开关弹簧操作机构

合集下载

高压开关柜操作机构和操作电源

高压开关柜操作机构和操作电源

高压开关柜操作机构和操作电源(成都贝锐智能电气有限公司)1、开关柜分合闸的执行机构—电磁操作机构与弹簧操作机构电磁操作机构:早先的开关柜,普遍采用电磁操作机构进行分合闸操作,这种机构需要较大的合闸电流,动作速度低,结构笨重,耗材较多,现已逐渐淘汰。

弹簧操作机构:弹簧操作机构是利用储存在弹簧中的能量完成分合闸的过程,弹簧的储能由储能电机完成。

弹簧操作机构的优点是:需要的分合闸电流小,即可远方电动合、分闸,电机储能,也可就地手动合、分闸和电机储能。

对于弹簧操作机构,大多数的储能电机功率在100W~300W之间,分合闸线圈的功率在200W~400W之间。

2、直流操作电源-直流屏直流屏的原理框图如下:直流屏采用2V规格的电池,串成220V,需要110只,但2V规格的电池,其电压一般都高于2V,在2.2V甚至更高,所以电池组正负两端的电压会达到或超过240V。

直流屏的输出有二路,一路240V(左右),一路220V。

240V输出直接来自于电池组的正负两端。

这样高的电压,如果直接提供给开关柜的其他直流负载,如微机保护装置等,会使其无法承受,因此需要用降压硅链降压到220V,这一路输出就是控制母线电压(KM)。

而早先的电磁操作机构,刚好需要比较大的驱动电流,也能承受较高的直流电压,因此就把电池组两端的电压直接输出供分合闸使用,这一路输出就是合母电压(HM)。

3、分布式直流电源作为开关柜操作电源的使用分布式直流电源具有体积小,造价低,方便使用的特点,其连续功率在100W~200W之间,短时功率(供储能电机)在350W左右(20S),短时功率(供分合闸线圈)能达到600W~100W之间,能完全满足1~2面弹簧操作机构的开关柜使用。

考虑到弹簧操作机构的分合闸线圈功率并不大,对于分布式直流电源,只安排一路输出,电压为220V,不在区分控母输出和合母输出。

4、早先采用两路电源的设计,现改用分布式单路电源时,设计图子的调整方法使用弹簧操作机构的断路器,已无需再分控母(HM)与合母(HM),只需将分布式电源的直流输出直接连接到原来的合母与控母线端即可。

CT19BW型弹簧操作机构

CT19BW型弹簧操作机构

CT19BW型弹簧操作机构
概述:
CT19BW(N)型弹簧操作机构是在元CT19型弹簧操作机构的基础上,针对35kV真空断路器进行加强、改进和完善的,其机械强度、稳定性及可靠都有较大的提高。

CT19BW型可供操动各种户外柱上式35KV真空开关柜(ZW7),其性能符合GB1984《交流高压真空断路器》和本产品《技术条件》的要求,各项指标均达到和超过“IEC”标准。

机构合闸弹簧的储能方式有电动机储能和手动储能两种;分闸操作有分闸电磁铁、过电流脱口电磁铁及手动按钮操作三种;合闸操作有合闸电磁铁及手动按钮操作两种。

4、脱扣的组合及代号:110、100、111、114、1114、400
安装位置示意图:。

断路器(弹簧机构)动作原理及两起合后即分故障案例分析

断路器(弹簧机构)动作原理及两起合后即分故障案例分析

断路器(弹簧机构)动作原理及两起合后即分故障案例分析本文在介绍弹簧机构的结构、动作原理的基础上,分享几起合后即分的故障案例,分析故障产生的原因并提出后续工作建议。

一、弹簧机构动作原理敞开式断路器和组合电器断路器用CT30弹簧机构结构及动作原理如图1~图4所示。

弹簧操动机构分、合闸操作采用两个螺旋压缩弹簧实现。

储能电机通过棘爪、棘轮给合闸弹簧储能。

1415161-分闸弹簧2-合闸弹簧3-合闸掣子4-合闸线圈5-合闸触发撞杆6-分闸线圈7-合闸保持掣子8-分闸掣子9-限位挡块10-拐臂11-棘爪12-凸轮13-棘轮14-分闸掣子15-复位弹簧16-滚轮图1合闸位置(合闸弹簧储能)图2分闸操作过程图3分闸位置(合闸弹簧储能)图4合闸操作过程如图1、图2所示,分闸操作时,分闸电磁铁吸合,分闸电磁铁撞杆触发分闸掣子,分闸掣子逆时针旋转,合闸保持掣子在拐臂的分闸力矩作用下逆时针旋转,分闸弹簧带动拐臂顺时针旋转,分闸弹簧释放能量完成分闸。

分闸操作是一套独立系统,分闸弹簧释放的能量仅作用于断路器分闸。

如图3、图4所示,合闸操作时,合闸线圈带电吸合,并使合闸撞杆撞击合闸掣子。

合闸掣子以顺时针方向旋转,并释放合闸弹簧储能保持掣子,使棘轮带动凸轮轴以逆时针方向旋转,使主拐臂以顺时针旋转,断路器完成合闸。

并同时压缩分闸弹簧,使分闸弹簧储能。

当主拐臂转到行程末端时,分闸掣子和合闸保持掣子将轴销锁住,开关保持在合闸位置。

合闸弹簧释放的能量主要分为两部分,一部分用于断路器合闸,另一部分用于机构分闸弹簧储能。

二、案例1复位弹簧弹力不足(一)故障概况2020年5月25日20时08分53秒,500千伏某站在合上220kV4965开关操作过程中(配合对侧送电,某站站内无工作),在合上4965开关时,A相未正常动作,B、C相正常合闸,三相不一致动作,开关三跳,无其他保护动作。

4965间隔为GIS设备,设备型号为ZFW20-252,弹簧机构型号为CT30,出厂日期2013年12月8日,投运日期2014年6月30日。

负荷开关的工作原理

负荷开关的工作原理

负荷开关(Load Break Switch)是一种用于配电系统的开关设备,它能够关合、承载和开断正常条件下的电流,并且能够通过规定的异常电流,如短路电流。

负荷开关通常用于切换负荷电流,而不是用于切断短路故障电流,尽管它具有一定的断路能力。

以下是负荷开关的工作原理:1. 开关组件:- 负荷开关由固定的触头(刀片)和可移动的触头(触头)组成。

固定触头通常与电源相连,而可移动触头则连接到负载或断路器。

2. 操作机制:- 负荷开关的操作可以通过手动机械操作或通过电动机驱动。

在手动操作中,操作者通过旋转开关手柄来打开或关闭电路。

在电动操作中,开关的驱动通常由控制系统或断路器辅助。

3. 灭弧装置:- 负荷开关通常配备有灭弧装置,用于在开断电流时熄灭电弧。

灭弧装置可以是简单的金属板,也可以是更复杂的气体灭弧室(如六氟化硫SF6)或压缩空气系统。

4. 弹簧操作机构:- 负荷开关的触头通常由弹簧操作机构驱动,这些机构在操作时储存能量,并在需要时释放,以实现快速和可靠的触头接触。

5. 分合闸过程:- 当负荷开关合闸时,可移动触头与固定触头接触,形成电路。

当开关分闸时,可移动触头从固定触头分离,切断电路。

6. 安全特性:- 负荷开关设计有安全特性,如防止误操作的安全锁定装置,以及确保在开断过程中电弧得到有效灭弧的机制。

7. 适用范围:- 负荷开关适用于10千伏以下的配电线路,它们通常与高压熔断器配合使用,以提供短路保护。

负荷开关的工作原理涉及到电气、机械和热力学的多个方面,其设计和操作需要考虑到可靠性、安全性和维护简便性。

通过正确的选择、安装和操作,负荷开关可以有效地管理配电系统中的负荷电流,并确保电力系统的稳定运行。

高压开关柜断路器(电磁、弹簧、永磁)操作机构工作原理、优缺点与选型计算方法

高压开关柜断路器(电磁、弹簧、永磁)操作机构工作原理、优缺点与选型计算方法

高压开关柜断路器(电磁、弹簧、永磁)操作机构工作原理、优缺点与选型计算方法(一)、电磁操作机构结构。

⑴、电磁操作机构原理:电磁操作机构结构比较简单,机械组成部件数量约120个,它是利用通过合闸线圈中的电流产生的电磁力驱动合闸铁芯,撞击合闸连杆机构进行合闸的,其合闸能量的大小完全取决于合闸电流的大小,因此需要很大的合闸电流。

⑵、电磁操作机构的优点主要有:①、结构比较简单,工作比较可靠,加工要求不是很高,制造容易,生产成本较低;②、可实现遥控操作和自动重合闸;③、有较好的合、分闸速度特性。

⑶、电磁操作机构的缺点主要有:①、合闸电流大,合闸线圈消耗的功率大,需要配大功率的直流操作电源;②、合闸电流大,一般的辅助开关、继电器触点不能满足要求,必须配专门的直流接触器,利用直流接触器带消弧线圈的触点来控制合闸电流,从而控制合、分闸线圈动作;③、操作机构动作速度低,触头的压力小,容易引起触头跳动,合闸时间长,电源电压变动对合闸速度影响大;④、耗费材料多,机构笨重;⑤、户外变电所断路器的本体和操作机构一般都组装在一起,这种一体式的断路器一般只具备电动合、电动分和手动分的功能,而不具备手动合的功能,当操作机构箱出现故障而使断路器拒绝电动时,就必须停电进行处理。

(二)、弹簧操作机构。

⑴、弹簧操作机构结构:①、弹簧操作机构由弹簧贮能、合闸维持、分闸维持、分闸4个部分组成,零部件数量较多,约200个,利用机构内弹簧拉伸和收缩所储存的能量进行断路器合、分闸控制操作。

②、弹簧能量的储存由储能电机减速机构的运行来实现,而断路器的合、分闸动作靠合、分闸线圈来控制,因此断路器合、分闸操作的能量取决于弹簧储存的能量而与电磁力的大小无关,不需太大的合、分闸电流。

⑵、弹簧操作机构的优点主要有:①、合与分闸电流不大,不需要大功率的操作电源;②、既可远方电动储能,电动合、分闸,也可就地手动储能,手动合、分闸,因此在操作电源消失或出现操作机构拒绝电动的情况下也可以进行手动合、分闸操作;③、合与分闸动作速度快,不受电源电压变动的影响,且能快速自动重合闸;④、储能电机功率小,可交直流两用;⑤、弹簧操作机构可使能量传递获得最佳匹配,并使各种开断电流规格的断路器通用同一种操作机构,选用不同的储能弹簧即可,性价比优。

弹簧储能操作机构的工作原理

弹簧储能操作机构的工作原理

背景:阅读内容弹簧储能操作机构的工作原理[日期:2012-01-05] 来源:作者:杨德印[字体:大中小] EasyEDA,史上最强大的电路设计工具弹簧储能操作机构是一种较新的断路器操作机构,这种操作机构的出现,对提高断路器的整体性能起到了较大作用。

因为传统电磁操作机构在提高合闸速度上受到一定限制,它的合闸功率也较大,对电源要求较高。

而弹簧储能操作机构采用的手动或电动操作,既有较高的合闸速度,又能实现自动重合闸。

CT19是弹簧储能操作机构的一个系列号。

其型号组成及含义见下图。

它可供操作高压开关柜中ZN28型高压真空断路器合闸及与之相当的其他类型的真空断路器之用,其性能符合GB1984《交流高压断路器》的要求,主要指标均达到和超过IEC标准。

操作机构合闸弹簧有电动机储能和手动储能两种;分闸操作有分闸电磁铁、过流脱扣电磁铁及手动按钮操作三种;合闸操作有合闸电磁铁及手动按钮两种。

1.机械部分原理简介CT19、CT19B(A)型弹簧储能操作机构由电动机提供储能动力,经两级齿轮减速,带动储能轴转动,实现给储能弹簧储能。

弹簧储能到位时,摇臂推动行程开关.切断电动机电源。

人力储能时,将人力储能操作手柄插入储能摇臂插孔中,然后上下摆动,通过摇臂上的棘爪驱动棘轮,并带动储能轴转动实现对合闸弹簧储能。

操作机构储能完成后即保持在储能状态,若准备合闸,可使合闸线圈通电,继而电磁铁动作,储能保持状态被解除,合闸弹簧快速释放能量,完成合闸动作。

分闸时,分闸线圈通电使电磁铁动作,连杆机构的平衡状态被解除,在断路器负载力作用下,完成分闸操作。

CT19、CT19B(A)型弹簧储能操作机构外形见下图。

2.电气控制原理下图是CT19弹簧储能操作机构的电气控制原理图,图中两侧的两条竖线KM是控制电源线,它可以是AV220V或DC220V等电源电压。

当机构处于分闸未储能状态时,行程开关CK常闭触点闭合。

此时按下储能按钮SB.中间继电器KA1的线圈得电,其常开触点KAl-1闭合,中间继电器KA2随之动作.KA2的常闭触点KA2-2打开.常开触点KA2-1闭合,电动机M与电源接通开始运转,带动合闸弹簧开始储能,直至储能完成松开储能按钮SB。

开关弹簧操作机构检修及常规缺陷处理

开关弹簧操作机构检修及常规缺陷处理

开关弹簧操作机构检修及常规缺陷处理摘要:本文对电力检修实际中常见的开关弹簧机构检修进行了探讨,分析了此类型开关几类常见故障原因,并提出了改进措施。

关键词:弹簧机构开关故障处理1 引言随着电力系统的不断发展,复杂程度与可靠要求均在不断提升,断路器电路大电流通断控制的主要设备,其可靠性在电力系统中具有重要意义。

弹簧操作机构具有内部构成简单、维护工作量小、安全可靠性高等特点,被广泛用于220kV 及以下电压等级范围内的高压断路器等电网设备。

在实际生产中出现弹簧机构频繁发生原件毁坏不能正常工作、拒动故障、接触不良等现象,对断路器的正常工作产生重大影响。

本文对弹簧操作机构常出现的几种故障进行了列举,并对如何进行检修和如何解决该故障缺陷的提出合理的建议。

2 弹簧操作机构检修方法及注意事项2.1 设备状态检修概述设备状态检修的内容就是利用先进的诊断技术对设备进行状态监测并及时的提供设备状态信息,并根据该诊断信息来判断设备是否异常从而达到预知设备是否出现故障,进而能够在故障发生前进行检修。

随着科技的发展,设备监测数据越来越准确,从而提高了设备故障的准确性,大大提高了预测故障发生率,降低了设备故障的产生。

这种设备状态检修在电网中受到强烈的欢迎和推广应用。

2.2 弹簧操作机构的检修方法对弹簧操作机构进行检修时:①要观察外部结构,在观察过程中,如果无专业人员在现场,不得让人碰触机构内部的接触器的触点并且不能对弹簧操作机构进行储能操作。

通过观察来尝试确定设备出现故障的位置,若弹簧机构外部无明显异常,有可能是其机构内部发生故障,有可能是弹簧操作机构内部生锈腐蚀卡涩或分闸缓冲器漏油等故障,这是可通过近距离的仔细观察机构外部异常运行现象然后进行深入分析从而确定该机构内部的故障发生的位置;②通过对机构外部的气味进行判断,若周围有烧糊的气味,可能是保护插件或者断路器分(合)闸线圈等内部烧坏,在明确原因后,可进一步的对元器件进行检查时以确定故障发生的位置;若通过以上方法仍没有确定故障位置,可以对断路器的分合闸做试验,观察该弹簧机构分别在分合闸的状态下的运行情况,可以快速的判断是否是断路器出现合后即分的故障缺陷;③除通过对外部机构直接判断外,也可以使用万用表测量来快速的找出故障的发生原因。

弹簧操作机构常见故障现象原因及预防讲义

弹簧操作机构常见故障现象原因及预防讲义
3.电动储能接线只能为: 在2007.4月以前生产的BLK222机构正极 或火线接450/451端子;负极或零线接465/466端子;在2007.4 月以后生产的BLK222机构正极或火线接450端子;负极或零线 接460端子,储能控制电源正极接603端子,负极接613端子。严 禁将储电源接在其他任何端子上.
满能的情况下合闸造成的。 此时将机构恢复正常分闸位置(即进行手动释放能量恢复
至分闸位置)即可正常投运。
© CNTHB hao wang- 2020/11/4 P29
BLK222机构
BLK222机构半分半合的处理: 1. 将机构手动释能底板打开,手动/电动转换开关Y7的小钮弹 开,机构处于手动储能状态。
© CNTHB hao wang- 2020/11/4 P23
BLK222机构
BLK222机构半分半合
现象:1.开关分合闸指示牌在半分半合位置; 2.机构合闸拐臂头处于如下图红线范围内;且分闸拐臂头未被分闸挚
子的滚轴保持住
合闸拐臂头
分闸拐臂头
© CNTHB hao wang- 2020/11/4 P24
© CNTHB hao wang- 2020/11/4 P2
BLG1002A机构
BLG1002A弹簧操作机构--机械闭锁(半分半合)
现象:1.闭锁盘与机械闭锁杆相互顶死(如图片1) 2.合闸拐臂处在合闸挚子滚轴下方(如图片2)
© CNTHB hao wang- 2020/11/4 P3
图片1
图片2
分闸线圈
合闸线圈
BLG1002A机构
BLG1002A机构分合闸线圈烧毁原因: 1. 在做低电压测试时,连续给线圈加压直到挚子动作,容易造成
线圈长期带电出现烧灼迹象或烧毁; 2. 在做传动或测试试验时,因设备原因或回路有虚接现象,造成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、弹簧操动机构
弹簧操动机构是一种以弹簧作为储能元件的机械式操动机构。

弹簧的储能借助电动机通过减速装置来完成,并经过锁扣系统保持在储能状态。

开断时,锁扣借助磁力脱扣,弹簧释放能量,经过机械传递单元使触头运动。

弹簧操动机构结构简单,可靠性高,分合闸操作采用两个螺旋压缩弹簧实现。

储能电机给合闸弹簧储能,合闸时合闸弹簧的能量一部分用来合闸,另一部分用来给分闸弹簧储能。

合闸弹簧一释放,储能电机立刻给其储能,储能时间不超过15s(储能电机采用交直流两用电机)。

运行时分合闸弹簧均处于压缩状态,而分闸弹簧的释放有一独立的系统,与合闸弹簧没有关系。

这样设计的弹簧操动机构具有高度的可靠性和稳定性,既可满足O-0.3 sec -CO-180 sec -CO操作循环,又可满足CO-15sec-CO操作循环,机械稳定性试验达10000次。

1.1 CT20弹簧操动机构动作原理
CT20型弹簧操动机构(图1、图2、图3)利用电动机给合闸弹簧储能,断路器在合闸弹簧的作用下合闸,同时使分闸弹簧储能。

储存在分闸弹簧的能量使断路器分闸。

1.1.1分闸动作过程
图1所示状态为开关处于合闸位置,合闸弹簧已储能(同时分闸弹簧也已储能完毕)。

此时储能的分闸弹簧使主拐臂受到偏向分闸位置的力,但在分闸触发器和分闸保持掣子的作用下将其锁住,开关保持在合闸位置。

分闸操作(图1、2)
分闸信号使分闸线圈带电并使分闸撞杆撞击分闸触发器,分闸触发器以顺时针方向旋转并释放分闸保持掣子,分闸保持掣子也以顺时针方向旋转释放主拐臂上的轴销A,分闸弹簧力使主拐臂逆时针旋转,断路器分闸。

1.1.2合闸操作过程
图2所示状态为开关处于分闸位置,此时合闸弹簧为储能(分
闸弹簧已释放)状态,凸轮通过凸轮轴与棘轮相连,棘轮受到已储能的合闸弹簧力的作用存在顺时针方向的力矩,但合闸触发器和合闸弹簧储能保持掣子的作用下使其锁住,开关保持在分闸位置。

合闸操作(图2、3)
合闸信号使合闸线圈带电,并使合闸撞杆撞击合闸触发器。

合闸触发器以顺时针方向旋转,并释放合闸弹簧储能保持掣子,合闸弹簧储能保持掣子逆时针方向旋转,释放棘轮上的轴销B。

合闸弹簧力使棘轮带动凸轮轴以逆时针方向旋转,使主拐臂以顺时针旋转,断路器完成合闸。

并同时压缩分闸弹簧,使分闸弹簧储能。

当主拐臂转到行
程末端时,分闸触发器和合闸保持掣子将轴销A锁住,开关保持在合闸位置。

1.1.3 合闸弹簧储能过程
图3所示状态为开关处于合闸位置,合闸弹簧释放(分闸弹簧已储能)。

断路器合闸操作后,与棘轮相连的凸轮板使限位开关33HB闭合,磁力开关88M带电,接通电动机回路,使储能电机启动,通过一对锥齿轮传动至与一对棘爪相连的偏心轮上,偏心轮的转动使这一对棘爪交替蹬踏棘轮,使棘轮逆时针转动,带动合闸弹簧储能,合闸弹簧储能到位后由合闸弹簧储能保持掣子将其锁定。

同时凸轮板使限位开关33HB切断电动机回路。

合闸弹簧储能过程结束。

来实现。

图4介绍了机械防跳装置的原理,其动作过程如下: 1). 图a所示状态为开关处于分闸位置,此时合闸弹簧为储能
(分闸弹簧已释放)状态,凸轮通过凸轮轴与棘轮相连,棘轮受到已储能的合闸弹簧力的作用存在顺时针方向的力矩,但合闸触发器和合闸弹簧储能保持掣子的作用下使其锁住,开关保持在分闸位置。

2). 当合闸电磁铁被合闸信号励磁时,铁心杆带动合闸撞杆先压下防跳销钉后撞击合闸触发器。

.合闸触发器以顺时针方向旋转,并释放合闸弹簧储能保持掣子,合闸弹簧储能保持掣子逆时针方向旋转,释放棘轮上的轴销B。

合闸弹簧力使棘轮带动凸轮轴以逆时针方向旋转,使主拐臂以顺时针旋转,断路器完成合闸。

3).滚轮推动脱扣器的回转面,使其进一步逆时针转动。

从而,脱扣器使脱扣杆顺时针转动(见图4b),从防跳销钉上滑脱,而防跳销钉使脱扣杆保持倾斜状态(见图4c).
4).断路器合闸结束,合闸信号消失电磁铁复位(见图4d).
5) .如果断路器此时得到了意外的分闸信号开始分闸,在分闸在这一过程中,只要合闸信号一直保持,脱扣杆由于防跳销钉的作用始终是倾斜的,从而铁心杆便不能撞击脱扣器,因此,断路器不能重复合闸操作(见图4e)实现防跳功能。

当合闸信号解除时,合闸电磁铁失磁,铁心杆通过电磁铁弹簧返回,则铁心杆和脱扣杆均处于图4a状态,为下次合闸操作作好了准备。

1.3弹簧操作机构的组成
弹簧操作机构主要由箱体、二次控制部分、机构芯架组成。

图 6
1.4)弹簧机构的技术参数 1.4.1机构的参数见表2
表2
1 弹簧机构活塞杆行程
.00.30.100+- mm
2 拐臂滚子和机构凸轮之间间隙 1.4±0.
3 断路器处于分闸状
态合闸弹簧已储
能。

见图8 3
合闸弹簧定位螺母与定位杆距离
12.0~47.0 4 合闸电磁铁行程C 5.0~5.5
断路器处于分闸状
态。

见图9
触发器与脱扣器间隙D
2.0~2.5
C -D
3.0~3.5
控制回路与辅助回路参数表 3
1.4.3 SF6气体压力参数
SF6气体压力参数随所配的产品,表4以LW25-126为例
表 4 (20℃)
1.5 配弹簧机构的断路器在运行中的故障处理见表5
表5
1.6)现场使用中几个问题
1.6.1)弹簧操作机构润滑脂的使用
弹簧操作机构的传动零件较多,而其本身又对传动摩擦等反力特别敏感,所以出厂时对诸如轴销,轴承,齿轮,弹簧筒等转动和直动产生相互摩擦的地方涂敷低温2#润滑脂。

在运行了六年后,一些润滑脂需重新涂敷。

注意棘轮齿面部和大小棘爪与棘轮接触处一定不要涂抹低温2#润滑脂,以防影响机构动作的准确性。

具体涂敷见图7。

图7
1.6.2)机构行程的检查和凸轮间隙的确认
手动慢分,慢合机构可以测量机构行程和本体行程见图8,测量值应符合表2的技术要求。

行程不够时,首先测量凸轮间隙,凸轮间隙越大,行程越小。

1.6.5 合闸弹簧手动储能的方法
当电机回路失去电源时,合闸弹簧可手动储能其方法见图12
将套杆12-1和套板手12-3插入棘爪轴的六角头,顺时针方向旋转
图12 手动操作装置安装
12-1套杆;12-2棘爪轴;12-3套板手;12-4套筒板手;12-5套管;
12-6盖板;12-7机构箱;12-8起重杆;12-9螺母;12-10轴承;
12-11拐臂;12-12合闸弹簧储能示意。

相关文档
最新文档