锚杆支护原理
锚杆支护原理

锚杆支护原理锚杆支护是一种常见的地下工程支护方法,主要用于土体或者岩体的加固和稳定。
它通过锚杆的预应力作用,将锚杆与岩土体密切连接,形成一个整体结构,从而增强了地下工程的稳定性和承载能力。
本文将详细介绍锚杆支护的原理及其应用。
一、锚杆支护的原理锚杆支护的原理基于以下几个方面:1. 磨擦力原理:锚杆通过预应力的作用,使其与岩土体之间产生磨擦力,从而阻挠岩土体的位移和变形。
磨擦力的大小取决于锚杆的预应力大小和锚杆与岩土体之间的磨擦系数。
2. 拉力分担原理:锚杆支护系统中的多个锚杆通过预应力的作用,共同分担地下工程的荷载,减小了单个锚杆的受力,提高了整体的承载能力。
这种拉力分担原理可以有效减小锚杆的应力集中,提高了锚杆的使用寿命。
3. 锚固效应原理:锚杆通过预应力的作用,使其与岩土体之间形成一个锚固体系,增加了地下工程的整体稳定性。
锚固体系可以有效地反抗岩土体的位移和变形,保证地下工程的安全运行。
二、锚杆支护的应用锚杆支护广泛应用于各类地下工程,如隧道、地下室、矿井、坑道等。
其主要应用领域包括:1. 隧道工程:锚杆支护在隧道工程中起到了重要的作用。
通过预应力锚杆的施工,可以有效地增加隧道围岩的稳定性,减小地表沉降和隧道变形的风险。
2. 地下室工程:在地下室的施工过程中,锚杆支护可以提供稳定的支撑力,防止地下室的坍塌和变形。
同时,锚杆支护还可以减小地下室施工对周围环境的影响。
3. 矿井工程:在矿井的开采过程中,锚杆支护可以有效地增加矿井的稳定性,保证矿井的安全运行。
锚杆支护还可以减小矿井的变形和沉降,提高矿井的采矿效率。
4. 坑道工程:锚杆支护在坑道工程中起到了重要的作用。
通过预应力锚杆的施工,可以有效地增加坑道的稳定性,减小地表沉降和坑道变形的风险。
三、锚杆支护的施工步骤锚杆支护的施工步骤普通包括以下几个环节:1. 预处理:在施工前,需要对地下工程的岩土体进行勘探和分析,确定锚杆的布置位置和长度。
同时,还需要对锚杆的材料和设备进行检查和准备。
锚杆支护作用原理

锚杆支护作用原理
锚杆支护是一种常用的地下工程支护方法,其作用原理基于以下几个方面。
1. 承载荷载:锚杆通过固定在岩体内部形成的锚固力,能够承受地下工程所受到的荷载。
锚杆的材料通常具有较高的强度和刚度,能够有效地分担工程荷载,保证工程的安全性。
2. 抵抗岩体变形:地下工程常常面临着岩体的变形和位移,而锚杆可以通过锚固作用,将围岩与锚杆连接起来,从而抵抗岩体的变形。
锚杆与岩体之间形成的摩擦力和粘结力可以有效地限制围岩的位移,保持地下工程的稳定性。
3. 分散应力:锚杆在岩体中形成的锚固力可以通过锚杆的延伸长度将应力传递到岩体的较深层次,进而分散应力,减小地下工程周围的应力集中。
这样可以有效地减少岩体破坏的可能性,增加地下工程的承载能力。
综上所述,锚杆支护通过承载荷载、抵抗岩体变形和分散应力等作用原理,能够保证地下工程的安全性和稳定性。
锚杆支护文档

锚杆支护锚杆支护是一种用于地下工程中的支护方式,通过锚杆将地下结构与地面固定连接起来,以增加结构的稳定性和抗力。
锚杆支护通常用于岩石工程、地下挖掘和隧道工程中,可以有效地控制地下的变形和沉降,提高工程的安全性和稳定性。
1. 锚杆支护的原理和作用锚杆支护的原理是利用锚杆与地下岩土层之间的摩擦力和粘结力来增加地下结构的稳定性。
锚杆支护可以防止地下的变形和沉降,减少结构的受力,提高工程的安全性。
锚杆支护的主要作用包括:•控制地下的变形和沉降:锚杆通过固定地下结构与地面连接,可以有效地减少地下结构的变形和沉降,保持结构的稳定性。
•增加结构的抗力:锚杆支护可以将地下结构与地面紧密地连接起来,增加地下结构的抗力,提高结构的安全性和稳定性。
•分担结构的受力:锚杆支护可以将地下结构的受力分散到锚杆和岩土层中,减少结构的受力,延长结构的使用寿命。
2. 锚杆支护的材料和施工方法2.1 锚杆的材料选择常见的锚杆材料包括钢筋、高强度钢丝绳和预应力锚杆。
钢筋锚杆适用于一般的岩土工程,具有较高的抗拉强度和刚度。
高强度钢丝绳锚杆适用于大规模地下挖掘和岩石工程,具有较高的承载力和抗拉强度。
预应力锚杆适用于对抗拉性能要求较高的工程,能够更好地控制地下结构的变形和沉降。
2.2 锚杆支护的施工方法锚杆支护的施工方法主要包括以下步骤:1.钻孔:根据设计要求,在地下结构边缘或需要支护的区域进行钻孔。
2.安装锚杆:将锚杆插入钻孔中,然后注入灌浆材料填充钻孔空隙,形成与地下结构紧密连接的锚杆。
3.张拉锚杆:根据设计要求,使用张拉设备对锚杆进行张拉,以达到设计要求的预应力。
4.固定锚杆:在锚杆张拉完成后,固定锚杆的张拉端,并采取防松措施,确保锚杆的稳定性和安全性。
5.后期处理:根据需要,对锚杆进行检测和监测,及时处理可能出现的问题,确保锚杆支护的效果和稳定性。
3. 锚杆支护的应用案例3.1 岩石工程中的锚杆支护在岩石工程中,锚杆支护广泛应用于坡面稳定、爆破法隧道开挖、防潜透隧道开挖等工程。
锚杆支护原理

锚杆支护一、锚杆支护原理1、锚杆的悬吊作用悬吊作用是指用锚杆将软弱的直接顶板吊挂在其上的坚固老顶之上。
如图1所示,或者是用锚杆将因巷道开挖而引起松动的岩块连接在松动区外的完整坚固岩石上,使松动岩块不至冒落。
锚杆的悬吊作用2、锚杆的组合梁理论利用锚杆的拉力将层状岩层组合起来形成组合梁结构进行支护,这就是锚杆组合梁作用。
组合梁作用的本质在于通过锚杆的预拉应力将原视为叠合梁的岩层挤紧,增大岩层间的摩擦力;同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。
锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。
锚杆的组合作用3、锚杆锲固作用是指在围岩中存在一组或多组不同产状的不连续面的情况下,由于锚杆穿过这些不连续面,防止或减少了围岩沿不连续面的移动。
如图3。
锚杆的楔固作用p бb p 锚杆的楔固作用-б p (бbp4、挤压加固拱作用形成以锚杆头和紧固端为顶点的锥形体压缩区。
如将锚杆沿拱形巷道周边按一定间距径向排列,在预应力作用下,每根锚杆周围形成的锥形体压缩区彼此重叠联结,在围岩中形成一连续压缩带。
它不仅能保持自身的稳定,而且能承受地压,组织上部围岩的松动和变形。
显然,对锚杆施加预紧力是形成加固拱的前提。
5、锚杆的减跨作用如果把不稳定的顶板岩层看成是支撑在两帮的叠合梁,由于可视悬吊在老顶上的锚杆为支点,安设了锚杆就相当于在该处打了点柱增加了支点而减少了顶板的跨度,从而降低了顶板岩层的弯曲应力和挠度,维持了顶板与岩石的稳定性,使岩石不易变形和破坏。
这就是锚杆的“减跨”作用,它实际上来源于锚杆的悬吊作用。
上述几种锚杆支护作用并非是孤立存在的,实际上是相互补充的综合作用,只不过在不同地质条件下,某种支护作用占的地位不同而已。
二、锚杆支护作用机理分析巷道开掘以后,由于受掘进工作面迎头及两帮的支撑,顶板下沉和变形很小。
此时安装锚杆,其主要作用是控制顶板浅部岩层的离层、滑动。
锚杆的原理

锚杆的原理
锚杆是一种常见的地下工程支护材料,它通过在地下岩体中形成一个锚固体系,来增加岩体的稳定性,防止岩体的位移和破坏。
锚杆的原理主要是利用锚杆与岩体之间的摩擦力和锚杆的拉力来达到支护的效果。
下面将详细介绍锚杆的原理。
首先,锚杆的原理是基于摩擦力的作用。
在地下岩体中,通过钻孔将锚杆安装
到岩体内部,然后将锚杆的外部与岩体之间填充浆料,使锚杆与岩体形成一个整体。
当岩体受到外部力的作用时,锚杆与岩体之间的摩擦力将阻止岩体的位移,起到支护的作用。
这种摩擦力的作用是锚杆支护的重要原理之一。
其次,锚杆的原理还涉及到锚杆的拉力。
在锚杆安装完成后,通过拉拔机等设
备对锚杆进行拉力作用,使锚杆产生一定的拉力。
这种拉力可以有效地增加锚杆与岩体之间的摩擦力,从而进一步增强锚杆的支护效果。
同时,锚杆的拉力还可以使岩体受到一定的约束,减少岩体的位移和破坏,确保地下工程的安全。
除此之外,锚杆的原理还包括了锚杆材料的选择和锚杆的布置。
锚杆的材料通
常选择高强度的钢材,以保证锚杆的拉力和抗压能力。
而锚杆的布置则需要根据地下岩体的特点和工程需求进行合理设计,以达到最佳的支护效果。
总的来说,锚杆的原理是基于摩擦力和拉力的作用,通过锚杆与岩体之间的相
互作用,来增加地下岩体的稳定性,防止岩体的位移和破坏。
在地下工程中,锚杆的应用具有重要的意义,它不仅可以保证地下工程的安全,还可以减少工程的成本和时间,提高工程的施工效率。
因此,对锚杆的原理有深入的了解,对于地下工程的设计和施工具有重要的指导意义。
锚杆支护的原理

锚杆支护的原理
锚杆支护是一种常用的岩土工程技术,旨在增强岩石或土体的稳定性。
其原理是通过将钢筋或钢管等材料固定在岩石或土体中,形成一个有效的支撑系统,从而控制地层的位移和变形,提高地质体的承载能力。
锚杆支护的具体原理可以概括为以下几个方面:
1. 加固地层:通过在地层中钻孔并注入高强度胶结材料,将锚杆牢固地固定在岩石或土体中。
这样可以增加地层的整体强度和刚度,阻止岩石或土体破坏和滑动。
2. 分散荷载:锚杆支护在地层中形成锚杆网,并通过承受荷载的方式来分散地层的力量。
锚杆通过与地层内的固有力反作用,将部分荷载传递到其他岩体或地下结构上,减轻了地层的载荷,保护了地下工程的安全。
3. 控制和消散位移:锚杆支护可控制地层的位移和变形,通过与地层结构相互作用,改变地层内力和应变的分布。
这种互动能够消散地层内产生的应力、变形和位移,防止发生地层破坏,维护地下工程的稳定性。
4. 增加地质体的承载能力:锚杆支护可以提高地质体的承载能力,通过加固和固定地层结构,使得地质体能够承受更大的荷载。
这对于需要建设地下洞室、隧道、坑道等工程项目的地质体来说是非常重要的。
总而言之,锚杆支护的原理是通过加固地层、分散荷载、控制和消散位移以及增加地质体的承载能力,来提高地下工程的稳定性和安全性。
它是一种有效的支护技术,被广泛应用于岩土工程领域。
煤矿井下锚杆支护知识、原理和锚杆(索)计算及支护设计公式
锚杆支护一、锚杆支护的原理锚杆支护就是以维护和利用围岩的自承能力为基点,及时地进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分。
通过锚入围岩内部的杆体,改变巷道围岩的本身的力学状态,在巷道周围形成一个整体而又稳定的承载环,和围岩共同作用,达到维护巷道的目的。
这一支护形式与传统的棚式支护相比属于主动积极加固巷道围岩的支护形式。
二、锚杆在支护中的作用1、锚杆的悬吊作用悬吊作用是指用锚杆将软弱的直接顶板吊挂在其上的坚固老顶之上。
如图1所示,或者是用锚杆将因巷道开挖而引起松动的岩块连接在松动区外的完整坚固岩石上,使松动岩块不至冒落。
2、锚杆的组合梁理论在层状岩层的巷道顶板中,通过锚入一系列的锚杆,将锚杆长度以内的薄层岩石锚成岩石组合梁,从而提高其承载力。
利用锚杆的拉力将层状岩层组合起来形成组合梁结构进行支护,这就是锚杆组合梁作用。
组合梁作用的本质在于通过锚杆的预拉应力将原视为叠合梁的岩层挤紧,增大岩层间的摩擦力;同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。
锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。
3、锚杆锲固作用锚杆的悬吊作用锚杆的组合作用是指在围岩中存在一组或多组不同产状的不连续面的情况下,由于锚杆穿过这些不连续面,防止或减少了围岩沿不连续面的移动。
如图3。
44、挤压加固拱作用形成以锚杆头和紧固端为顶点的锥形体压缩区。
如将锚杆沿拱形锚杆的楔固作用p бb p 锚杆的楔固作用-б p (бbp巷道周边按一定间距径向排列,在预应力作用下,每根锚杆周围形成的锥形体压缩区彼此重叠联结,在围岩中形成一连续压缩带。
它不仅能保持自身的稳定,而且能承受地压,组织上部围岩的松动和变形。
显然,对锚杆施加预紧力是形成加固拱的前提。
5、锚杆的减跨作用如果把不稳定的顶板岩层看成是支撑在两帮的叠合梁,由于可视悬吊在老顶上的锚杆为支点,安设了锚杆就相当于在该处打了点柱增加了支点而减少了顶板的跨度,从而降低了顶板岩层的弯曲应力和挠度,维持了顶板与岩石的稳定性,使岩石不易变形和破坏。
煤矿锚杆支护原理
煤矿锚杆支护原理
煤矿锚杆支护是一种常见的地下矿山支护方式,它以钢筋锚杆为支护体,通过与岩体相互作用达到支护效果。
其主要原理包括锚杆的受力原理、锚杆与岩体的相互作用原理和综采工作面的动力学原理。
首先,锚杆的受力原理是煤矿锚杆支护的基本原理之一。
锚杆采用的钢筋材料具有一定的弹性和延展性能,它能够承受来自岩体的荷载,并将应力分散到周围的岩石中。
钢筋锚杆能够通过受力传递维持锚杆与岩石之间的相对位置不变,从而起到支护作用。
锚杆受力主要有拉力和弯曲力两个方向,在地下矿山中,拉力是主要的受力方向。
其次,锚杆与岩体相互作用的原理是煤矿锚杆支护的关键之一。
在锚杆安装过程中,钻孔和锚固是一体的工作,通过将钻孔中灌注含浆灰浆的同时,将钢筋杆固定在孔内,形成一种锚固效果。
钢筋锚杆与岩体之间形成了一个整体结构,能够共同承担荷载,保证矿巷的稳定。
此外,通过锚杆与岩体的相互作用,还能够延缓岩体破坏的发展,并将破坏区域的应力分散,增强支护的效果。
最后,综采工作面的动力学原理也是煤矿锚杆支护的重要原理之一。
髙煤厚大倾角煤层综采工作面的推进过程中,煤壁和顶板会发生变形和破坏,产生大量的岩屑和颗粒物。
在这种情况下,煤矿锚杆能够通过与顶板和煤壁相互作用,承受各种荷载和动态挤压力,防止岩屑块落入工作面,保持工作面的安全和稳定。
总之,煤矿锚杆支护的原理涉及锚杆的受力原理、锚杆与岩体相互作用的原理和工作面的动力学原理。
通过钢筋锚杆与岩体的相互作用,煤矿锚杆能够有效承担岩体的荷载,保证矿井的安全和稳定。
锚杆支护作为一种重要的地下支护方式,在煤矿生产中得到广泛应用,并不断发展完善。
锚杆支护原理
锚杆支护一、锚杆支护原理1、锚杆的悬吊作用悬吊作用是指用锚杆将软弱的直接顶板吊挂在其上的坚固老顶之上。
如图1所示,或者是用锚杆将因巷道开挖而引起松动的岩块连接在松动区外的完整坚固岩石上,使松动岩块不至冒落。
锚杆的悬吊作用2、锚杆的组合梁理论利用锚杆的拉力将层状岩层组合起来形成组合梁结构进行支护,这就是锚杆组合梁作用。
组合梁作用的本质在于通过锚杆的预拉应力将原视为叠合梁的岩层挤紧,增大岩层间的摩擦力;同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。
锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。
锚杆的组合作用3、锚杆锲固作用是指在围岩中存在一组或多组不同产状的不连续面的情况下,由于锚杆穿过这些不连续面,防止或减少了围岩沿不连续面的移动。
如图3。
锚杆的楔固作用p бb p 锚杆的楔固作用-б p (бbp4、挤压加固拱作用形成以锚杆头和紧固端为顶点的锥形体压缩区。
如将锚杆沿拱形巷道周边按一定间距径向排列,在预应力作用下,每根锚杆周围形成的锥形体压缩区彼此重叠联结,在围岩中形成一连续压缩带。
它不仅能保持自身的稳定,而且能承受地压,组织上部围岩的松动和变形。
显然,对锚杆施加预紧力是形成加固拱的前提。
5、锚杆的减跨作用如果把不稳定的顶板岩层看成是支撑在两帮的叠合梁,由于可视悬吊在老顶上的锚杆为支点,安设了锚杆就相当于在该处打了点柱增加了支点而减少了顶板的跨度,从而降低了顶板岩层的弯曲应力和挠度,维持了顶板与岩石的稳定性,使岩石不易变形和破坏。
这就是锚杆的“减跨”作用,它实际上来源于锚杆的悬吊作用。
上述几种锚杆支护作用并非是孤立存在的,实际上是相互补充的综合作用,只不过在不同地质条件下,某种支护作用占的地位不同而已。
二、锚杆支护作用机理分析巷道开掘以后,由于受掘进工作面迎头及两帮的支撑,顶板下沉和变形很小。
此时安装锚杆,其主要作用是控制顶板浅部岩层的离层、滑动。
锚杆锚索支护的相关知识
锚杆锚索支护的相关知识锚杆锚索支护的相关知识第一节锚杆支护技术一、锚杆支护的原理锚杆支护就是以维护和利用围岩的自承能力为基点,及时地进行支护,控制围岩的变形和松弛,使围岩成为支护体系的组成部分。
通过锚入围岩内部的杆体,改变巷道围岩的本身的力学状态,在巷道周围形成一个整体而又稳定的承载环,和围岩共同作用,达到维护巷道的目的。
这一支护形式与传统的棚式支护相比属于主动积极加固巷道围岩的支护形式。
二、锚杆在支护中的作用1、悬吊作用锚杆将软弱岩层挂在上面坚固稳定的岩层上。
2、组合梁作用在层状岩层的巷道顶板中,通过锚入一系列的锚杆,将锚杆长度以内的薄层岩石锚成岩石组合梁,从而提高其承载力。
3、围岩补强作用巷道深部围岩中岩石处于三轴受压状态,而靠近巷道周边的岩石则处于二轴受力状态,后者的强度大大小于前者,故易于破坏而丧失稳定性。
巷道周围打锚杆后,有些岩石又部分恢复了三轴受力状态增大了它本身的强度;另外锚杆还可以增加岩层弱面的剪断阻力,使巷道周边围岩不易破坏和失稳,这就叫作围岩补强作用。
4、挤压连接作用锚杆将巷道锚栓挤紧,对岩石施加预应力,以平衡岩石内所产生的张拉力,阻止裂隙的继续扩大,而且对于松散岩石也能起到挤压连接作用。
5、挤压加固拱作用松散岩石在预应力作用下围绕每根锚杆的周围会形成一个两头带圆锥的筒形挤压区或压缩应力区,在系统排列的锚杆群中,这些挤压区或压缩应力区便组成了一个具有相当宽厚的均匀压缩加固带,它相当于一种承载结构而支承相当大的载荷。
三、锚杆支护巷道有关规定:1、锚杆支护优先选用树脂锚杆,锚杆的长度应根据巷道的类别、围岩情况、矿压情况和断面情况等确定,并不得小于1600mm。
2、非金属锚杆必须符合防静电、阻燃的要求,并取得煤安标志。
3、开拓大巷、采区准备巷锚杆直径不小于18mm,长度不小于1800mm。
4、15#煤非采空区巷道顶锚杆直径不小于20mm,长度不小于2200mm,帮锚杆直径不小于18mm,长度不小于2000mm,15#煤层采空区巷道帮锚杆直径不小于20mm,长度不小于2400mm,15#煤松散煤层巷道和切巷帮锚杆直径不小于20mm,长度不小于2400mm,单一煤层巷道顶锚杆直径不小于18mm,长度不小于1800mm,二次动压巷道帮锚杆长度不小于2400mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿山井巷支护之锚杆支护的原理与常用锚杆介绍
锚杆是一种锚固在岩体内部的杆状体。
采用锚杆支护巷道,就是当巷道掘进后向围岩中钻眼,然后将锚杆安设在锚杆眼内,对巷道围岩进行人工加固。
锚杆具有很多优点:节约坑木和钢材,降低支护成本,掘进断面小,巷道的变形小,维修费用低,工作安全,轻便,可以减轻体力劳动,减小通风阻力,有利于一次成巷施工和加快掘进速度,使用范围广,适应性强,减少运输量,有利于矿井的运输和提升。
但是锚杆不能预防围岩风化,不能完全防止锚杆与锚杆之间裂隙岩石的剥落,因此,锚杆配合其他支护措施,如与金属网、喷浆或喷射混凝土等联合使用,会取得更好的支护效果。
锚杆支护原理
(1)悬吊作用:锚杆将软弱岩层吊挂在上面坚固稳定的岩层上,防止离层脱落。
煤层巷道的直接顶板一般比较软弱且较薄,容易离层冒落,它上面的老顶则比较坚固。
锚杆可以通过直接顶板达到老顶,把直接顶锚固在老顶上。
锚杆的悬吊作用图
(2)组合梁作用:在层状岩层的巷道顶板中,通过锚人一系列的锚杆,将锚杆长度以内的薄层岩石锚成岩石组合梁,从而提高其承载能力。
在相同的荷载作用下,组合梁比未组合板梁的挠度和内应力大为减小。
(3)围岩补强作用:巷道深部围岩中的岩石处于三轴受压状态,而靠近巷道周边的岩石则处于二轴受力状态,强度小于前者,故易于破坏而丧失稳定性。
巷道围岩被锚杆锚固后,表层岩石部分地恢复了三轴受力状态,增大了它本身的强度,另外,锚杆还可以增加岩层弱面的剪断阻力,使巷道周边围岩不易破坏和失稳,这就叫作围岩补强作用。
(4)挤压联结作用:锚杆将巷道围岩挤紧,对岩石施加预应力,阻止裂隙的继续扩大,而且,对于松散岩石也能起到挤压联结和加固作用。
国外做过一个简单而有趣的试验:用一个长方形木箱,里面填紧小碎石,并用模拟的锚杆将它们锚固起来,锚杆拧紧以后,将木箱翻转,其中充填的小碎石竟倒不出来。
通过锚杆的预应力作用,可以在彼此毫无粘结力的碎石之间产生一种侧向挤压摩擦阻力,足以支持碎石自身的重量而不会掉下来,好像碎石间互相联结起来一样。
(5)挤压加固拱作用:将上述试验继续做下去,用锚杆锚拴起来的小碎石,不仅它们挤压联结在一起足以支持自身的重量,而且,它还可以作为一种承载结构,支持额外的荷重。
通过加载试验,发现加载的锚固碎石构件在锚杆垫板之间会出现一个拉应力区,致使该区内的小碎石松散而脱落下来,并形成了穹窿。
当荷载增大时,这穹窿将扩大而导致承载结构的崩塌解体。
为防止这一情况,在锚杆垫板下张挂细铁丝网便大大提高了锚杆的支护能力,当荷载加到相当大日寸(反复加载),破坏是以铁丝网被剪断而开始的。
以上试验说明,松散碎石在预应力作用下围绕每根锚杆形成一个两头带圆锥形的筒形挤压区或压缩应力区,在系统排列的锚杆群中,这些挤压区便组成了一个具有相当宽厚的均匀压缩加固带,它相当于一种承载结构而支承相当大的荷载。
巷道周围安装成组排列和径向布置的锚杆后,便在围岩的一定厚度范围内形成了一个拱形压缩带或挤压加固拱,它使巷道围岩由原来是支架上的“荷载”变成了“承载”结构。
拱形压缩带的厚度与锚杆的长度、间距有关。
以上所述锚杆的五种作用,通常不是单独存在,而是互相联系、互相补充、共同作用的。
锚杆的类型多种多样:按锚固原理来分,有端头锚固、全长锚固和两者并用型;按锚杆组成材料来分,有金属锚杆、木锚杆、钢筋或钢丝绳砂浆锚杆和树脂锚杆等。
下面介绍几种常用锚杆。
(1)金属锚杆
①金属楔缝式锚杆。
由杆体、楔子、垫板和螺帽组成。
杆体常用直径18-22mm 的3号钢制作,其上端加工成宽2-5mm、长150-200mm的纵向楔缝,杆体下端100-150mm长的范围内加工成螺纹。
楔子用软钢或铸铁制造。
垫板多用厚6—lOmm的钢板制成,其规格为150mm×150mm或200mm×200mm。
安装时,先把楔子夹在楔缝中,轻轻插入预先钻好的锚杆眼眼底,在杆体下端加保护套筒或拧上保护螺纹的螺母,然后对杆体不断锤击,楔子挤入楔缝,从而迫使杆体的锚入端张开而挤紧眼底孔壁,最后取下保护套筒,安上垫板,拧紧螺帽。
这种锚杆结构简单,加工容易,在硬岩中锚固力较大,一般可达lOOkN或以上。
但它对钻孔的精确性要求严格,杆体直径较大,钢材用量较多,在软岩中它的锚固力不足,不宜采用。
②金属倒楔式锚杆。
它的锚入端有一个大头朝向孔底的铸铁固定楔,固定楔与圆钢杆体浇注在一起,另外配有一个铸铁活动倒楔,杆体的另一端加工成螺纹。
安装时,先把倒楔绑在固定楔的下部,慢慢送人锚杆眼内,并使楔底距眼底一定距离,然后用一根专用的锤击杆,顶在倒楔的尾端,再用凿岩机进行锤击,就可将锚杆锚固在岩层中,最后装上垫板拧紧螺帽即成。
这种锚杆除了结构简单制造容易外,它比楔缝式锚杆的杆体直径小,一般为12-16mm,可节省钢材,对钻孔深度的要求不太严格,而且巷道报废时能够回收,一般锚固力在50kN以上,因此这种锚杆在我国应用较多。
(2)树脂锚杆
树脂锚杆以合成树脂为粘结剂,在固化剂和加速剂的作用下固化,从而将锚杆体与岩石牢固地粘结成为一个坚固的整体。
树脂锚杆的最大特点是固化时间快,能在几分钟到几小时内获得很高的初锚力,能够迅速有效地控制围岩变形。
我国研制成功的树脂锚杆是一种药包式端头锚固的锚杆,由树脂药包和锚杆杆体组成。
①树脂药包结构。
药包有φ23mm×50mm和φ23mm×35mm两种规格,由内药包和外药包组成。
内药包为φ8mm—-φ12mm的玻璃小管,内装固化剂与少量填料;外药包为聚乙烯薄膜塑料袋或玻璃管,内装不饱和聚酯树脂、加速剂及填料(瓷粉或石英粉)。
②杆体。
有钢、木杆体两种,钢杆体见,它是由6mm-8mm的普通圆钢加工而成。
杆体长1.5- 2.5m,插入孔底的一端做成反麻花状。
杆体的外露端与其他金属锚杆一样加工成螺纹,并用垫板和螺帽紧固。
安装时,用锚杆体将树脂药包送到眼底,以煤电钻为动力,通过特制的连接头带动杆体转动,将药包捣破并搅拌30s左右,使化学药剂混合,发生化学反应,树脂便由液态聚合转化为固态,将岩石和锚杆体胶结固化在一起。
然后安上托板,拧紧螺帽。
树脂锚杆的凝固时间为3- 5min,lOmin后即可承载,一
小时的锚固力达70-lOOkN,充分显示了树脂锚杆良好的物理力学性能。