-②得-2Sn=31+32+…+3n-n•3n+1=3•(1-3n)1-3-n•3n+1=(1-2n)•3n+1-32,所以Sn=(2n-1)•3n+1+34. 19.[2014•安徽卷] 如图15所示,四棱锥P ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH. 图15 (1)证明:GH∥EF; (2)若EB=2,求四边形GEFH的面积. 19.解:(1)证明:因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH =GH,所以GH∥BC. 同理可证EF∥BC,因此GH∥EF. (2)连接AC,BD交于点O,BD交EF于点K,连接OP,GK. 因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在平面ABCD内,所以PO⊥平面ABCD. 又因为平面GEFH⊥平面ABCD,且PO⊄平面GEFH,所以PO∥平面GEFH. 因为平面PBD∩平面GEFH=GK,所以PO∥GK,所以GK⊥平面ABCD. 又EF⊂平面ABCD,所以GK⊥EF,所以GK是梯形GEFH的高.由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,从而KB=14DB=12OB,即K是OB的中点.再由PO∥GK得GK=12PO,所以G是PB的中点,且GH=12BC=4. 由已知可得OB=42,PO=PB2-OB2=68-32=6,所以GK=3,故四边形GEFH的面积S=GH+EF2•GK=4+82×3=18.20.[2014•安徽卷] 设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性; (2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值. 20.解: (1)f(x)的定义域为(-∞,+∞),f′(x)=1+a-2x-3x2. 令f′(x)=0,得x1=-1-4+3a3, x2=-1+4+3a3,且x1<x2,所以f′(x)=-3(x-x1)(x-x2).当x<x1或x>x2时,f′(x)<0;当x1<x<x2时,f′(x)>0. 故f(x)在-∞,-1-4+3a3和-1+4+3a3,+∞内单调递减,在-1-4+3a3,-1+4+3a3内单调递增. (2)因为a>0,所以x1<0,x2>0,①当a≥4时,x2≥1,由(1)知,f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=-1+4+3a3处取得最大值.又f(0)=1,f(1)=a,所以当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处同时取得最小值;当1<a<4时,f(x)在x=0处取得最小值. 21.[2014•安徽卷] 设F1,F2分别是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|. (1)若|AB|=4,△ABF2的周长为16,求|AF2|;(2)若cos∠AF2B=35,求椭圆E的离心率. 21.解:(1)由|AF1|=3|F1B|,|AB|=4,得|AF1|=3,|F1B|=1. 因为△ABF2的周长为16,所以由椭圆定义可得4a=16,所以|AF1|+|AF2|=2a=8. 故|AF2|=2a-|AF1|=8-3=5. (2)设|F1B|=k,则k>0且|AF1|=3k,|AB|=4k.由椭圆定义可得 |AF2|=2a-3k,|BF2|=2a-k. 在△ABF2中,由余弦定理可得 |AB|2=|AF2|2+|BF2|2-2|AF2|•|BF2•cos∠AF2B,即(4k)2=(2a-3k)2+(2a-k)2-65(2a-3k)• (2a-k),化简可得(a+k)(a-3k)=0,而a+k>0,故a=3k,于是有|AF2|=3k=|AF1|,|BF2|=5k. 因此|BF2|2=|AF2|2+|AB|2,可得F1A⊥F2A. 故△AF1F2为等腰直角三角形,从而c=22a,所以椭圆E的离心率e=ca=22.。
2014年高考文科数学安徽卷
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有
一项是符合题目要求. 题
1.设 i 是虚数单位,复数 i3 2i 1 i
()
A. i
B. i
C. 1
D.1
2.命题“ x R , | x | +x2≥0 ”的否.定.是
无
A. x R , | x | +x2<0
在
绝密★启用前
2014 年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
此 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第 1 至第 2 页,第Ⅱ
卷第 3 至第 4 页.全卷满分 150 分,考试时间 120 分钟.
考生注意事项:
1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答
数学试卷 第 3 页(共 4 页)
17.(本小题满分 12 分) 某高校共有学生 15 000 人,其中男生 10 500 人,女生 4 500 人,为调查该校学生每周 平均体育运动时间的情况,采用分层抽样的方法,收集 300 位学生每周平均体育运动 时间的样本数据(单位:小时).
(Ⅰ)应收集多少位女生的样本数据?
(Ⅰ)证明:数列{an } 是等差数列; n
0.05 3.841
0.010 6.635
0.005 7.879
(Ⅱ)设 bn 3n an ,求数列{bn} 的前 n 项和 Sn . 19.(本小题满分 13 分)
如图,四棱锥 P ABCD 的底面是边长为 8 的正方形,
四条侧棱长均为 2 17 ,点 G , E , F , H 分别是棱
A.34
B.55
[VIP专享]2014年高考安徽卷(数学文)
2014年普通高等学校招生全国统一考试(安徽卷)数 学(文科)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设i 是虚数单位,复数( )32i i 1i+=+A .-i B .i C .-1 D .12.命题“”的否定是( )2,||0x x x ∀∈+≥R A . B .2,||+0x x x ∀∈<R 2,||+0x x x ∀∈≤R C . D .2000,||+0x x x ∃∈<R 2000,||+0x x x ∃∈≥R 3.抛物线的准线方程是( )214y x =A .B .1y =-2y =-C .D .1x =-2x =-4.如图所示,程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .895.设,,,则( )3log 7a = 1.12b = 3.10.8c =A . B .b a c <<c a b <<C . D .c b a <<a c b <<6.过点的直线l 与圆有公共点,则直线l 的倾斜角的取值范围是( (1)P -221x y +=)A .B .C .D .(0,]6π(0,]3π[0,6π[0,]3π7.若将函数的图象向右平移φ个单位,所得图象关于y 轴对称,则φ()sin 2cos 2f x x x =+的最小正值是( )A . B . C . D .8π4π38π34π8.一个多面体的三视图如图所示,则该多面体的体积为( )A .B .C .6D .72334769.若函数的最小值为3,则实数a 的值为( )()|1||2|f x x x a =+++A .5或8 B .-1或5C .-1或-4 D .-4或810.设为非零向量,,两组向量和均由2个a 和2,a b ||2||=b a 1234,,,x x x x 1234,,,y y y y 个b 排列而成.若所有可能取值中的最小值为,11223344+++A A A A x y x y x y x y 24||a 则a 与b 的夹角为( )A . B . C . D .023ππ36π第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分)11..34331654log log ________8145-⎛⎫++= ⎪⎝⎭12.如图,在等腰直角三角形ABC 中,斜边A 作的垂线,垂足为;过BC =BC 1A 点作的垂线,垂足为;过点作的垂线,垂足为;…,依此类推.设1A AC 2A 2A 1A C 3A ,则.112123567,,,,BA a AA a A A a A A a ==== 7________a =13.不等式组表示的平面区域的面积为________.20,240,320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩14.若函数是周期为4的奇函数,且在上的解析式为()()f x x ∈R [0,2]则.(1),01,()sin ,12,x x x f x x x -≤≤⎧=⎨π<≤⎩2941(()________46f f +=15.若直线l 与曲线C 满足下列两个条件:(ⅰ)直线l 在点处与曲线C 相切;(ⅱ)曲线C 在点P 附近位于直线l 的00(,)P x y 两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号).①直线在点处“切过”曲线;:0l y =(0,0)P 3:C y x =②直线在点处“切过”曲线;:1l x =-(1,0)P -2:(1)C y x =+③直线在点处“切过”曲线;:l y x =(0,0)P :sin C y x =④直线在点处“切过”曲线;:l y x =(0,0)P :tan C y x =⑤直线在点处“切过”曲线.:1l y x =-(1,0)P :ln C y x =三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分12分)设的内角所对边的长分别是,且,,ABC ∆,,A B C ,,a b c 3,1b c ==ABC ∆求与a 的值.cos A 17.(本小题满分12分)某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:,估计[0,2],(2,4],(4,6],(6,8],(8,10],(10,12]该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时.请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:22()()()()()n ad bc K a b c d a c b d -=++++18.(本小题满分12分)数列满足,{}n a 11a =1=(1)(1),.n n na n a n n n *++++∈N (Ⅰ)证明:数列是等差数列;n a n ⎧⎫⎨⎬⎩⎭(Ⅱ)设,求数列的前n 项和.3n n b ={}n b n S 19.(本小题满分13分)如图,四棱锥的底面是边长为8的正方形,四条侧棱长均为.点P ABCD -分别是棱上共面的四点,平面,,,,G E F H ,,,PB AB CD PC GEFH ABCD ⊥平平.BC GEFH 平平A(Ⅰ)证明:;GHEF A (Ⅱ)若,求四边形的面积.2EB =GEFH20.(本小题满分13分)设函数,其中.23()1(1)f x a x x x =++--0a >(Ⅰ)讨论在其定义域上的单调性;()f x (Ⅱ)当时,求取得最大值和最小值时的x 的值.[0,1]x ∈()f x 21.(本小题满分13分)设分别是椭圆的左、右焦点,过点的直线交椭圆E 12,F F 2222:1(0)x y E a b a b +=>>1F 于两点,.,A B 11||3||AF F B =(Ⅰ)若,的周长为16,求;||4AB =2ABF ∆2||AF (Ⅱ)若,求椭圆E 的离心率.23cos 5AF B ∠=。