聚丙烯腈基碳纤维的制备-表面处理

合集下载

cfrp的基本结构和制备方法

cfrp的基本结构和制备方法

cfrp的基本结构和制备方法
CFRP是碳纤维增强复合材料的缩写,其基本结构由碳纤维和树脂基体组成。

1. 碳纤维:碳纤维是CFRP的增强材料,其具有高强度、高刚度和低密度的特点。

碳纤维通常由聚丙烯腈纤维经过高温炭化处理得到,具有纤维状的结构。

2. 树脂基体:树脂基体是CFRP的基础材料,其主要作用是固定和保护碳纤维,并传递外部载荷。

常用的树脂基体材料包括环氧树脂、聚酰亚胺、苯酚醛树脂等。

制备方法主要包括以下步骤:
1. 碳纤维预处理:将聚丙烯腈纤维进行纺丝、拉伸、热定型等处理,使其形成具有一定强度和结构的碳纤维。

2. 碳纤维表面处理:对碳纤维表面进行处理,以提高其与树脂基体的粘接性能。

常用的处理方法有表面活化、涂覆活性剂等。

3. 树脂基体制备:选择适当的树脂基体材料,按照一定的比例混合、搅拌、脱泡等工艺,制备成均匀的树脂基体。

4. 碳纤维预浸料制备:将碳纤维与树脂基体混合,使其充分浸润碳纤维,形成预浸料。

5. 预浸料成型:将预浸料放入模具中,进行压实、热固化等工艺,使其成型为所需的形状。

6. 碳纤维复合材料成型:通过压制、注塑、自动化纺织等工艺,将预浸料制备成所需的复合材料产品。

7. 后续处理:根据具体要求,对成型的CFRP进行修整、切割、表面处理等工艺,以满足产品的要求。

聚丙烯腈碳纤维用上浆剂

聚丙烯腈碳纤维用上浆剂

聚丙烯腈碳纤维用上浆剂聚丙烯腈碳纤维用上浆剂上浆是碳纤维经表面处理后收绕成卷成为碳纤维成品前的最后一道工艺工序。

上浆的主要作用是对碳纤维进行集束,类似黏合剂使碳纤维聚集在一起,改善工艺性能,便于加工,同时起到保护作用,减少碳纤维之间的摩擦,使其在后续收卷、包装、运输过程减少对纤维的损失。

通过对碳纤维进行上浆处理,在碳纤维表面形成的聚合物层还可以起到类似偶联剂作用,改善碳纤维和树脂之间化学结合,提高复合材料的界面性能。

碳纤维表面的聚合物还能改善炭纤维的浸润性能,便于树脂浸渍,减少复合材料的制备时间,提高复合材料的质量。

碳纤维生产过程中不同上浆剂、上浆工艺对碳纤维力学性能、加工工艺性能和复合材料力学有着重要影响。

5.4.1 上浆剂种类碳纤维上浆剂的品种很多,选择上浆剂需要综合考虑成膜性、对纤维的保护性能、环保性和成本等因素。

在上浆剂研制生产时就需要考虑与最终增强基体树脂的相容性,为碳纤维在复合材料中发挥其高强高模特性提供基础准备。

对于上浆剂主组分的选取,应根据相似相溶原理,选择与基体树脂材料类似的组分,比如环氧树脂基体选择环氧树脂系上浆剂,不饱和聚酯基体选择不饱和聚酯类上浆剂。

表5.19为东丽公司碳纤维上浆剂与不同树脂相容性。

表5.19 东丽公司上浆剂类型与不同树脂的相容性上浆剂类型13 4 5 6 F 9目前工业及研究中所采用的上浆剂种类很多,通常为多官能型分子量较低的聚合物,包括含羧基或者醚键的化合物、含酰胺基或酯基的化合物、双酚类化合物、多氧化乙烯(多)苯基醚类化合物、多元醇-脂肪酸酯类、环氧树脂类以及其改性化合物、聚氨酯为主成分的改性物、聚酰亚胺及其改性化合物等。

在最近的研究中,为了进一步改进碳纤维在复合材料制备过程的加工工艺性,研究人员尝试了微颗粒改性,如在常规上浆剂中加入硅酸铝、石墨、、云母、氧化铝、陶瓷等微颗粒,或者采用如碳纳米管、石墨烯、纳米二氧化硅等进行改性,获得了一定的改性效果。

聚丙烯腈(PAN)基碳纤维复合材料

聚丙烯腈(PAN)基碳纤维复合材料
生产工艺改进
针对PAN基碳纤维复合材料生产过程中存在的能耗高、污染重等问题 ,研究者们不断改进生产工艺,提高生产效率和环保性。
未来发展趋势预测与挑战分析
高性能化
未来PAN基碳纤维复合材料将继续向高性能化方向发展, 以满足高端应用领域对材料性能的更高要求。
绿色环保
随着环保意识的提高,PAN基碳纤维复合材料的绿色生产 将成为未来发展的重要趋势,包括采用环保原料、优化生 产工艺等。
耐疲劳性
碳纤维复合材料具有良好 的耐疲劳性能,能够承受 长期的交变载荷作用。
热稳定性及耐候性评估
热稳定性
PAN基碳纤维在高温下能 够保持较好的稳定性,不 易发生热分解或氧化反应 。
耐候性
碳纤维复合材料具有良好 的耐候性能,能够抵抗紫 外线、酸雨等自然环境的 侵蚀。
耐腐蚀性
由于碳纤维的化学稳定性 较高,因此它对于多种化 学物质都具有良好的耐腐 蚀性。
汽车工业领域应用
轻量化
碳纤维复合材料具有密度小、比 强度高、比模量高等优点,是实 现汽车轻量化的理想材料,可用
于车身、底盘等结构件。
安全性
碳纤维复合材料在碰撞时能够吸收 大量能量,提高汽车的安全性。
舒适性
碳纤维复合材料具有良好的阻尼性 能,能够降低汽车行驶过程中的振 动和噪音,提高乘坐舒适性。
体育器材领域应用
聚丙烯腈(PAN)基碳纤维复合 材料的制备工艺主要包括原丝 制备、预氧化、碳化、石墨化 等步骤,通过控制工艺参数可 以得到不同性能的复合材料。
聚丙烯腈(PAN)基碳纤维复合 材料在航空航天、汽车、体育 器材、建筑等领域具有广泛的 应用前景,如飞机结构件、汽 车轻量化部件、高性能运动器 材等。
02
CATALOGUE

聚丙烯腈(PAN)基碳纤维复合材料-作业

聚丙烯腈(PAN)基碳纤维复合材料-作业

b、碳化收率为50%-55%;
c、在脱除碳以外的杂原子时其骨架结构很少破坏;
PAN链的无规则螺旋结构
PAN纤维→预氧化→碳化→石墨化→PAN基碳纤维
PAN纤维截面SEM照
PAN碳纤维表面结构
PAN碳纤维复合材料的应用
全球PAN碳纤维产业发展情况
全球PAN碳纤维产业发展情况
比重不到钢的1/4 ,市面上出售的 PAN基碳纤维密度 在1.75-1.93g/cm3 之间。
耐高温(惰性气 氛下可耐2000℃ 以上),低热膨 胀系数,比热容 小,出色的抗热 冲击性,优秀的 抗腐蚀和抗辐射 性能。
聚丙烯腈基碳纤维的制造
PAN结构式
I→600pm←I
a、PAN纤维分子易于沿纤维轴取向;
聚丙烯腈(PAN)基碳纤维复合 材料-作业
碳纤维复合材料
碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维 等人造纤维或合成纤维为原料,经预氧化、碳化、石墨化等 过程制得含碳量达90%以上的无机纤维材料。
粘胶基
沥青基
聚丙烯腈基
碳纤维的性能(PAN)
Байду номын сангаас
强度高
密度低
其他性能
理论强度可达到 180GPa。目前东 丽T1000的强度达 到7.02GPa,虽然 远低于理论值但 比钢的强度要高 出很多

碳纤维制备

碳纤维制备

碳纤维制备碳纤维是一种高强度、高模量的材料,广泛应用于航空、航天、汽车、体育器材等领域。

本文将介绍碳纤维的制备方法,包括聚丙烯腈纤维制备、氧化、炭化和表面处理等步骤。

一、聚丙烯腈纤维制备聚丙烯腈(PAN)是碳纤维的主要原料,其制备方法包括聚合法和共聚法。

其中,聚合法是将丙烯腈单体进行自由基聚合得到PAN,共聚法则是将丙烯腈与其他单体如甲基丙烯酸甲酯等进行共聚得到PAN。

PAN纤维的制备过程包括溶解、旋拉成型和拉伸等步骤。

首先将PAN 溶解在N,N-二甲基乙酰胺(DMAc)中形成混合液,然后通过旋转成型将混合液挤出成为直径约为20微米的纤维。

接着对这些纤维进行拉伸处理,使其长度方向上的分子间距逐渐减小,形成有序结构,从而提高纤维的强度和模量。

二、氧化PAN纤维在空气中加热至200-300℃时会发生氧化反应,生成含有羰基和羟基等官能团的氧化PAN(OPAN)。

这些官能团可以增强碳纤维与基体之间的粘接力,并且在后续的炭化过程中有助于生成高质量的碳纤维。

三、炭化OPAN经过高温处理可以得到碳纤维。

炭化过程是在惰性气体(如氮气、氩气)或真空环境下进行的,一般分为两个阶段:低温炭化和高温炭化。

低温炭化是在600-1000℃范围内进行的,主要是去除OPAN中的非碳元素(如氧、水、氢等),形成具有较高结晶度和较好机械性能的初级碳。

高温炭化则是在1500-3000℃范围内进行的,主要是进一步去除残留杂质和形成更完整的晶格结构,从而提高碳纤维的强度和模量。

四、表面处理为了提高碳纤维与基体之间的粘接力和防止表面氧化,需要进行表面处理。

常用的方法包括电化学氧化、等离子体处理和涂覆等。

电化学氧化是将碳纤维放入强酸中进行氧化处理,使其表面形成含有羟基和羰基等官能团的氧化物层。

这些官能团可以与基体上的官能团发生反应,形成强力键合。

等离子体处理是将碳纤维放入等离子体中进行表面活性化处理,使其表面变得更加亲水,从而提高粘接力。

涂覆是将一层薄膜涂覆在碳纤维表面,起到保护作用并且可以增加与基体之间的摩擦力。

聚丙烯腈基超细碳纤维毡的制备及其表征

聚丙烯腈基超细碳纤维毡的制备及其表征
用 ;NN 二 甲基 甲酰 胺 ( M ) ( R,上 海博尔 ,一 D F A
化学试剂有限公司) ;高纯氮气 ( . 99 9 9%,上海 申
中工业气体有限公司) 。 x一 线 衍 射 仪 ( / x 25 C, 1 射 DMa 一 5 0 P 3本
R G K ), 微 量 注 射 泵 (4 0 0 , , C l — IA U 79 0—00 5 o e
美 国 Ncl ) i e ,流 变 仪 ot ( V—m , Bo k e ,美 D r fl oi d
高压 嘉流 静 电发生器
维具有连续 、密实 、直径 分布均 匀等特 点 。近年 , Y u g[ 等用静 电纺丝制得 具有较好 电化学特性的 on 7 1
收稿 日期 :20 -9 0 修 回 日期 :20 —0 1 09 0— 4 09 1— 2
1 P A ) C ,上海华东 试剂工 业供 销
织造布织物的专利 。
远远高于工业 上现 已商业化 的碳纤 维 ,但 它的实 际
强度很 低 i ,不 利于 后续 的应用 。作为 高效 吸附 a r ] 材料活性碳纤维 的前躯体 ,超细碳 纤维 的强度对后
续的活化以及应用影 响很大 。 本论文 通过 静电纺 丝 、预 氧化 、碳化制备了不
研 究 论 文
聚丙烯腈基超 细碳纤维毡 的制备及其 表征
姜 正雄 ,余 阳 ,周 美 华 术 ( 华 大 学 环 境 科 学 与 工程 学 院 ,上 海 2 12 ) 东 0 60
摘 要 :采用静 电纺丝 法制备 了不 同黏 均 分子质量 ( 1 聚 丙烯腈 (A )超 细纤 维毡 ,并通过 20℃ MJ的 PN 8 预 氧化 和 9 0℃碳 化进 一 步 制备 超 细碳 纤维 毡 。讨 论 了 0 对 纤 维制 备 的影 响 ,发 现 P N的 眠 大 于 A

聚丙烯腈基碳纤维及其应用

聚丙烯腈基碳纤维及其应用

PAN基碳纤维及其应用(南通大学纺082 0815012038 朱琴)摘要:聚丙烯腈基碳纤维是一种力学性能优异的新材料,在航空、航天、建筑、体育、汽车、医疗等领域得到广泛的应用。

本文简要介绍了PAN基碳纤维的结构、性能、制备、碳纤维的应用领域以及面临的挑战,并对未来发展提出了一些建议。

关键词:PAN基碳纤维、结构、性能、制备、应用、挑战碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得,其中的聚丙烯腈(PAN)基碳纤维用途最广、用量最大、发展最为迅速,在碳纤维生产中占有绝对优势。

目前世界主要PAN基碳纤维生产厂家的总生产能力已达到3.65万t的规模,仅次于劳纶,跃居世界高性能纤维的第2位。

碳纤维足军民两用新材料,是我国目前乃至今后相当长一段时间内鼓励优先发展的高科技纤维之一,也是国家迫切需要短期内突破的高新技术纤维品种。

随着近年来我国对碳纤维的需求量日益增长,碳纤维已被列为国家化纤行业重点扶持的新产品,成为国内新材料产业研发的热点。

一、PAN基碳纤维的结构聚丙烯腈基碳纤维是以聚丙烯腈纤维为原料制成的碳纤维,主要做复合材料的增强体。

碳纤维是由片状石墨微晶沿纤维轴向方向堆砌而成的所谓“乱层”结构,通常也把碳纤维的结构看成由两维有序的结晶和孔洞组成,其中孔洞的含量、大小和分布对碳纤维的性能影响较大。

碳纤维各层面间的间距约为 3.39~3.42Å,各平行层面间的各个碳原子,排列不如石墨那样规整,层与层之间借范德华力连接在一起。

二、PAN基碳纤维的性能碳纤维有通用型(GP)、高强型(HT)、高模型(HM)、高强高模(HP)等多种规格。

见表1表1 碳纤维的规格与性能规格高强型HT 高模型HM 通用型GP 高强高模型HP 直径/μm 7 5~8 9~182.5~4.5 2.0~2.8 0.78~1.03.0~3.5强度/(×103Mpa)2.0~2.43.5~7.0 3.8~4.0 4.0~8.0模量/(×103Gpa)伸长/% 1.3~1.8 0.4~0.8 2.1~2.5 0.4~0.5比重/(g/cm3) 1.78~1.96 1.40~2.00 1.76~1.82 1.9~2.1碳纤维有如下的优良特性:①比重轻、密度小;②超高强力与模量;③纤维细而柔软;④耐磨、耐疲劳、减震吸能等物理机械性能优异;⑤耐酸、碱和盐腐蚀,可形成多孔、表面活性、吸附性强的活性炭纤维;⑥热膨胀系数小,导热率高,不出现蓄能和过热;高温下尺寸稳定性好,不燃,热分解温度800℃,极限氧指数55;⑦导电性、X射线透过性及电磁波遮蔽性良好;⑧具有润滑性,不沾润在熔融金属中,可使其复合材料磨损率降低;⑨生物相容性好,生理适应性强。

碳纤维的制作工艺

碳纤维的制作工艺

碳纤维的制作工艺:
1.由PAN原丝制备碳纤维的工艺流程如下:PAN原丝→预氧化→碳化→石墨化→表面处理→卷取→碳纤维。

2.原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。

制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。

制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。

作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。

3.预氧化(聚丙烯腈纤维200到300℃)、不融化(沥青200到400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。

4.碳化,其温度为:聚丙烯腈纤维1000到1500℃,沥青1500
到1700℃,粘胶纤维400到2000℃。

5.石墨化,聚丙烯腈纤维为2500到3000℃,沥青2500到2800℃,粘胶纤维3000到3200℃。

6.表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。

7.上浆处理,防止纤维损伤,提高与树脂母体的亲和性。

所得纤维具有各种不同的断面结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纤维表面处理碳纤维作为一种具有高强度高模量的先进材料,通常需要与其他基体材料进行复合制备成复合材料进行使用。

由于碳纤维本身经过1300℃以上的高温处理,纤维中90%以上由碳元素组成,纤维表面活性官能团很少,具有较强的惰性,与高分子树脂等基体进行复合时,纤维与树脂的结合较差,影响纤维优异力学性能的发挥,并最终影响复合材料的性能。

因此在碳纤维制备过程中,通常需要对碳纤维进行表面处理,增加其表面的活性基团,增强与树脂等基体之间的结合。

5.3.1 表面处理方法由于碳纤维表面处理对其复合材料性能提高的作用,因此表面处理方法的研究也是碳纤维制备技术研究的重点。

经过多年的研究,科研工作者开发了多种对碳纤维进行表面处理方法,表5.11列出了可以对碳纤维进行表面处理的不同方法及其影响因素。

在这些处理方法中,目前应用在工业化生产上的基本上都是电解氧化法。

表5.11 碳纤维表面处理方法和影响因素序号类型处理方法影响因素1 气相氧化O2、O3、NO2、NO、SO2、NH3、空气、水蒸气/空气、NO/空气时间、温度、浓度、流量2 液相氧化HNO3、H2O、KMnO4、NaClO3、Na2Cr2O7/H2SO4、H2O2/ H2SO4、NaClO3/ H2SO4、KMnO4/ H2SO4时间、温度、组成比例、3 电解氧化氨水、碳酸氢铵、H2SO4、HNO3、H3PO4、NaOH、KOH、NaCl、Na2CO3、NH4NO3、NaHCO3等水溶液时间、电压、电流密度、电解质浓度4 催化氧化硝酸铜、醋酸铜、硝酸铅、硝酸亚铅、硝酸铁、硫酸铁、硝酸铋、钒酸盐、钼酸盐时间、温度、催化剂量5 电引发聚合物涂层丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯腈、苯乙烯、醋酸乙烯、丙烯酰胺、乙烯基吡咯烷时间、电压、电流、溶剂、单体浓度6 聚合物电沉积涂层苯乙烯、乙酸乙烯酯、甲基丙烯酸甲酯、乙烯基甲基醚与马来酸酐共聚物时间、电压、电流、溶剂、共聚物离子浓度7 表面涂覆PVA、PVC、PAN、硅烷物,硬性聚氨酯炭黑树脂组成含量、涂覆量8 高温气相沉积SiC、TiC、TiO2、ErC、NiC、B、BN、NbC、TaC、石墨晶须、碳温度、时间、载气、试剂含量9 表面聚合物接枝丙烯酸、丙烯酸甲酯、苯乙烯、丙烯腈-苯乙烯、丙烯腈、异氰酸酯时间、氧化程度、接枝量、浓度10 等离子体处理O2、NH3、Ar、N2、空气、SiC涂层、AN聚合时间、真空度、功率、流动速度11 电子辐照γ射线等辐照剂量、时间5.3.1.1 气相氧化法气相氧化法是将碳纤维暴露在气相氧化剂(如空气、氧等)中,在加温、加催化剂等特殊条件下使其表面氧化生成一些活性基团(如羟基和羧基)。

气相氧化处理可以有效提高碳纤维与基体间的界面剪切强度。

如将碳纤维在450℃的空气气氛中氧化10分钟,所制备的复合材料的剪切强度和拉伸强度都有所提高;采用浓度为0.5-15mg/L的臭氧连续导入碳纤维表面处理炉中进行表面处理,碳纤维的界面剪切强度可达78-105MPa;氧气气氛中用卤素、二氧化硫等做抑制剂,也可有效改善表面特性。

气相氧化法的优点是较方便的在线配套使用,处理速度快,缺点是对碳纤维的处理均匀性不够理想,工艺条件苛刻,控制困难,容易对碳纤维力学性能产生较大的损伤,并且有毒有害气体的使用对环境影响较大。

5.3.1.2 液相氧化法液相氧化法是利用强氧化性液体或者溶液,如硝酸、重铬酸钾、次氯酸钠、过氧化氢、过硫酸钾等对碳纤维进行表面处理,使其表面产生羧基、羟基、羰基等含氧基团,从而达到增强与树脂界面结合的目的。

由于液相氧化法较气相氧化法较为温和,氧化程度较容易控制,不易使纤维产生过度氧化影响其力学性能,是研究较多的方法之一。

但该方法由于处理时间较长,很难与碳纤维生产线匹配,通常用于碳纤维的间歇表面处理,而且强氧化性液体对设备腐蚀严重,也不利于从碳纤维中清除干净。

5.3.1.3 催化氧化法催化氧化法是利用金属盐类对碳纤维进行催化氧化,该方法可以有效提高表面处理速度,但由于碳纤维与催化剂很难均匀接触,其氧化均匀性受到影响,并且也存在催化剂清除困难的问题。

该方法基本只停留在研究阶段。

5.3.1.4 聚合物涂层法电引发聚合物涂层、聚合物电沉积涂层、表面聚合物接枝和表面涂覆等方法都是在碳纤维表面引入一薄层聚合物膜,从而达到与基体树脂匹配的效果。

其中电引发聚合物涂层、聚合物电沉积涂层都是利用碳纤维本身具有导电性的特点,在电场的作用下在碳纤维表面引发聚合或者沉积聚合物,从而引入活性基团,提高与基体树脂的界面结合。

表5.12为不同涂层类型对碳纤维复合材料性能的影响。

经过电化学涂层改性后,碳纤维复合材料的层间剪切强度和抗弯强度都比未处理时有明显提高,并且在一些条件下还可以提高抗冲击强度。

但是这些方法本身并不真正改变碳纤维表面结构,因此基本不会对碳纤维力学影响产生明显影响。

同时根据基体树脂的特点选择合适的单体或者聚合物,可以较好地达到提高复合材料性能的目的。

涂层厚度和均匀性控制是这些方法的难点。

表5.12 电化学涂层对碳纤维复合材料性能的影响涂层类型层间剪切强度抗冲强度抗弯强度/MPa /kJ/m/MPa马来酸酐/苯乙烯=1:1 68 57 1100马来酸酐/苯乙烯=2:1 59 72 1100马来酸酐/苯乙烯=3:1 62 56 1000马来酸酐/己烯=1:1 61 42 1000马来酸酐/十八烯=1:1 52 44 910马来酸酐/甲基乙烯基醚=1:1(分子量50万)48 86 900马来酸酐/甲基乙烯基醚=1:1(分子量75万)59 130 950马来酸酐/甲基乙烯基醚=1:1(分子量125万)54 140 860未处理34 63 780 高温气相沉积是在高温条件下将碳化硅、石墨晶须等沉积到碳纤维表面,所沉积的物质对树脂起到物理锚定作用,从而增加碳纤维与树脂之间的结合。

该方法可以小批量处理碳纤维,但实施工业化生产较为困难。

5.3.1.5 等离子体法等离子体是具有足够数量而电荷数近似相等的正负带电粒子的物质聚集态。

用等离子体氧化法对纤维表面进行改性处理,是指利用非聚合性气体对材料表面进行物理和化学作用的过程。

采用低温等离子或微波等离子对碳纤维进行表面处理也是行之有效的方法,该方法的特点是气一固反应,无污染,处理时间较短,通常几秒钟就可以达到所需处理效果。

等离子体所用气体可以是活性气体(如氧、氨气、一氧化碳等),也可以是惰性气体,如氦气、氮气和氩气等。

常用的氧等离子体具有高能高氧化性,与碳纤维表面碰撞时,可以将碳纤维微晶棱角、边缘和缺陷等处的碳碳双键结构氧化成含氧活性基团。

表5.13为不同等离子体对碳纤维处理效果的比较,说明氧等离子体较惰性气体等离子体的优势。

但是,等离子体的产生需要一定的真空环境,所以设备复杂,连续、稳定和长时间处理具有一定的困难。

表5.13 不同等离子体对碳纤维处理效果比较等离子体羰基含量酮基含量醚键含量表面碳含量/%表面氧含量/%表面氮含量/%ILSS/MPa氧等离子体 2.72 6.05 7.91 84.6 12.9 2.6 82.4 氮等离子体 2.95 5.00 8.60 88.4 8.6 3.0 71.7 氩等离子体 2.96 5.40 8.30 88.3 4.8 7.0 69.6 5.3.1.6 电解氧化法电解氧化法也成为阳极氧化法,是将碳纤维作为阳极,石墨板作为阴极,在电解质水溶液中施加直流电场进行电解氧化处理,使碳纤维表面产生活性官能团的处理方法。

电化学氧化反应条件缓和, 处理时间短,工艺设备较为简单,可与碳纤维生产线衔接和匹配实现工业化生产。

通过控制电解温度、电解质含量和含量、电流密度等工艺条件可以实现对氧化程度以及纤维表面官能团地选择性控制。

电解氧化法是目前碳纤维工业化生产中被广泛应用的方法。

图5.39为阳极氧化法对碳纤维进行表面处理的工艺流程示意图。

图5.39 阳极氧化法工艺流程示意图在阳极氧化表面处理时由于以碳纤维本身作为阳极,因此在施加一定电流后,电解液中含氧阴离子在电场作用下向碳纤维移动,在其表面放电生成新生态氧,继而使其氧化, 生成羟基、羧基、羰基等含氧官能团, 同时碳纤维也会受到一定程度的刻蚀,使得碳纤维本身的表面物理结构发生变化。

采用电化学氧化法, 合理选择电化学氧化装置是保证实施碳纤维有良好的表面处理效果的前提条件。

在选择电化学氧化装置时, 要考虑的因素包括阴极的材料、电解质和电流的选择。

阴极材料既要导电, 又要耐腐蚀。

石墨板具有良好的导电性能和耐腐蚀性, 在工业化生产中被广泛应用。

电解质可用酸、碱或盐类,如硝酸、硫酸、磷酸氢氧化钾、氢氧化钠、磷酸钾、硝酸钠、碳酸铵、碳酸氢铵、碳酸二氢铵等。

对于酸性电解质,水被电解生成的氧原子被碳纤维表面的不饱和碳原子吸附,并与相邻吸附氧的碳原子相互作用而产生二氧化碳,从而使石墨微晶被刻蚀。

边缘与棱角的碳原子数目减少,是表面官能团增加的一个重要因素;对于碱性电解质,氢氧根离子被碳纤维表面的活性碳原子吸附,并与相邻吸附氢氧根的碳原子相互作用而生成氧,从而增加了表面活性碳原子数目。

阳极表面处理通常采用直流电,也有报道采用交流电进行处理,较小的电量可以得到有效的处理效果。

表5.14为不同电解质在10mA/mg电流下阳极氧化处理10分钟后碳纤维表面张力、极性的变化。

表5.14 不同电解质系统对阳极氧化表面处理效果的影响电解质γ/mN/m γp/mN/m γd/mN/m X p未处理38.2 17.1 21.1 0.45K2CO3/KOH 36.4 14.0 22.4 0.38K2HPO4/KOH 39.2 17.4 21.8 0.44 KHCO3/KOH 44.5 23.9 20.6 0.54KH2PO4/KOH 46.5 26.1 20.4 0.56 NaHSO4/NaOH 47.2 26.4 20.8 0.594K2SO4/KOH 48.4 28.7 19.7 0.59 KNO3/KOH 48.8 28.4 20.4 0.585.3.1.7 高能量电子辐照近些年来,高能量电子辐照技术也被用来作为碳纤维表面处理的手段。

高能量电子辐照通常采用Co60γ射线,辐照剂量从几十到几百kGy。

由于γ射线具有极高能量(1.17和1.33MeV ),具有极强的穿透性,因此可以在任何温度下无需催化剂存在条件下在气、固、液材料中引发化学反应,具有无污染、节能等优点,并且对碳纤维还可以在收卷后进行,或者对碳纤维织物进行直接处理,而无需考虑织物大小、形状、厚度等。

图5.40为利用γ射线对碳纤维进行处理的装置示意图。

图5.41为不同剂量γ射线辐照后碳纤维的表面形貌变化,可以看出辐照后碳纤维表面形貌发生了很大变化,合适剂量的辐照使得纤维表面沟槽变细变多,有利于IFSS的提高。

相关文档
最新文档