导数在实际问题中的应用

合集下载

导数在解决实际问题中的应用

导数在解决实际问题中的应用

导数在解决实际问题中的应用导数知识是学习高等数学的基础, 它在自然科学、工程技术及日常生活等方面都有着广泛的应用.导数是从生产技术和自然科学的需要中产生的, 同时, 又促进了生产技术和自然科学的发展, 它不仅在天文、物理、工程领域有着广泛的应用, 而且在日常生活及经济领域也是逐渐显示出重要的作用.导数是探讨数学乃至自然科学的重要的、有效的工具之一, 它也给出了我们生活中很多问题的答案.诸如生活中的有关环境问题、工程造价最省、容积最大、边际效益等, 本文将介绍如何将生活中的有关数学问题转化为相关的导数问题来求解, 以此说明如何应用所学数学知识灵活地应用于生活.类型一:环境问题例1 烟囱向其周围地区散落烟尘造成环境污染, 已知落在地面某处的烟尘浓度与该处到烟囱的距离的平方成反比, 而与该烟囱喷出的烟尘量成正比.现有A 、B 两座烟囱相距20km, 其中B 座烟囱喷出的烟尘量是A 的8 倍, 试求出两座烟囱连线上的点C, 使该点的烟尘浓度最低.分析由题意知要确定某点的烟尘浓度最低,显然其烟尘浓度源自这两座烟囱, 与其距离密切相关, 因此可考虑先设出与某个烟囱的距离, 从而表示出相应的烟尘浓度, 再确定其最小值即可.解:不妨设A 烟囱喷出的烟尘量是1, 而B 烟囱喷出的烟尘量为8, 设AC=x ( 其中0<x <20) , 所以BC=20- x , 依题意得点C 处的烟尘浓度22y 8(20)kx k x =+-( 其中k 是比例系数, 且k>0) , '6(350)y k x =-令y ′=0 503x =.因为当50(0,)3x ∈)时, y ′<0; 当50(,20)3x ∈时, y ′>0, 故当50=3x 时, y 取得最小值, 即当C 位于距点A 为503km 时, 使该点的烟尘浓度最低. 评注:在经济高速发展的同时, 人们也越来越关心我们赖以生存的环境质量, 这提示我们不能仅一味地追求经济效益, 同时应当注意保护环境.类型二:工程造价问题例2 如图所示, 某地为了开发旅游资源, 欲修建一条连接风景点P 和居民区O 的公路, 点P 所在的山坡面与山脚所在水平面α所成的二面角为θ( 0°<θ<90°) , 且sin θ= 25, 点P 到平面α的距离PH=0.4( km) .沿山脚原有一段笔直的公路AB 可供利用.从点O 到山脚修路的造价为a 万元/km, 原有公路改建费用为2a 万元/km.当山坡上公路长度为l km( 1≤l ≤2) 时, 其造价为( l2+1) a 万元.已知OA ⊥AB, PB ⊥AB, AB=1.5( km) , OA=3 km.( 1) 在AB 上求一点D, 使沿折线PDAO 修建公路的总造价最小;( 2) 对于( 1) 中得到的点D, 在DA 上求一点E,使沿折线PDEO 修建公路的总造价最小;( 3) 在AB 上是否存在两个不同的点D ′、E ′, 使沿折线PD ′E ′O 修建公路的总造价小于( 2) 中得到的最小总造价, 证明你的结论.分析由题意知要求修建公路的总造价最小值, 可以先建立相应的总造价函数关系式, 再确定其最小值即可.解( 1) 如图, PH ⊥α, HB"α, PB ⊥AB,由三垂线定理逆定理知, AB ⊥HB,所以∠PBH 是山坡与α所成二面角的平面角, 则∠PBH=θ, sin PH PB θ==1.设BD=x, 0≤x ≤1.5. 则 PD=2221[1,2]x PB x +=+∈记总造价为()1f x 万元, 据题设有()21112f x PD AD AO a ⎛⎫=+++ ⎪⎝⎭. 当x= 14, 即BD=14(km) 时, 总造价()1f x 最小; (2) 设AE=y,405y ≤≤, 总造价为()2f y 万元, 根据题设有()22213113224f y PD y y a ⎡⎤⎛⎫=++++- ⎪⎢⎥⎝⎭⎣⎦243=3216y y a a ⎛⎫+-+ ⎪⎝⎭ .则()'22123y f y a y ⎛⎫ ⎪=- ⎪+⎝⎭ 由 ()'2=0f y , 得y=1; 当y ∈( 0, 1) 时, ()'2fy <0,()'2f y 在( 0, 1) 内是减函数; 当y ∈514⎛⎫ ⎪⎝⎭,时, ()'2f y >0,()'2f y 在514⎛⎫ ⎪⎝⎭,内是增函数. 故当y=1, 即AE=1 时总造价()2f y 最小, 且最且最小总造价为6716a 万元;( 3) 不存在这样的点D ′、E ′事实上, 在AB 上任取不同的两点D ′、E ′.为使总造价最小, E 显然不能位于D ′与B 之间.故可设E ′位于D ′与A 之间,且'1BD x =, 11AE y =, 11302x y ≤+≤, 总造价为S 万元, 则221111113224x y S x y a ⎛⎫=-++-+ ⎪⎝⎭.类似于(1) 、(2)讨论知, 2111216x x -≥-, 2113322y y +-≥,当且仅当111,14x y == 同时成立时, 上述两个不等式等号同时成立, 此时BD ′= 14, AE=1, S 取得最小6716a , 点D ′、E ′分别与点D 、E 重合, 所以不存在这样的点D ′、E ′,使沿折线PD ′E ′O 修建公路的总造价小于( 2) 中得到的最小总造价.评注:在经济建设的过程中, 常常涉及成本问题, 人们总是想利用最少的钱、办最多的事, 这就常常要求我们善于将相关的问题恰当地转化为数学问题, 从而利用所学知识解决.类型三:最省钱车速问题例3 统计表明, 某种型号的汽车在匀速行驶中每小时的耗油量y( 升) 关于行驶速度x( 千米/小时) 的函数解析式可以表示为:()3138012012800080y x x x =-+<≤ .已知甲、乙两地相距100 千米. ( 1) 当汽车以40 千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?( 2) 当汽车以多大的速度匀速行驶时, 从甲地到乙地耗油最少? 最少为多少升?分析:要求确定从甲地到乙地要耗油量, 这就涉及行驶时间与车速, 因此根据题意先写出耗油量 与车速间的关系, 再利用导数知识确定其最小值.解( 1) 当x=40 时, 汽车从甲地到乙地行驶了100=2.540小时, 要耗油31340408 2.5=17.512800080⎛⎫⨯-⨯+⨯ ⎪⎝⎭( 升) .所以当汽车以40千米/小时的速度匀速行驶时, 从甲地到乙地耗油17.5 升;( 2) 当速度为x 千米/小时时, 汽车从甲地到乙地行驶了100x小时, 设耗油量为()h x 升,依题意得()()3213100180015=801201280008012804h x x x x x x x ⎛⎫-+∙=--<≤ ⎪⎝⎭ ()()33'22800800120640640x x h x x x x -=-=<≤. 令()'h x =0 得x=80. 当x ∈( 0, 80) 时, ()'h x <0, ()h x 是减函数; 当x ∈( 80, 120) 时()'h x >0, ()h x 是增函数. 当x=80 时, ()h x 取到极小值()80h =11.25.因为()h x 在( 0, 120] 上只有一个极值,所以它是最小值.所以当汽车以80 千米/小时的速度匀速行驶时, 从甲地到乙地耗油最少, 最少为11.25 升.评注:随着经济的迅猛发展, 轿车逐渐进入人们的家庭, 因此有关车辆的数学问题也就成为我们所熟悉的背景问题, 常常就涉及到如何使用更省钱的问题, 这个例子给了我们很好的启示.类型四:边际效益问题例四:日常生活中的饮用水通常是经过净化的。

导数在生活中的应用例子

导数在生活中的应用例子

导数在生活中的应用例子
一、在经济学中
1、供求曲线中的供求应变:当价格发生变化时,需求量会出现波动,
以及需求量对价格的变化也变化,供求曲线受到价格变化的影响。


就是导致供求应变的原因,而这个原因可以用微积分的偏导数来证明。

2、市场竞争:随着竞争者数量的增加,市场价格也会发生变化,价格
作为变量,市场最终决定价格时,就会出现供需冲突,从而引起价格
波动,这就用微积分中的导数来分析。

二、在金融学中
1、货币政策传导机制:货币政策的实施使得利率的变化对经济的影响,用微积分的意义来看,利率是一种曲线,当利率变化时,曲线的斜率
也会变化,这就是利率传导机制。

2、投资机会成本:投资机会成本指的是投资者在一定条件下所承担的
投资风险,当利率下降时,投资机会成本也会发生变化,而这一变化
可以用微积分中的导数来进行分析。

三、在制造业中
1、公差计算:在计算机装配工艺中,产品的尺寸关系到了其加工的质量,如果所用的部件的尺寸不符合公差要求,就会出现不良的加工结
果,这时处理的办法就是计算出来最大的容许偏差,而这个最大容许
偏差就是通过微积分的偏微分来计算出来的。

2、工艺优化:为了确保加工出来的产品的质量,就必须对付诸如温度、压力、用料等参数进行优化调整,这可以使用微积分来分析各参数对
最终结果的影响,以达到最优化调整的效果。

试述导数在解决实际问题中的应用

试述导数在解决实际问题中的应用

试述导数在解决实际问题中的应用在实际生活中,我们经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。

这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决,下面通过具体实例谈谈导数在实际生活中的应用。

一、生活中的优化问题:例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。

例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:这是一道实际生活中的优化问题,建立的目标函数是三次函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧。

而运用导数知识,求三次目标函数的最值就变得非常简单。

思路:设箱底边长为x cm,则箱高602xh-=cm,得箱子容积V是箱底边长x的函数:23260()(060)2x xr x x h x-==<<,从求得的结果发现,箱子的高恰好是原正方形边长的16,这个结论是否具有一般性?二、最大利润问题例2: 已知某商品生产成本C 与常量q 的函数关系式为1004C q =+,价格p 与产量q 的函数关系式1258p q =-。

求产量q 为何值时,利润L 最大。

分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格,由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润。

解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭ 利润()212510048L R C q q q ⎛⎫=-=--+ ⎪⎝⎭ ()212110002008q q q =-+-<< '1214L q =-+ 令'0L =,即12104q -+= 求得唯一的极值点84q = 因为L 只有一个极值点,所以它是最大值。

导数在实际生活中的应用

导数在实际生活中的应用

11
课堂练习
(1)求内接于半径为R的球的圆柱 体积的最大值。
12
(2)已知圆锥的底面半径为R,高为H, 求内接于这个圆锥体并且体积最大的圆柱 体的高h。
答:设圆柱底面半径为r,可得r=R(H-h)/H.易得 当h=H/3时, 圆柱体的体积最大.
13
S ( x ) 6 x 24 x 16. 令 S ( x ) 0 ,得x1 2
2
2 3 2 3 , x2 2 . 3 3 2 3 32 3 x1 (0,2), 所以当 x 2 . 时, S ( x )max 3 9
32 3 2 3 ,0) 时,矩形的最大面积是 . 因此当点B为(2 V 2 3 ( ) 2
3
4V

VV 223 3 2

h=2R
因为S(R)只有一个极值,所以它是最小值
答:当罐的高与底直径相等时,所用材料最省
8
例4:
• 请你设计一个帐篷,它的下部的形状是 高为1m的正六棱柱,上部的形状是侧 棱长为3m的正六棱锥,试问:当帐篷 的顶点O到底面中心O1的距离为多少时, O 帐篷的体积最大?
x
V / ( x)
(0,40)
40
(40,60)
+
V ( x)
0 16000
-
答:x=40cm时,箱子最大容积是16 000cm3
5
例2: 如图,在二次函数f(x)= y 2的图象与x轴所 4x-x 围成的图形中有一个 内接矩形ABCD,求这 个矩形的最大面积. x 解:设B(x,0)(0<x<2), 则 A(x, 4x-x2). 从而|AB|= 4x-x2,|BC|=2(2-x).故矩形ABCD的面积 为:S(x)=|AB||BC|=2x3-12x2+16x(0<x<2).

导数在实际生活中的应用

导数在实际生活中的应用

导数在实际生活中的应用(1)学习目标1.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.2.在解决具体问题的过程中,体会导数方法在研究函数性质中的一般性和有效性.课前预学:问题1:一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.只要利用导数求出函数y=f(x)的所有,再求出端点的函数值,进行比较,就可以得出函数的最大值和最小值.问题2:生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为问题.导数是求函数最大(小)值的有力工具,可以运用导数解决一些生活中的优化问题.问题3:利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各个量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的,解方程f'(x)=0;(3)比较函数在区间端点和点的函数值的大小,最大(小)者为最大(小)值.问题4:解决生活中的优化问题应当注意的问题确定函数关系式中自变量的区间,一定要考虑实际问题的意义,不符合实际问题的值应舍去.课堂探究:一.利润最大问题某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售量价格x的值,使商场每日销售该商品所获得的利润最大.二.容积最大问题请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.三.成本最低问题:如图,某工厂拟建一座平面图为矩形,且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米.如果池四周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元,无盖.(1)写出总造价y(元)与污水处理池的长x(米)的函数关系式,并指出其定义域;(2)污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.课堂检测:1.把长度为l的铁丝围成一个长方形,则长方形的最大面积为.2.设底为正三角形的直棱柱的体积为V,则其表面积最小时底面边长为.3.做一个无盖圆柱水桶,其体积是27π m3,若用料最省,则圆柱的底面半径为m.4.已知一个扇形的周长为l,扇形的半径和中心角分别为多大时,扇形的面积最大?导数在实际生活中的应用(2)学习目标:1.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.2.在解决具体问题的过程中,体会导数方法在研究函数性质中的一般性和有效性. 课前预学:1.把长度为16的线段分成两段,各围成一个正方形,这两个正方形面积的最小值为 .2.要做一个圆锥形漏斗,其母线长20 cm,要使其体积最大,则其高是 .3.周长为20的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值是 .4.一边长为48 cm 的正方形铁皮,铁皮四角截去四个边长都为x cm 的小正方形,做成一个无盖方盒.求x 多大时,方盒容积最大? 课堂探究:1.如图,等腰梯形ABCD 的三边AB,BC,CD 分别与函数y=-x 2+2,x∈[-2,2]的图象切于点P,Q,R.求梯形ABCD 面积的最小值.2.已知某公司生产的品牌服装的年固定成本为10万元,每生产1千件,需要另投入1.9万元,设R(x)(单位:万元)为销售收入,根据市场调查得知R(x)=其中x 是年产量(单位:千件).(1)写出年利润W 关于年产量x 的函数解析式;(2)年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?3.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=x 3-x+8(0<x≤120),已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?课堂检测:某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.。

利用导数解决实际问题

利用导数解决实际问题

利用导数解决实际问题导数是微积分中的重要概念,广泛应用于解决实际问题。

本文将以实例为基础,介绍如何利用导数解决一些实际问题,进一步展示导数在数学和现实生活中的实际应用。

I. 利用导数求函数的极值函数的极值是导数在某点为零时的取值,通过求解导数等于零的方程,可以确定函数的极小值和极大值。

例如,我们考虑一条抛物线的问题。

假设有一条抛物线,其顶点的坐标为(a,b),通过求解该抛物线的导数,可以确定其极值点坐标。

假设抛物线的方程为y = ax² + bx + c,其中a、b、c为常数。

求解导数dy/dx = 2ax + b = 0,可以得到极值点的x坐标为-x = b / (2a)。

将这个x坐标带入抛物线方程,可以确定y坐标,从而得到顶点的坐标。

通过上述方法,我们可以利用导数求解抛物线的顶点坐标,以及其他函数的极值点坐标。

这在实际问题中具有广泛的应用,例如优化问题、最小二乘法等。

II. 利用导数求函数的增减性导数可以判断函数在某个点附近的增减性。

通过导数的正负性,可以确定函数的单调增或单调减的区间。

例如,在经济学中,利润函数与产量函数之间存在一定的关系。

假设利润函数为P(x),产量函数为Q(x),则利润函数的增减与产量函数的边际收益有关。

边际收益是指单位产量增加所带来的额外利润。

利润函数的导数就是边际收益函数。

如果边际收益大于零,说明产量的增加会带来利润的增加,此时利润函数是单调增的;如果边际收益小于零,则说明产量的增加会带来利润的减少,此时利润函数是单调减的。

通过以上例子,我们可以看到导数在确定函数的增减性上的实际应用。

利用导数可以帮助我们分析函数的特点,并做出相应的决策。

III. 利用导数求曲线的切线与法线导数可以帮助我们求解曲线的切线和法线方程。

切线是曲线在某点的切线,法线是与切线垂直的直线。

求解曲线的切线和法线方程常常用于解决几何和物理问题,例如求解质点在曲线上的运动轨迹。

假设有一条曲线的方程为y = f(x),其中f(x)为可导函数。

导数在实际生活中的运用

导数在实际生活中的运用

导数在实际生活中的运用【摘要】导数在实际生活中的应用广泛而深远。

在物体运动的描述中,导数可以帮助我们准确地预测物体的速度和加速度。

在经济学中,导数被用来分析市场趋势和制定最优的经济政策。

医学领域中,导数可以帮助医生更好地理解生命体征数据,提高诊断和治疗的准确性。

工程领域中,导数在设计和优化各种系统、结构和器件中扮演着重要角色。

环境保护方面,导数可以帮助我们预测污染物在环境中的传播和影响。

导数在各个领域中的普遍性表明了其对现代社会的重要性。

通过对导数的深入研究和应用,我们能够更好地理解世界的运行规律,促进科技进步和社会发展。

【关键词】导数、实际生活、物体运动、经济学、医学领域、工程领域、环境保护、普遍性、重要性1. 引言1.1 导数在实际生活中的运用导数在实际生活中的运用广泛而深远。

在日常生活中,我们可能并不经常意识到导数的存在,但实际上,导数在我们生活的方方面面都有着重要的应用。

导数可以帮助我们描述物体的运动,预测经济的发展趋势,提高医学诊断的准确性,优化工程设计的效率,以及保护环境资源的可持续性。

物体运动的描述是导数在实际生活中的最常见应用之一。

通过导数,我们可以精确地描述物体在空间中的位置、速度和加速度变化,从而帮助我们进行准确的运动分析和预测。

在交通规划中,导数可以帮助我们优化车辆的行驶路线,缓解交通拥堵问题;在体育比赛中,导数可以帮助我们分析选手的表现,并优化训练计划。

除了物体运动,导数在经济学、医学、工程和环保领域中也有着重要的应用。

在经济学中,导数可以帮助我们分析市场的供需关系,预测商品价格的波动趋势,优化投资组合的收益率。

在医学领域,导数可以帮助医生精确地分析患者的病情,提高诊断和治疗的效率。

在工程领域,导数可以帮助工程师优化产品设计,提高生产效率和质量。

在环境保护领域,导数可以帮助我们优化资源利用,减少能源消耗和环境污染,实现可持续发展。

导数在各个领域中都有着重要的应用,对现代社会的发展起着至关重要的作用。

导数在高中数学中的应用_数学教育

导数在高中数学中的应用_数学教育

导数在高中数学中的应用_数学教育
导数是高中数学中非常重要的一章节,它不仅具有重要的理论
意义,而且在实际应用中也发挥着巨大的作用。

以下列举了一些导
数在高中数学中的应用:
1. 极值问题:通过求导数可得到函数的极值,即最值。

在应用
中常常需要求某个量的最大值或最小值,例如对于一个正方形,我
们需要求出其面积的最大值,就可以通过对正方形的边长求导得到。

2. 切线和法线:通过求导数我们可以得到某一点处的切线方程
及其斜率,同时又可以得到该点处的法线方程及其斜率,这对于研
究曲线的性质十分有用。

3. 曲率问题:导数还可以用来求曲线在某一点处的曲率,由此
可以得到曲线的曲率半径等重要参数,同时也可以帮助我们了解曲
线的形状。

4. 泰勒展开:泰勒展开是一种重要的数学工具,它可以利用函
数在某一点处的导数来逼近函数的值,从而在数值计算中起到非常
重要的作用。

总之,在高中数学中学习导数,不仅可以帮助我们深刻理解函
数的性质,同时也为我们今后的学习和工作打下了坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数在实际问题中的应用山东 马连东 许美文近几年来导数的实际应用题在高考试卷中已经出现,并且新教材中导数的实际应用体的比重也有所增加,因此应更加重是这方面的学习。

现在,我们研究几个导数在经济生活中的实际问题。

1 有甲、乙两个工厂,甲厂位于一直线河岸的岸边A 处,乙厂与甲厂在河的的两侧,乙厂位于离河岸40km 的B 处,乙厂到河岸的垂足D 与A 相距50 km ,两厂要在此岸边合建一个供水站C ,从供水站到甲厂和乙厂的水管费用分别为3a 元和5a 元,问供水站C 建在何处才能使水管费用最省?分析:根据题设建立数学模型,借助图像寻找个条件间的联系,适当设定变元,构造相应的函数关系,通过求导和其他方法求出最值,可确定C 点的位置。

解法一:据题意知,只有点C 在线段AD 上某一适当位置,才能能使总运费最省,设C 点距D 点xkm ,如图所示,则BD=40,AC=50-x,BC ∴== 又设总的水管费用为y元,由题意得())3505050,y a x x =-+<<3y a '=-令0,30.y x '==解得在(0,50)上,y 只有一个极值点,根据实际意义,函数在x=30(km)处取得最小值,此时AC=50-x=20(km),所以供水站建立在A 、D 之间距甲厂20间距甲厂20km 处,可是水管费用最省。

解法二:设,BCD θ∠=则40,40cot 0sin 2BC CD πθθθ⎛⎫==⋅<< ⎪⎝⎭, 5040cot AC θ∴=-。

设总的水管费用为()f θ,依题意,有()()35040cot fa θθ=-+405sin a θ=53cos 15040sin a a θθ-+⋅()()()253cos sin 53cos cos ()40sin f a θθθθθθ''-⋅--⋅'∴=⋅=235cos 40sin a θθ-⋅ 令()30,cos 5f θθ'==得。

根据问题的实际意义,当3cos 5θ时,函数取得最小值,此时 4sin ,5θ=3cot 4θ∴=,5040cot 20AC θ∴=-⋅=(km ),即供水站建在即供水站建在A 、D 之间距甲厂20km 处,可是供水管费用最省。

评注:解决实际问题的关键在于建立数学模型和目标函数,把“问题情境”译为数学语言,找出问题的主要关系,并把问题的主要关系抽象成数学问题,在数学领域寻找适当的方法解决,再返回到实际问题中加以说明。

2. 生产某种电子元件,如果生产一件正品,可获利200元,如果生产一件次品则损失100元,已知该厂制造电子元件过程中,次品率p 与日产与日产量x 的函数关系是3432xp x =+().x N ∈* (1) 将该产品的日盈利额T (元)表示为日产量x 的函数。

(2) 为获最大利润,该厂的日产量应定为多少件?分析:次品率p=日产次品数/日产量。

每天生产x 件,次品数为xp ,正品数为正品数为x(1-p)。

解:因为次品率 3432x p x =+,当每天生产x 件时,有3432xx x ⋅+件次品,有31432x x x ⎛⎫⋅- ⎪+⎝⎭件正品,所以332001100432432x x T x x x x ⎛⎫=--⋅ ⎪++⎝⎭ =26425,8x x x -⋅+()()232625(8)x x T x +-'∴=-⋅+。

由0,T '=得x=16,或x=32-(舍去)。

当016x <<时,0;0T x '>>时 0.T '<所以,当x=16时,T 最大。

及该厂的日产量为6件时,能获得最大盈利。

3. 若电灯(B )可在过桌面上一点O 的垂线上移动,桌面上由与点O 距离为a 的另一点A ,问电灯与点O 的距离为多大时,可使点A 出有最大的亮度?(如图,有光学知识,亮度y 与sin θ成正比,与2r 成反比) 解:设O 到B 的距离为x ,则sin ,xr rθ==()222sin xy c c r r x a θ=⋅=⋅+ =()()32220xcx xa≥+(c适于灯光强度有关的常数)。

()22522220a x y cxa-'∴==+当0,y '=即方程2220a x -=的根为1x =2x =所以在区间[)0,+∞内,函数()y f x =O 点A 的亮度y 为最大。

4. 现要制作一个体积为303m 的圆柱形无盖容器,其底面用钢板,侧面用铝板。

已知每平方米钢板的价格是铝板的3倍,问怎样设计才能是材料费用最少?分析:这是一道实际应用题,列出材料费用的函数式,把它转化为求函数最小值的问题。

解析:设圆柱形容器的底面半径为xm ,则圆柱的高为230m xπ,底面面积为22x m π,侧面积为260m x。

又设每平方米铝板的价格为a 元,钢板的价格为3a 元,总费用为y 元,则()26030y a x a x x π=+>,2606.y a x x a π'∴=-令0,y '=得 1.47.x =≈ 因为y 只有一个使其为零的点,即只有一个极值点。

由题意,y 一定有最小值,故此极值点就是y 的最小值点,这是圆柱的高为(m )。

,高为m 时总费用最少。

点评:在建立函数表达式时,首先要适当选取自变量及其取值范围,自变量选得恰当有时可减少运算量。

5. (2004年辽宁)甲方是一农场,乙方是一工厂。

由于乙方生产需要占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定的净收入。

在乙方不赔付甲方的情况下,乙方的年利润x(元)与年产量t 吨满足函数关系x =若乙方每年生产一吨产品必须赔付甲方s 元(以下称s 为赔付价格)。

(1)将乙方的年利润w (元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额()20.002y t=元,在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s 是多少?解:(1)法一:因为赔付价格为s 元/吨,所以乙方的实际年利润为.w st =因为2w s=2210001000,s s s ⎤=-+⎥⎦所以当21000t s ⎛⎫= ⎪⎝⎭时,w 取得最大值。

所以乙方取得最大年利润的年产量21000t s ⎛⎫= ⎪⎝⎭吨。

法二:因为赔付价格为s 元/吨,所以乙方的实际年利润为.w st =由w s'=-=令0,w '=得201000.t t s ⎛⎫== ⎪⎝⎭当0t t <时, 0;w '>当0t t >时,0.w '<所以0t t =时,w 取得最大值。

所以乙方取得最大年利润的年产量21000t s ⎛⎫= ⎪⎝⎭吨。

(2)解:设甲方净收入为v 元,则20.002v st t =-。

将21000t s ⎛⎫= ⎪⎝⎭代入上式,得到甲方净收入v 与赔付价格s 之间的函数关系式224100021000,v s s ⨯=- 又()22235510008000100081000,s v s s s⨯-⨯'=-+=令0v '=,得s=20。

当20s <时, 0v '>;当20s >时,0v '<,所以s=20时,v 取得最大值。

因此甲方向乙方要求赔付价格s=20元/吨时,获最大净收入。

评述:本题主要考查函数的概念,运用导数求函数最大值、最小值的方法以及运用数学知识,建立简单数学模型并解决实际问题的能力。

6. (2005年全国3)用长为 90cm 、宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截取一个小正方形,然后把四边翻转90︒角,再焊接而成(如图)。

问该容器高为多少时,容器的容积最大?最大容积是多少?解:设容器高为xcm,容器的容积为()3,V x c m则()()()902482V x x x x =--=()324276432024x x x o x -+<<。

求()V x 的导数得()2125524320V x x x '=-+=()21246360x x -+=()()121036,x x --令()0V x '=,得1210,36x x ==(舍去)。

当010x <<时,()0,V x '>那么()V x 为增函数;当1024x <<时,()0,V x '<那么()V x 为减函数。

因此,在定义域()0,24内,函数()V x 只有当x=10时取得最大值,其最大值为()()()()310109020482019600V cm =⨯-⨯-=。

答:当容器的高为10cm 时,容器的容积最大,最大容积为196003cm 。

相关文档
最新文档