人教版九年级数学上册复习提纲(优质5篇)
人教版九年级数学上册期末复习提纲知识点(最新、最全、最精)

义务教育基础课程初中教学资料提高数学成绩的“五条途径”1、按部就班数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解概念、定理、公式要在理解的基础上记忆。
每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4、重视平时考试出现的错误。
定一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。
复习时,这个错题本也就成了宝贵的复习资料。
5、重视课本习题训练。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。
熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
快速提高数学成绩的“五大攻略”攻略一:概念记清,基础夯实。
数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是“不定项选择题”就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。
因此,要把已经学过的教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
攻略二:适当做题,巧做为王。
有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。
数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。
考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
攻略三:前后联系,纵横贯通。
在做题中要注重发现题与题之间的内在联系,绝不能“傻做”。
人教版九年级数学上册教案:第23章 章末复习

人教版九年级数学上册教案:第23章章末复习章末复习一、复习导入1.导入课题:本节课对全章的知识作一回顾,梳理其知识脉络,弄清其重点和考点.2.复习目标:(1)梳理全章知识要点,能画出它的知识结构框图.(2)进一步明确旋转、中心对称、中心对称图形等概念的含义及它们的性质和作图等.3.复习重、难点:重点:旋转、中心对称的概念和性质.难点:性质的应用及图案的设计.二、分层复习1.复习指导:(1)复习内容:教材第58页至第77页的内容.(2)复习时间:7分钟.(3)复习要求:搜集知识要点,画知识结构框图.(4)复习参考提纲:①梳理知识要点:a.旋转的概念.(4)复习参考提纲:①在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作(A)A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移②下列四个图形中,既是轴对称图形又是中心对称图形的有(B )A.4个B.3个C.2个D.1个③若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O对称,则m= -1 ,n= -5 .④如图,在平面直角坐标系中,点A的坐标为(-2,3),点B的坐标为(-5,0),画出点A、点B关于原点的对称点A′、B′,并写出对称点的坐标.A′(2,-3)B′(5,0)⑤如图,在平面直角坐标系中,Rt△AOB 的两条直角边OA、OB分别在x轴、y轴的负半轴上,且OA=2,OB=1,将Rt△AOB绕点O 按顺时针方向旋转90°,再把所得的图形沿x轴正方向平移1个单位得到△CDO,写出A、C两点的坐标并求出点A和点C之间的距离.A(-2,0),C(1,2),点A和点C之间的距离2222=+=+=.2313AC CD AD2.自主复习:可结合复习指导自主复习,或相互交流研讨.3.互助复习:(1)师助生:①明了学情:特别关注学生是否对以往学过的旧知识不熟悉.②差异指导:根据学情进行针对性指导.(2)生助生:小组内研讨、总结.4.强化:结合复习参考提纲,让学生明确本章的主要考点有:(1)中心对称图形的识别(或综合轴对称图形);(2)关于原点对称的点的坐标的运用;(3)利用旋转进行相关的计算或证明;(4)平移、轴对称和旋转变换的综合运用;(5)中心对称的性质的应用及相关的作图等.三、评价1.学生的自我评价(围绕三维目标):在这节课的学习中有何新的认识和收获?自我感觉还有什么不足的地方吗?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与情况,小组交流协作状况,以及学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):针对本课时的主要问题,从多个角度、分层次引导复习,让学生在复习中得到提升,设置典型的问题考查学生对于基础知识的理解和运用,从课堂反馈来看,大部分学生掌握了本章知识要点,还有部分学生对中心对称(图形)还是有些迷惑,在后面的教学中,要不定时检验他们对这方面知识的掌握情况.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为(C)A.60°B.75°C.85°D.90°第1题图第3题图第4题图2.(10分)已知点P(a,a+2)在直线y=2x-1上,则点P关于原点的对称点P′的坐标为(D)A.(3,5)B.(-3,5)C.(3,-5)D.(-3,-5)3.(10分) 如图,边长为4的正方形ABCD 的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是(B)A.1B.4C.6D.84.(10分) 如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在点B′处,则BB′=455.(10分) 在艺术字中,有些汉字或字母是中心对称图形.下面的汉字或字母是中心对称图形吗?如果是,请标出它们的对称中心.解:都是中心对称图形,对称中心如图所示.6.(10分)如图,在张伯与王叔联合承包的平行四边形田地ABCD中,有块圆形低洼地,现要修建一条笔直的路,将平行四边形田地和圆形低洼地同时平分成两部分,请设计路线.解:连接AC,BD,交于O′,则O′是平行四边形ABCD的对称中心,连接圆心O与O′,则OO′所在的直线将平行四边形田地和圆形低洼地同时分成两部分.7.(10分) 如图,写出△ABC三顶点的坐标,并在图中描出点A1(3,3),B1(2,-2),C1(4,-1),并说明△A1B1C1是△ABC通过怎样的变化得到的?解:A(-2,2),B(-3,-3),C(-1,-2).描点如图.△A1B1C1是由△ABC先向右平移5个单位,再向上平移1个单位得到的.二、综合应用(20分)8.(20分) 如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0),②(0,8),③(-8,0),面积都等于12.(2)菱形②可以看做是由菱形①如何旋转得到的?解:绕点O逆时针旋转90°得到的.(3)菱形③与菱形②可看做是关于直线l 对称的,则直线l所对应的函数关系式是y=-x.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.解:第一种:向左平移16个单位长度.第二种:关于原点作中心对称.三、拓展延伸(10分)9.(10分) 如图,平行四边形ABCD中,AB ⊥AC,AB=2,BC=25,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点F、E.(1)当旋转角度为90°时,四边形ABFE 的形状是平行四边形;(2)试说明在旋转过程中,线段AF与EC 总是保持相等;(3)在旋转过程中四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点O顺时针旋转的度数.解:(2)连接AF,EC.∵四边形ABCD是平行四边形∴AD与CB关于点O中心对称.又E、F分别在AD、BC上.∴AE与CF关于点O中心对称.∴AE=CF,又AE∥CF,∴四边形AFCE是平行四边形.∴AF=CE.(3)可能是菱形,当AC绕点O旋转45°时,∵AC=BC2-AB2=4,∴OA=OC=2,∴OA=AB,又∠BAC=90°,∴△OAB为等腰直角三角形,∴∠AOB=45°.当AC绕点O顺时针旋转45°时,∠AOE=45°,∴∠BOE=90°,EF垂直平分BD,∴BE=ED.易证四边形BEDF为平行四边形.∴四边形BEDF是菱形.。
九年级数学知识点总结 人教新课标版

初中数学总复习提纲1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
(完整)人教版九年级数学上册全期各章复习习题全册,推荐文档

元二次方程及其应用复习【课前热身】1方程3x(x 1) 0的二次项系数是___________ ,一次项系数是_____ ,常数项是 _•2. _______________________________________________________________________ 关于x 的一元二次方程(n 3)x|n 1 (n 1)x 3n 0中,则一次项系数是____________________________ .3. 一元二次方程x2 2x 3 0的根是4. 某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x,则可以列出方程为_______________________ .5. 关于x的一元二次方程x2 5x p2 2p 5 0的一个根为1,则实数p=()A. 4 B . 0 或2 C . 1 D . 1【考点链接】1. 一元二次方程:在整式方程中,只含 _个未知数,并且未知数的最高次数是_的方程叫做一元二次方程•一元二次方程的一般形式是_____________ . _________ 其中_______ 叫做二次项,_________ 叫做一次项,_________ 叫做常数项; ________ 叫做二次项的系数,_叫做一次项的系数•2. 一元二次方程的常用解法:(1) 直接开平方法:形如x2 a(a 0)或(x b)2 a(a 0)的一元二次方程,就可用直接开平方的方法.(2) 配方法:用配方法解一元二次方程ax2 bx c o a 0的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化2原方程为(x m) n的形式,⑤如果是非负数,即n 0 ,就可以用直接开平方求出方程的解.如果n v 0,则原方程无解.2(3)公式法:一元二次方程ax bx c 0(a 0)的求根公式是2a0).(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为______________ :②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解3. 易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中 a 0.(2)用公式法和因式分解的方法解方程时要先化成一般形式(3)用配方法时二次项系数要化 1.(4)用直接开平方的方法时要记得取正、负.【典例精析】例1选用合适的方法解下列方程:(1) (x 4)2 5(x 4) ;(2) (x 1)2 4x ;2 2 2(3) (x 3) (1 2x) ;(4) 2x 10x 3.例2已知一元二次方程(m 1) x2 7mx m2 3m 4 0有一个根为零,求m的值.例3用22长的铁丝,折成一个面积是 30 cm 2的矩形,求这个矩形的长和宽 •又问:能否折 成面积是32 cm 2的矩形呢?为什么?【中考演练】1 .方程(5x — 2) (x — 7) = 9 (x — 7)的解是 ____________ .32. 已知2是关于x 的方程_x 2— 2 a = 0的一个解,则2a — 1的值是23. 关于y 的方程2y 2 3py 2p为 _____ .4. 下列方程中是一元二次方程的有④ x 2-2y+6=0(3) 4 X 2 — 8x + 1 = 0 (用配方法);&某商店4月份销售额为50万元,第二季度的总销售额为 182万元,若5、6两个月的月增长率相同,求月增长率.一元二次方程根的判别式及根与系数的关系复习【课前热身】A.有两个相等的实数根C.只有一个实数根1.—兀二次方程x 2x 10的根的情况为(20有一个根是y 2,则关于x 的方程x 3 p 的解2② 丄=8③ 3y(y-1)=y(3y+1)3)① 9 X 2=7 x⑤.2( x 2+i )= .. 10 4 d 门 —-x-仁0x①③⑤ C. ①②⑤5. (6.A . ①②③ B. 元二次方程(4x + 1)(2x — 3) = 5x 2 + 1化成一般形式 )A . 3, — 10,— 4B. 3,— 12,— 2C. 8,— 10,— 2D. 8, — 12, 4.次方程2x 2 — (m + 1)x + 1 = x (x — 1)化成一般形式后二次项的系数为 1,一次项的) C.D. ⑥①⑤ax 2 + bx + c = 0(a z 0)后 a,b,c 的值为7.兀 系数为一1,贝U m 的值为( A. -1B. 1解方程2 (1) x — 5x — 6= 0 ; D. 2X 2— 4x — 1 = 0 (用公式法);(4) x 2 2 2x+1=0.E.有两个不相等的实数根 D.没有实数根2. 右方程kx2—6x+ 1 = 0有两个不相等的实数根,则k的取值范围是___________3 . 设X1、X2是方程3X2+ 4X—5 = 0的两根,则,.X12+ X22=X-I x24.关于x 的方程2X2+ (m2—9)x+ m+ 1 = 0,当当m= ____________ 时,两根互为相反数.【考点链接】■一二x的m = ________ 时,两根互为倒数;1.—兀'关于次方程根的判别式:元二次方程ax2 bx 0的根的判别式为(1)b2 4ac>o ______________________________________ —元二次方程ax2 bx c 0 a 0有两个实数根,即X1,2 _____________ . ______(2)b2 4ac=o __________ 一元二次方程有相等的实数根,即x i X2 —.(3)b2 4ac<o _______________________________ 一元二次方程ax2 bxc 0 a 0 实数根.2. 一元二次方程根与系数的关系若关于x的一元二次方程ax2 bx c 0(a 0)有两根分别为x1, x2,那么为x2 , X i X23. 易错知识辨析:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)应用一元二次方程根与系数的关系时,应注意:①根的判别式b2 4ac 0 ;②二次项系数a 0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系【典例精析】例1当k为何值时,方程x2 6x k 1 0 ,(1)两根相等;(2)有一根为0 ;( 3)两根为倒数.例3菱形ABCD勺一条对角线长为6,边AB的长是方程x2 7x 12 0的一个根,则菱形ABCD勺周长为【中考演练】1.设X1, X2 是方程2x2+ 4x— 3 = 0 的两个根,则(X1+ 1)(x2 + 1)= ___________ , X12+ X22=1 1 2_________ , = ___________ , (X1—X2)= -------- .2.当c ___________ 时,关于X的方程2x2 8x c 0有实数根.(填一个符合要求的数1 即可)&设关于x 的方程kx 2— (2k + 1)x + k = 0的两实数根为X 1、X 2,,若凶X 29.已知关于x 的一元二次方程x 2 m 1 x m 2 0.且满足丄 11,则m 的值是( )A. 3 或 1B. 3C. 1 D .3或1 6. 一兀二次方程 x3x 10的两个根分别是为,X 2,则 2X 1 X 2 X 1X 22的值是( )A. 3B.13CD .1337 .若关于x 的一兀—一次方程 X2X m 0没有实数根,则实数m 的取值范围是()A . m<lB . m> — 1C . m>lD . m< — 13. 已知关于x 的方程x 2 (a 2)x a 2ba b 的值为 __________ .4. 已知a , b 是关于x 的方程x 2(2 k 1)x值是 ______________ .5•已知,是关于x 的一元二次方程x 20的判别式等于0,且x —是方程的根,则2 k(k 1)0的两个实数根,则a 2 b 2的最小(2m 3)x m 2 0的两个不相等的实数根,X 217,求k 的(1)若方程有两个相等的实数根,求m的值;(2)若方程的两实数根之积等于m2 9m 2,求、一m 6的值.1课时6.反比例函数【课前热身】k1 •已知反比例函数y 的图象经过点 A ( 3, 6),则这个反比例函数的解析式是x2.(07梅州)近视眼镜的度数 y (度)与镜片焦距 x (米)成反比例,已知 400度近视眼 镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 △ AMO 的面积为3,则k _____ 【考点链接】1. 反比例函数:一般地,如果两个变量或 _________ ( k 为常数,k z 0)的形式,2. 反比例函数的图象和性质k 的符号k > 0 k v 0图像的大致位置经过象限 第 象限 第象限 性质在每一象限内y 随x 的增 大而在每一象限内y 随x 的增大 而k3.k 的几何含义:反比例函数 y = (k 工0)中比例系数k 的几何xk意义,即过双曲线 y = (k z 0)上任意一点P 作x 轴、y 轴x3•在反比例函数k 3图象的每一支曲线上,xy 都随x 的增大而减小,则 k 的取值范围是(A. k >34. (07青是气体体积V ( 时,气球将爆炸.5 3 m4 4 3m5A.不小于C .不小于B某气球内充满了一定质量的气体, m )的反比例函数,其图象如图 为了安全起见,气球的体积应(.小于-m4 4 3.小于一 m 5.k v 0当温度不变时,气球内气体的气压 P ( kPa ) 1所示•当气球内的气压大于 120 kPa 5. (08巴中) 如图若点 A 在反比例函数k-(k 0)的图象上,AM xy 之间的关系可以表示成 y = 那么称 y 是x 的反比例函数. X 、-------;)x轴于点M ,垂线,设垂足分别为A B,则所得矩形OAPB勺面积为—. 【典例精析】x6. (08嘉兴)某反比例函数的图象经过点A. (2, 3) B . ( 3, 3)例1某汽车的功率P 为一定值,汽车行驶时的速度 v (米/秒)与它所受的牵引力 F (牛)之间的函数关系如右图所示: (1) 这辆汽车的功率是多少?请写出这一函数的表达式; (2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时?(3) 如果限定汽车的速度不超过 30米/秒,则F 在什么范围内?«(*/«0 拠2000304000 502010Ftt-1例2(07四川)如图,一次函数 yA ( 21),B (1, n )两点.(1) 试确定上述反比例函数和一次函数的表达式;(2) 求△ AOB 的面积.kx b 的图象与反比例函数【中考演练】 1. 2. k (07福建)已知点(1, 2)在反比例函数y —的图象上,贝U k _________ . x力F (牛)与此物体在力的方向上移动的距离 P (5, 1)在图象上,则当力达到 10牛时,(07安徽)在对物体做功一定的情况下, 成反比例函数关系,其图象如图所示, 力的方向上移动的距离是 _________ 米.s(米) 物体在3. (08河南)已知反比例函数的图象经过点( m , 2)和(一2, 3),贝U m 的值为 (08宜宾)若正方形AOBC 勺边OA OB 在坐标轴上,顶点 C 在第一象限且在反比例函数 y1 =丄的图像上,则点 C 的坐标是 . x 5. (08广东)如图,某个反比例函数的图象经过点 则它的解析式为 1A.y = (x>0)x1 C.y = (x<0) x4. B.y D.y-1 (x>0) x 1 ——(x<0)x y p, p i x -1 O 7. ( 07江西)对于反比例函数y2 ,下列说法不正确的是(2,3),则此函数图象也经过点((2,3) ( 4,6)A.点(2, 1)在它的图象上C.当x 0时,y随x的增大而增大B .它的图象在第一、三象限D .当x 0时,y随x的增大而减小x68. ( 08乌鲁木齐)反比例函数y -的图象位于( )xA.第一、三象限B •第二、四象限C •第二、三象限 D.第一、二象限9•某空调厂装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m (单位:台/天)与生产的时间t (单位:天) 之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?10. (07四川)如图,已知A(-4 , 2)、B(n, -4)是一次函数y kx b的图象与反比例函数y m的图象的两个交点x(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.相似三角形复习1两个相似三角形对应边上中线的比等于3: 2,则对应边上的高的比为 ________ ,周长之比为 ________ ,面积之比为 __________ . 2•若两个相似三角形的周长的比为4: 5,且周长之和为45,则这两个三角形的周长分别为3.如图,在厶ABC 中,已知/ ADE= / B ,则下列等式成立的是 (4. 在△ ABC 与A ABC 中,有下列条件:1. 若DE // BC (A 型和X 型)则 ________________ .2. 射影定理:若 CD 为Rt △ ABC 斜边上的高(双直角图形)贝U Rt △ ABC s Rt △ ACD s Rt △ CBD 且 AC 2=CD 2=BC 2=3. 两个角对应相等的两个三角形 _____________ .4. 两边对应成 __________ 且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形 _____________ . 三、相似三角形的性质1. 相似三角形的对应边 __________ ,对应角 ________ .2. 相似三角形的对应边的比叫做 __________ ,一般用k 表示.3. 相似三角形的对应角平分线,对应边的 ____________ 线,对应边上的 ________ ?线的比等于_______ 比,周长之比也等于 __________ 比,面积比等于 _________ . 例1 在厶ABC 和厶DEF 中,已知/ A= / D ,AB=4, AC=3,DE=1,当DF 等于多少时,这两个三角形相 似A . 1B. 2 C.3 D.4【考点链接】「、相似三角形的定义三边对应成,三个角对应的两个三角形叫做相似三角形如果从中任取两个条件组成一组,那么能判断△ ABC s^ABC 的共有多少组( 、相似三角形的判定方法A ADAEAE ADA.-BAB ACBC BD-DE AEDE ADDBC AB BC A(1)AB A-B*BC(2)BC BCAC AC*(3)Z A= / A (4)Z C=Z C.'例2 如图,△ ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm , ?要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在 AB 、AC 上,?这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为: 3.5cm x 3.5cm ,格为2m X 2m ,若放映机的光源距胶片20cm 时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1. ___________________________________________________ 如图,若△ ABCDEF ,则/ D 的度数为 _________________________ 放映的荧屏的规AD 13.如图,在△ ABC 中若DE // BC, = - ,DE = 4cm,则BC 的长为(DB 24.如图,已知E 是矩形ABCD 的边CD 上一点,BF AE 于F , 试证明△ ABFEAD •2 在 Rt ABC 中,C 为直角,CDAB 于点 D , BC 3, AB 5,写出其中的一对相似三角形是______ 和 _; 并写出它的面积比 ________A.8cmB.12cmC.11cmD.10cm锐角三角函数AB = AC = 5, BC = 8,求底角/ B的四个三角函数值.1. 在厶ABC 中,/ 1 C = 90°,1 nttanA = ,贝U sinB =(3)1.在△ABC中,/〔C =90°,BC=2, si nA=2——则AC的长是()3A . 5B.3C45D.帀2. Rt AB C 中,/ C=90 , / A:/B=1 ::2,则si nA的值()A.1B.2C.3D.1222, cos304. --------------- = ___________ .1 sin 30【考点链接】1. sin a, cos a, tan a定义sin a = _____ , cos a= _________ , tan a = ________2•特殊角三角函数值30°45°60°sin aCOs atan a【典例精析】例 1 在Rt △ ABC 中,a= 5, c = 13,求si nA, cosA , tanA例 2 计算:4sin 30 、2 cos45 . 3tan60 .等腰△ ABC中,3.如图,在平面直角坐标系中,已知点 A ( 3, 0),点B ( 0, - 4),则COS OAB 等于A」 B .-C . 3D.10341032 •右cos A —,则下列结论正确的为(48.矩形ABCD 中AB = 10, BC = 8, E 为AD 边上一点,沿 BE 将厶BDE 对折,点 D 正 好落在 AB边上,求 tan Z AFE .1.如图,太阳光线与地面成 60°角,一棵倾斜的大树与地面成 30°角,这时测得大树在地 面上的影子约为10米,则大树的高约为 ___________ 米.(结果保留根号)2. ______________________________________ 某坡面的坡度为1 ••怎,则坡角是 度.3. 王英同学从 A 地沿北偏西60o 方向走100m 到B 地,再从B 地向正南方向走 200m 到C 地, 此时王英同学离A 地()A. 150mB . 503 mC . 100 mD . 100.3m1.解直角三角形的概念:在直角三角形中已知一些 2 .解直角三角形的类型:已知 _____________ ;已知 ___________________ 3.如图(1)解直角三角形的公式:(1) 三边关系: __________________ .A.0°< / A < 30°.30°< C. 45°< Z A < 60° .60°<3.在 Rt A ABC 中,C90o , AC 5, BC 则 tan A4.计算Sin60 tan 45的值是cos305.已知 3tan A 30 则6 . △ ABC中,若(si nA — 1 ) 2+ I —3 — cosB|2 2=0,求Z C 的大小. 7.图中有两个正方形,A , C 两点在大正方形的对角线上, 求EF 的长.△ HAC?是等边三角形,若AB=2 ,解直角三角形及其应用叫做解直角三角形.AC a B(2)角关系:Z A+ Z B= ____ ,(3)边角关系:sinA= __ ,sinB= ___ , cosA=_4.5.6. cosB=如图(2)如图(3)如图(4) __ , tanA= _____ , tanB= _____ .仰角是_____________ ,俯角是_______方向角:0A : ______ , 0B : ______坡度:AB的坡度i AB = ___________ ,/,OC: ________ , 0D :a 叫_____ ,tan a i = _北AC东1 Rt ABC的斜边3AB = 5, cosA —求ABC中的其他量.5它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方例2海中有一个小岛P, 测得小岛P在北偏东60 向上•如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.F\12例题3为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1 : 0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示)求:(1)渠面宽EF;(2)修200米长的渠道需挖的土方数.1•在Rt ABC 中,C 900, AB = 5, AC = 4,则sinA 的值是_________________2.升国旗时,某同学站在离旗杆24m处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面 1.2m,则旗杆高度约为_________ .(取药1.73,结果精确到0.1m)3.已知:如图,在△ ABC 中,/ B = 45 ° / C = 60 ° AB = 6 号)4.如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°已知测角仪器高CE=1.5米,CD=30米,求塔高AB .(保留根号)求BC的长.(结果保留根。
九年级数学总复习提纲-人教新课标版

第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负数均为0。
实数 无理数(无限不循环小数)有理数正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数 正无理数负无理数0 实数 负数 整数 分数无理数有理数 正数 整数 分数无理数有理数 │a │ 2a a (a ≥(a 为一切实数)3.倒数: ①定义及表示法②性质:≠1/a (a ≠±1);a 中,a ≠0;<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:≠0时,a ≠-a;与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)a(a≥-a(a<0)│a │=3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
人教版九年级上册数学专题复习(九个专题)

人教版九年级上册数学专题复习(九个专题)专题一:解一元二次方程1、直接开方解法1)$x-6+\sqrt{3}=2\sqrt{2}$解:移项得$x=6-2\sqrt{2}-\sqrt{3}$2)$(x-3)^2=2$解:两边开方得$x-3=\pm\sqrt{2}$,即$x=3\pm\sqrt{2}$ 2、用配方法解方程1)$x+2x-1=0$解:合并同类项得$3x-1=0$,移项得$x=\frac{1}{3}$2)$x-4x+3=0$解:合并同类项得$-3x+3=0$,移项得$x=1$3、用公式法解方程1)$2x^2-7x+3=0$解:根据一元二次方程的求根公式,$x=\frac{7\pm\sqrt{7^2-4\times2\times3}}{4}$,即$x=\frac{1}{2}$或$x=3$2)$x^2-x-1=0$解:同样根据求根公式,$x=\frac{1\pm\sqrt{5}}{2}$,即$x=\frac{1+\sqrt{5}}{2}$或$x=\frac{1-\sqrt{5}}{2}$4、用因式分解法解方程1)$3x(x-2)=2x-4$解:移项得$3x^2-6x-2x+4=0$,合并同类项得$3x^2-8x+4=0$,将其因式分解为$3(x-2)(x-\frac{2}{3})=0$,即$x=2$或$x=\frac{2}{3}$2)$2x-4=x+5$解:移项得$x=3$5、用十字相乘法解方程1)$x^2-x-90=0$解:将其因式分解为$(x-10)(x+9)=0$,即$x=10$或$x=-9$ 2)$2x^2+x-10=0$解:将其因式分解为$(2x-5)(x+2)=0$,即$x=\frac{5}{2}$或$x=-2$专题二:化简求值1、$\frac{x^2+y^2-2xy}{x-y}$,其中$x=2+1$,$y=2-1$解:将$x$和$y$的值代入得$\frac{(2+1)^2+(2-1)^2-2(2+1)(2-1)}{2+1-(2-1)}=\frac{3}{2}$2、$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}$,任选一个数$x$代入求值解:将$x$代入得$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}=\frac{4x^2-14x+12}{(x-1)^2}$专题三:根与系数的关系1、已知关于$x$的一元二次方程$x-4x-2k+8=0$有两个实数根$x_1$,$x_2$。
新人教版九年级数学上学期期末复习知识点填空(最佳、最优、最全、最有效)

期末复习重点知识点:一、一元二次方程1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 次的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n+=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是 .公式法解方程的步骤 1.变形: 化已知方程为一般形式ax 2+bx +c =0; 2.确定系数:用a ,b ,c 写出各项系数; 3.计算: b 2-4ac 的值;4.判断:若b 2-4ac ≥0,则利用求根公式求出; 若b 2-4ac <0,则方程没有实数根. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x . (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.(4)ac b 42-≥0⇔一元二次方程()002≠=++a c bx ax 有 实数根.4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .同时:若α、β为一元二次方程0132=++x x 的两个实数根,则有01α3α2=++ 和01β3β2=++5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。
新人教版九年级上册数学[《旋转》全章复习与巩固--知识点整理及重点题型梳理](提高)
](https://img.taocdn.com/s3/m/fb2c0b22a76e58fafbb00315.png)
新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A B C''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转【: 388636:经典例题2-3】3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:【变式】如图,△ABC 中,∠BAC=90°,AC=2,AB=23,△ACD 是等边三角形. (1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】(1)Rt △ABC 中,AC=2,AB=23, ∴BC=4, ∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB , ∴AE=AB ,∠BAE=60°,BD=EC , ∴BE=AE=AB=23,∠EBA=60°, ∴∠EBC=90°, 又BC=2AC=4,∴Rt △EBC 中,EC=2223+4=27()4.(2015•东西湖区校级模拟)如图,Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF.(1)填空:线段BE、AF的数量关系为,位置关系为;(2)当=时,求证:=2;(3)若当=n时,=,请直接写出n的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则, ∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律. 【:388636:经典例题4-5】5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC ,(1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=42 又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:PE=2BP,PC=AE ∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90°又∵由(1)证得∠BAE=∠BCP∴∠PAB+∠BCP=90又∵∠ABC=90°∴点A,P,C三点共线,即P必在对角线AC上.【总结升华】注意勾股定理及逆定理的灵活运用.举一反三:【变式】如图,在四边形ABCD中,AB=BC,,K为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学上册复习提纲(优质5篇)
1.人教版九年级数学上册复习提纲第1篇
树立女生的自信心,培养她们学习数学的兴趣
俗话说:兴趣是最好的老师。
但兴趣这东西不是天生的,需要后天的培养。
如何培养她们的学习兴趣,我个人认为应该是积极的鼓励加适当的引导。
这几年,赏识教育的呼声高涨,而所谓的赏识教育,说白了就是鼓励教育。
合理利用课堂时间,提高课堂学习效率
学习效率是决定学习成绩的重要因素。
提高学习效率的一个重要方法――“把劲儿使在刀刃上”,即合理分配时间,听课、记笔记应抓住重点,做习题应抓住典型,这就是学习中的“事半功倍”。
2.人教版九年级数学上册复习提纲第2篇
1、基础很重要
是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。
数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。
因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。
基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。
2、错题本很重要
在所有科目中,数学这个科目最重要错题本学习法。
特别提倡大家整理错题,对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。
3、做题要多反思
数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。
4、把数学知识形成体系
课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。
3.人教版九年级数学上册复习提纲第3篇
1、态度
在这个科目的学习当中态度是起到非常大的作用的,如果有态度首先就会成功一半,所以有一个认真学习的态度是非常重要的,面对任何的难点.难题,都会尽力去思考,在学习当中有这种态度,就完全可以将这们科目学好.
2、难题
在学习的当中需要养成一些好习惯,比如制定计划、练习、预习等等,这些内容都是在学习当中有非常重要的效果,预习可以让自己更加专注的听课,不会出现走神的情况,练习可以将当天所学的知识运用出来,不会有忘记的问题.
3、错题库
在学习这个科目的时候可能会有一些错题,出现错题之后可以使用小本将其记下来,可以隔几天以后做一遍,并且在复习的时候可以参照一下容易出现错误的题目,这是初中数学怎么学的重点之一.
4、笔记
对于任何的学科来说,记笔记都是非常重要的,它可以将上课所学到的重点记录下来以便于以后复习的时候方便,并且可以随时的拿出来复习一下之前的内容.
5、作业
作业对于很多的学生来说都是不陌生的,一般老师在上完课之后都会布置一些作业,这样使上课所学的内容充分的运用出来,仅仅依靠上课听是不够的,还需要在下课之后进行练习来讲上课所学的知识巩固.
在升到初三的时候,这个阶段马上面临高考,这个阶段一般的科目都讲完了,在这个阶段就开始了复习,这时候之前的笔记以及错题库都会派上用场,可以增加自己的复习效率,可以节省出时间来练习一些其他的科目.
4.人教版九年级数学上册复习提纲第4篇
1、按部就班,环环相扣
数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题,一定要把每一个环节都学牢。
2、概念记清,基础夯实
千万不要忽视最基本的概念、公理、定理和公式,每新学一个定理或者定义的时候,都要在理解的基础上去深挖每一个字眼,有时候少说一两个字,都可能导致结果的不同。
要在刚开始学概念的时候就弄清楚,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
3、适当做题,巧做为主
学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉中考的题型,训练要做到有的放矢。
有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。
数学需要实践,需要大量做题,但要"埋下头去做题,抬起头来想题",在做题中关注思路、方法、技巧,要"苦做"更要"巧做".考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
5.人教版九年级数学上册复习提纲第5篇
掌握正确做题方法
数学学习离不开做题,对于大多数学生来说很难做到举一反三,既然做不到我们就需要用用大量的题来弥补,但是做题也不能盲目的去做。
第一,做题要由易到难,第二,做题要先专题后限时模考,第三,做题要学会整理错题,第四,做题要学会分析试题,第五,做题要会猜题。
巩固基础知识
掌握初中数学知识点是由浅入深的,只有在掌握了基础知识的前提下,识记理解公式、定理,运用公式、定理分析解决问题,才能对数学问题进一步深化与提高。
发现规律
在做题的过程中要多发现规律,不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个。
保持好心态
心态问题是影响考试的最重要的原因。
走进考场就要有舍我其谁的霸气。
要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。
反过来,如果进考场就底气不足,必定会影响自己的发挥。
总结梳理,提炼方法
数学复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。
对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。