数学鲁教版(五四制)七年级上册鲁教版(五四制)七上6.5一次函数的应用 教案
鲁教版七年级上册6.5 一次函数的应用(第一课时)

随堂练习 课本163页为了提高某种农作物的产量,农场通常采
用喷施药物的方法控制其高度,已知该农作物的平均高度
y(米)与每公顷所喷施药物的质
量 x(千克)之间的关系如图所示,
经验表明,该种农作物高度在
1.25 米左右时它的产量最高,此
时每公顷应喷施药物多少千克? 解:仔细观察图形可知直线过(0,1.5),(10,0.5)两点
图2
干旱造成的灾情
由于持续高温和连日无雨,某水库的蓄水量随着时间
的增加而减少.干旱持续时间 t( 天)与蓄水量V(万立方
米 ) 的关系如图所示,
V/万米3
想一想
(1).水库干旱前的蓄水量是多少? (2).干旱持续10天,蓄水量为多少?
连续干旱23天呢?
(3).蓄水量小于400 万立方米时,将发生
10-8=2
(3)将y=1代入上式 解得 x=450
(1).一箱汽油可供摩托车行驶多少 千米? (2). 摩托车每行驶100千米消耗多 少升? (3). 油箱中的剩余油量小于1升时 将自动报警.行驶多少千米后,摩托 车将自动报警?
总结:如何解答实际情景函数图象的信息?
1:理解横纵坐标分别表示的的实际意义
t/天
例1 某种摩托车的油箱最多可储油10升,加满油 后,油箱中的剩余油量y(升)与摩托车行驶路程 x(千米)之间的关系如图所示(:1).一箱汽油可供摩托车行驶多
少千米?
(2). 摩托车每行驶100千米消耗 多少升? (3). 油箱中的剩余油量小于1升 时将自动报警.行驶多少千米后, 摩托车将自动报警?
当y=1时,x=450,因此行驶了450千米后,摩托车将 自动报警.
(450,1)
还有其他方法做吗?
鲁教版(五四制)七年级上册数学课件第六章5一次函数的应用(鲁教版七年级上·五四制)

函数,用待定系数法求一次函数关系式,进而解决其他问题 .
2.一元一次方程kx+b=0与一次函数y=kx+b(k≠0)的关系
(1)从“数”的方面看,当一次函数y=kx+b(k≠0)的值为0时,
自变量 的值就是方程kx+b=0的解. 相应的_______
5 一次函数的应用
1.通过函数图象获取信息
函数图象 分析并获取有用信息,根据实际问题建立适当的 从_________
函数模型 ,利用该函数图象的特征解决问题,体现了数形结合, _________ 方程 函数 _____ 与_____ 的结合的思想方法.
【点拨】观察分析图象,明确坐标轴的含义,可以得到一些具
0.6 万公顷. ____ 5, (2)纵坐标为1的点在函数的图象上对应的点的横坐标为__ 5 年年底,新增沙漠面积可达到1万公顷. 所以第__ 100 万公顷,每年新增沙漠 (3)①由题意可知该地区原有沙漠____ 0.2 万公顷; ____ 0.2m 万公顷. ②m年年底新增沙漠_____ 0.2m+100 万公顷. 所以m年年底该地区的沙漠面积变为_________
给运输机需多少分钟?
(2)求加油过程中,运输机的余油量Q1(t)续飞行,需10h到达目的地,问
燃油是否够用?
【规范解答】(1)由图可知,加油飞机的加油油箱中装载了 30 t油,将这些油全部加给运输机需___ 10 min.……………2分 ___ (2)设加油过程中,运输机的余油量Q1(t)与时间t(min)的 函数关系式为Q1=kt+b.因为函数的图象过点(0,40),所以 b=40.又因为函数图象过点(10,69),所以b+10k=69,
鲁教版-数学-七年级上册-6.5 一次函数的应用(2) 教案

一次函数的应用(2)教学目标:1.能通过函数图像获取信息,发展形象思维,培养学生的数形结合意识.2.能利用函数图像解决简单的实际问题,发展学生的数学应用能力,培养学生良好的环保意识和热爱生活的意识.3.初步体会方程与函数的关系,建立良好的知识联系.教学重点:一次函数图象的应用.教学难点:正确地根据图象获取信息,并解决现实生活中的有关问题.教学过程:一、引入新课水是生命之源,生活中我们处处离不开水!这里有一段有关水资源的资料:今年3月22日是第20个世界水日,今年世界水日的主题是“水与粮食安全”.水是生命之源.虽然地球70.8%的面积被水覆盖,但97.5%的水是海水,既不能直接饮用也不能灌溉.在余下的2.5%的淡水中,人类真正能够利用的不足世界淡水总量的1%.造成干旱的原因既有人为因素,也有自然因素.水在枯竭,如果我们还不珍惜,最后一滴水将与血液等价.今天我们就一起针对节约用水的问题,从数学知识的角度来进行全面的分析,共同学习如何用一次函数的图象来帮助我们解决生活中的实际问题.板书课题:4一次函数的应用(2)二、学习新知由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间(天)与蓄水量(万米3)的关系如下图所示,回答下列问题:t V(1)水库原有蓄水量是多少?(2)干旱持续天,蓄水量为多少?连续干旱天呢?(3)蓄水量小于时,将发出严重干旱警报,干旱多少天后将发出严重干旱警报? (4)按照这个规律,预计持续多少天水库将干涸?处理方式:先让学生独立思考,试试自己能否独立完成.然后小组交流讨论,教师巡视及时启发诱导,让学生学会识图.5分钟后学生展示.解:(一)(1)原有需水量1200万立方米;(2)干旱持续10天,蓄水量为1000万立方米,连续干旱23天后为700万立方米;(3)40天;(4)60天.(二)设一次函数关系式:把和代入中 解得 即:一次函数关系式:我们用了图象法和关系式法两种方法解决了这个问题,你能对比一下这两种方法的优缺点吗?解析式法比较准确但是不直观.图象法比较直观但是不够准确.v 3万米103万米234003万米v kt b =+(0,1200)()40,400v kt b =+120040400b k b =⎧⎨+=⎩201200k b =-⎧⎨=⎩201200v t =-+1:理解横纵坐标分别表示的的实际意义.2:分析已知(看已知的是自变量还是因变量),通过作x 轴或y 轴的垂线,在图象上找到对应的点,由点的横、纵坐标的值读出要求的值.3:利用数形结合的思想:将“数”转化为“形”,由“形”定出“数”.例某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量(升)与摩托车行驶路程(千米)之间的关系如图所示,根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100千米消耗多少升汽油?(4)油箱中的剩余油量小于1升时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?处理方式:因为在前面探索中已向学生介绍了如何识读一次函数图象,因此本题可放手让学生自己读图、识图,完成题中的问题,然后老师组织学生在班上交流.当学生有疑问时也可请求其他学生帮助解决.在答题过程中,老师适时地书写解答过程.解:观察图象,得(1)当x=0时,y=10,此时表示:摩托车的油箱最多可储油10升.(2)当时,,此时表示:一箱汽油最多可供摩托车行行驶500千米.(3)x 从0增加到100时,y 从10减少到8,因此摩托车每行驶100千米消耗2升汽油.(4)当时,,因此行驶了450千米后,摩托车将自动报警.设计意图:通过摩托车的油箱的问题进一步培养学生的识图能力,让学生能从图象中获取信息,进一步巩固用函数图像的思想解决生活中的问题.三、合作探索yx 0y =500x =1y =450x =师:请大家看图填空(1)当时,;(2)直线对应的函数表达式是________________.解:(1)观察图象可知当时,;(2)直线过和设表达式为,根据题意,得解之得: 所以直线对应的函数表达式是思考:一元一次方程与一次函数有什么联系?总结:从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程的解;从“形”的角度看,函数与x 轴交点的横坐标即为方程的解. 通过本题让学生认识到一次函数与一元一次方程的联系,让学生明晰函数与方程的关系:从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程0y =______x=0y =2x =-()-2,0()0,1y kx b =+⎩⎨⎧==+-102b b k ⎩⎨⎧==15.0b k 0.51y x =+0.510x +=0.51y x =+0.51y x =+0.510x +=0.51y x =+0.510x +=y kx b =+的解;从“形”的角度看,函数与x 轴交点的横坐标即为方程的解.使学生能用函数关系解决方程问题的同时也能用方程的观点来看待函数.四、总结归纳我们学会了怎样从实际情景函数图象中获取信息.我们学会了利用函数图象解决简单的实际问题.我们初步认识到了方程与函数之间的联系.五、能力检测1.全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积,沙漠面积,土地沙漠化的变化情况如图1所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造沙漠,那么到第几年底,该地区的沙漠面积能减少到?2.一次函数的图象如图2所示,根据图象回答:当y=0时,x=_____; 方程的解是________.解:1.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米0kx b +=y kx b =+0kx b +=2100万千米2200万千米24万千米2176万千米y kx b =+0kx b +=2,实际每年改造面积2万千米2,由于,故到第12年底,该地区的沙漠面积能减少到176万千米2.2.利用一次函数与一元一次方程的关系得:当y=0时,x=-3; 方程的解是 x=-3.六、布置作业1.必做题:课本习题第1,2题.2.选做题:课本习题第3题.(200176)212-÷=y kx b =+0kx b +=0kx b +=。
鲁教版数学七年级上册6.5《一次函数的应用》教学设计1

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第六章第五节的内容。
本节内容是在学生已经掌握了函数概念和一次函数的基础上,进一步探讨一次函数在实际生活中的应用。
通过本节内容的学习,使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有一定的了解。
但是,对于一次函数在实际生活中的应用,可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生将理论知识与实际生活相结合,通过实际问题,引导学生理解和运用一次函数。
三. 教学目标1.知识与技能:使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题。
2.过程与方法:通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。
四. 教学重难点1.重点:一次函数在实际生活中的应用。
2.难点:如何将实际问题转化为一次函数问题,如何运用一次函数解决实际问题。
五. 教学方法采用问题驱动法,通过实际问题的提出,引导学生思考和探索,从而理解和掌握一次函数在实际生活中的应用。
同时,采用小组合作学习法,鼓励学生之间的交流和合作,提高学生的学习效果。
六. 教学准备教师准备一些实际问题,用于引导学生思考和探索。
同时,准备一次函数的图像,用于帮助学生理解和掌握一次函数的性质。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾一次函数的知识,如一次函数的定义、图像等。
然后,教师提出一个问题:“你们认为一次函数在实际生活中有什么应用呢?”让学生思考和讨论。
2.呈现(10分钟)教师呈现一些实际问题,如“小明每天骑自行车上学,他每小时行驶6公里,问小明从家到学校需要多少时间?”让学生尝试解决。
在学生解决过程中,教师引导学生将实际问题转化为一次函数问题。
2022秋七年级数学上册第六章一次函数6.5一次函数的应用1含一个一次函数(图象)的应用课件鲁教版五

与行驶时间t(h)的关系用图象表示应为( C )
【点拨】本题中s并不是汽车行驶的路程,而 是剩下没有走的路程.不能受思维定式的影响, 要仔细审题,理解题意.实际上s与t的函数关 系式为s=400-100t,其中0≤t≤4,s是t的一次 函数,故选C.
3 【中考·西藏】如图,一个弹簧不挂重物时长6 cm,挂上 重物后,在弹性限度内弹簧伸长的长度与所挂重物的质 量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单 位:kg)的函数图象如图所示,则图中a的值是( A ) A.3 B.4 C.5 D.6
4 【中考·辽阳】一条公路旁依次有A,B,C三个村庄,甲、 乙两人骑自行车分别从A村、B村同时出发匀速前往C村, 甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如 图所示,下列结论:①A,B两村相距10 km;②出发1.25 h 后两人相遇;③甲每小时比乙多骑行8 km;④相遇后,乙 又骑行了15 min或65 min时两人相距 2 km.其中正确的个数是( D ) A.1个 B.2个 C.3个 D.4个
(3)若-2≤y≤2,请直接写出x的取值范围. 解:当-2≤y≤2时,x的取值范围为-4≤x≤-2.
9 【中考·台州】如图①,某商场在一楼到二楼之间设有上、 下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲 乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度 h(单位:
m)与下行时间 x(单位:s)之间具有函数关系 h=-130x+6, 乙离一楼地面的高度 y(单位:m)与下行时间 x(单位:s)的函 数关系如图②所示. (1)求 y 关于 x 的函数表达式;
【2021·天津南开中学期中】在如图所示的直角坐标 8
七年级数学上第六章一次函数6.5一次函数的应用2含两个一次函数的应用课鲁教五四制

【点拨】由图象可知,进水的速度为20÷4=5(L/min), 出水的速度为5-(35-20)÷(16-4)=3.75(L/min), 第24 min时的水量为20+(5-3.75)×(24-4)=45(L), 所以a=24+45÷3.75=36.
5 【中考·连云港】快车从甲地驶往乙地,慢车从乙地驶往 甲地,两车同时出发并且在同一条公路上匀速行驶.图 中折线表示快、慢两车之间的路程y(km)与它们的行驶 时间x(h)之间的函数关系.小欣同学结合图象得出如下 结论:①快车途中停留了0.5 h;②快车速度比慢车速度 多20 km/h;③图中a=340;④快车先 到达目的地.其中正确的是( B ) A.①③ B.②③ C.②④ D.①④
(2)现在乙复印社表示:若学校先按每月付给200元的承包 费,则可按每页0.15元收费.则乙复印社每月收费y(元)与 复印页数x(页)之间的函数表达式为__y_=__0_.1_5_x_+__2_0_0___(不 需要写出自变量的取值范围). (3)在如图所示的直角坐标系内画出(1)(2)中的函数图象, 并回答每月复印页数在1 200页左右时,选择哪个复印社更 合算?
180
900
210
850
(2)设在甲批发店花费y1元,在乙批发店花费y2元,
分别求y1,y2关于x的函数表达式;
解:当 0<x≤50 时,y2=7x; 当 x>50 时,y2=7×50+5(x-50)=5x+100. 因此 y1,y2 与 x 的函数表达式为 y1=6x(x>0);
y2=75xx( +010<0(x≤x5>0)50,).
(2)甲、乙两人的速度. 解:设甲的速度为 a km/h. 由题可知第53h 时,甲到达 B 地,则乙走 1 h 的路程,甲走53
鲁教版(五四制)七年级上册数学课件6.5一次函数的应用(1)

• 某种摩托车的油箱最多可储油10升,加满油后,
油箱中的剩余油量Y(升)
与摩托车行驶路程
X(千米)之间的
Y/升
关系如图所示。
10
• 根据图像回答
9 8
下列问题:
7
• 一箱汽油可供摩托
6 5
车行驶多少千米?
4
• 摩托车每行驶100
3 2
千米消耗多少升汽油? 1
• 油箱中的剩余油量
O 100 200 300 400 500 X/千米
-3
y=0.5x+1与x轴交点的横坐标,即为
方程0.5x+1=0的解.
灿若寒星
小结
1、经过本节课的学习,你 有哪些收获? 2、本节课主要运用什么方 法来解决一些简单的实际 问题?
灿若寒星
灿若寒星
(1)干旱持续10天,蓄水量为多少?连续干旱23天呢? (2)蓄水量小于400万米 时,将发出严重干旱警报.干旱 多少天后将发出严重干旱警报? (3)按照这个规律,预计持续干旱多少天水库将干涸?
V/万米3
1200 1000
800 600 400 200
(50,200)
O 10 20 30 40 50 t / 天
小于1升时,摩托车
将自动报警.行驶多少千米,摩托车将自动报警?
灿若寒星
• 解法1:观察图象,得
Y/升
• 当Y=0时,X=500.
一次一箱汽油可供
10 9
摩托车行驶500千米. 8 7
• X从0增加到100时, 6
Y从10减少到8,减少 5
4
了2,因此摩托车每
3
行驶100千米消耗
2
2升汽油.
1
鲁教版数学七年级上册6.5《一次函数的应用》教学设计2

鲁教版数学七年级上册6.5《一次函数的应用》教学设计2一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第6.5节的内容。
本节课主要让学生掌握一次函数的应用,学会解决实际问题。
教材通过简单的实例,引导学生理解一次函数在实际生活中的应用,培养学生的数学应用能力。
二. 学情分析七年级的学生已经学习了初中数学的一些基本概念和运算,但对一次函数的应用还不够熟练。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解一次函数的概念,掌握一次函数的性质。
2.学会将实际问题转化为一次函数问题,能运用一次函数解决实际问题。
3.提高学生的数学应用能力,培养学生的逻辑思维能力。
四. 教学重难点1.一次函数的概念和性质。
2.如何将实际问题转化为一次函数问题。
3.运用一次函数解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究一次函数的应用。
2.利用实例分析,让学生直观地理解一次函数在实际生活中的应用。
3.采用小组合作学习,培养学生的团队协作能力。
4.利用多媒体辅助教学,提高教学效果。
六. 教学准备1.准备相关的一次函数实例,用于讲解和练习。
2.准备一次函数的图片或实物模型,帮助学生直观地理解一次函数。
3.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
”引导学生思考如何用数学知识解决实际问题。
2.呈现(10分钟)呈现一次函数的定义和性质,让学生了解一次函数的基本概念。
通过示例,讲解一次函数在实际生活中的应用,让学生直观地理解一次函数。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数解决。
教师巡回指导,帮助学生解决问题。
4.巩固(10分钟)选取几组学生的作品,进行展示和讲解。
让学生分享自己的解题过程和心得,加深对一次函数应用的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数图象如下中图所示,汽车开始工作时油箱中有燃油升,经过小时耗尽燃油,y与x之间的函数关系式为 .
2. 如图所示的折线ABC为某地出租汽车收费y(元)与乘坐路程x(千米)
之间的函数关系式图象,当x≥3千米时,该函数的解析式为,乘坐2千米时,车费为元,乘坐8千米时,车费为元.
3. 如上右图所示,表示的是某航空公司托运行李的费用y(元)与托运
行李的质量x(千克)的关系,由图中可知行李的质量,只要不超过_________千克,就可以免费托运.
(第1题) (第2题) (第3题)
当堂达标
1、小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时
以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是().
2、如图1,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,MNR
△的面积为y,如果y关于x的函数图象如图2所示,则当9
x 时,点R应运动到()
A.N处B.P处C.Q处D.M处
Q P
R
M N
(图1)(图2)
4 9
y
x
O。