海南省高考文科数学试题及答案
[高考数学] 2018年海南省高考数学试题及答案(文科)
![[高考数学] 2018年海南省高考数学试题及答案(文科)](https://img.taocdn.com/s3/m/022abc54a517866fb84ae45c3b3567ec102ddc78.png)
2018年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i +=A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b -=>>A.y = B.y =C.y =D.y x =7.在ABC △中,cos2C 1BC =,5AC =,则AB =A.BCD.8.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .A B =BCD10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2-C D 1-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2024年海南省高考数学真题及参考答案

2024年海南省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知1i z =--,则||z =().A.0B.1D.22.已知命题:R p x ∀∈,|1|1x +>;命题:0q x ∃>,3x x =.则().A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a = ,|2|2a b += ,且(2)b a b -⊥ ,则||b =().A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为().A.221(0)164x y y +=> B.221(0)168x y y +=>C.221(0)164y x y +=> D.221(0)168y x y +=>6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =()A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为().A.12 B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为().A.18B.14C.12D.1二、多项选择题:本题共3小题,每小题6分,共18分。
海南省高考数学试卷(文科)(全国新课标ⅱ)

2021 年海南省高考数学试卷〔文科〕〔全国新课标Ⅱ〕一、选择题:此题共12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.〔5 分〕 i〔2+3i〕 =〔〕A.3﹣2i B.3+2i C.﹣ 3﹣2i D.﹣ 3+2i2.〔5 分〕集合 A={ 1,3,5,7} , B={ 2, 3, 4, 5} ,那么 A∩B=〔〕A.{ 3} B.{ 5} C.{ 3,5} D.{ 1,2,3,4,5,7}3.〔5 分〕函数 f〔 x〕= 的图象大致为〔〕A.B.C.D.4.〔5 分〕向量,满足|| =1,=﹣ 1,那么?〔 2〕=〔〕A.4B.3C.2D.05.〔5 分〕从 2 名男同学和 3 名女同学中任选 2 人参加社区效劳,那么选中的2人都是女同学的概率为〔〕A.0.6 B.C.D.6.〔5 分〕双曲线=1〔 a> 0, b> 0〕的离心率为,那么其渐近线方程为〔〕A .y=± xB .y=± xC .y=± xD .y=± x7.〔5 分〕在△ ABC 中, cos = ,BC=1,AC=5, AB=〔〕A .4B .C .D .2 8.〔5 分〕 算 S=1++⋯+ , 了如 的程序框 , 在空白框中 填入〔〕A .i=i+1B .i=i+2C .i=i+3D . i=i+4.〔 分〕在正方体 1 1 1 1 中, E 棱 CC 1 的中点, 异面直AE 与9 5 ABCD A B C D CD 所成角的正切 〔 〕 A .B .C .D .10.〔 5 分〕假设 f 〔 x 〕=cosx sinx 在[ 0,a] 是减函数, a 的最大 是〔 〕A .B .C .D .π.〔5 分〕1,F 2 是 C 的两个焦点, P 是 C 上的一点,假设 PF 1⊥PF 2,且11F∠ PF 2 1 °, C 的离心率 〔〕F =60A .1B .2C .D .112.〔 5 分〕 f 〔x 〕是定 域 〔 ∞, +∞〕的奇函数, 足 f 〔 1 x 〕 =f 〔 1+x 〕,假设 f 〔1〕=2, f 〔 1〕 +f 〔2〕+f 〔3〕+⋯+f 〔50〕=〔〕A.﹣ 50B.0C. 2D.50二、填空题:此题共 4 小题,每题 5 分,共 20 分。
2023年海南省高考数学真题及答案解析

2023年海南省高考数学真题及答案解析一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,()()13i 3i +-对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A.2B.1C.23D.1-3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A .4515400200C C ⋅种B.2040400200C C ⋅种C .3030400200C C ⋅种D.4020400200C C ⋅种4.若()()21ln 21x f x x a x -=++为偶函数,则=a ().A.1- B.0C.12D.15.已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A.23B.3C.23-D.23-6.已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A.2e B.eC.1e -D.2e -7.已知α为锐角,15cos 4α+=,则sin 2α=().A.358B.158- C.354- D.154-+8.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A.120B.85C.85- D.120-二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为C.AC =D.PAC △的10.设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A.2p = B.83MN =C.以MN 为直径的圆与l 相切 D.OMN 为等腰三角形11.若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A.0bc > B.0ab > C.280b ac +> D.0ac <12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C.采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D.当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率三、填空题:本大题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试数学文试题(海南卷,解析版)

2020年普通高等学校招生全国统一考试数学文试题(海南卷,解析版)第I 卷一, 选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。
(1) 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =(A) }{3,5 (B) }{3,6 (C) }{3,7 (D) }{3,9 1.【答案】D【解析】集合A 与集合B 都有元素3和9,故A B =}{3,9,选.D 。
(2) 复数3223ii+=- (A )1 (B )1- (C )i (D)i - 2.【答案】C 【解析】3223i i +=-(32)(23)(23)(23)i i i i ++=-+694613i i ++-=i ,故选.C 。
(3)对变量,x y 有观测数据(1x ,1y )(1,2,...,10i =),得散点图1;对变量,u v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。
(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 3.【答案】C【解析】图1的的散点分布在斜率小于0的直线附近,y 随x 的增大而减小,故变量x 与y 负相关;图2的的散点分布在斜率大于0的直线附近,u 随v 的增大而减小,故变量v 与v 正相关,故选C 。
(4)有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π,1cos 2sin 2x x -= 4p : sin cos 2x y x y π=⇒+= 其中假命题的是(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p 4.【答案】A 【解析】因为2sin2x +2cos 2x =1,故1p 是假命题;当x =y 时,2p 成立,故2p 是真命题;21cos 21(12sin )22x x ---==|sinx |,因为x ∈[]0,π,所以,|sinx |=sinx ,3p 正确;当x =4π,y =94π时,有sin cos x y =,但2x y π+>,故4p 假命题,选.A 。
海南省2019年高考数学试卷(文科)以及答案解析

海南省2019年高考数学试卷(文科)以及答案解析海南省2019年高考数学文科试卷本试卷共23题,共150分,共4页。
请注意以下事项:1.在条形码区域内准确粘贴条形码,并填写姓名和准考证号码。
2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:1.已知集合A={x|x>﹣1},B={x|x<2},则A∩B=()A。
(﹣1,+∞)B。
(﹣∞,2)C。
(﹣1,2)D。
∅2.设z=i(2+i),则=()A。
1+2iB。
﹣1+2iC。
1﹣2iD。
﹣1﹣2i3.已知向量=(2,3),=(3,2),则|﹣|=()A。
B。
2C。
5D。
504.生物实验室有5只兔子,其中只有3只测量过某项指标。
若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A。
B。
C。
D。
5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测。
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A。
甲、乙、丙B。
乙、甲、丙C。
丙、乙、甲D。
甲、丙、乙6.设f(x)为奇函数,且当x≥时,f(x)=ex﹣1,则当x<时,f(x)=()A。
ex﹣1﹣B。
ex+1﹣C。
﹣ex﹣1﹣D。
﹣ex+1﹣7.设α,β为两个平面,则α∥β的充要条件是()A。
α内有无数条直线与β平行B。
α内有两条相交直线与β平行C。
α,β平行于同一条直线D。
α,β垂直于同一平面8.若x1=,则p=()A。
2B。
C。
1D。
89.若抛物线y2=2px(p>0)的焦点是椭圆,则函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=二、非选择题:10.(10分)已知函数f(x)=x3-3x2-24x+70,g(x)=(x+1)3-3,则f(x)在(﹣∞,+∞)上的最小值为______,g(x)的零点个数为______。
高考文科数学(海南卷)试题及答案

2010年普通高等学校招生全国统一考试(海南卷)文科数学参考公式:样本数据12,L n x x x 的标准差 锥体体积公式s ==13V sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合2,,|4,|A x x x R B x x Z =≤∈=≤∈,则A B =I (A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2| (2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665 (D )1665-(3)已知复数z =,则i = (A)14 (B )12(C )1 (D )2 (4)曲线2y 21x x =-+在点(1,0)处的切线方程为 (A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A ) (B(C (D(6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p (2,2-),角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(7) 设长方体的长、宽、高分别为2a 、a 、a,其顶点都在一个球面上,则该球的表面积为(A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54(B )45(C )65(D )56(9)设偶函数f(x)满足f(x)=2x -4 (x ≥0),则(){}20x f x ->= (A ){}24x x x <->或 (B ){}04 x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或 (10)若sin a = -45,a 是第一象限的角,则sin()4a π+= (A )-7210 (B )7210 (C )2 -10 (D )210(11)已知 Y ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 Y ABCD 的内部,则z=2x-5y 的取值范围是 (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数f(x)=lg 1,01016,02x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是 (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。
海南省高考文科数学试题及答案

2014年普通高等学校招生全国统一考试(海南卷)文科数学注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A B= (A) ∅ (B ){}2 (C ){}0 (D) {}2-(2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(3)函数()f x 在0x=x 处导数存在,若p :f l(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足10,6,则a ·b=(A )1 (B ) 2 (C )3 (D) 5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项n S = (A ) ()1n n + (B )()1n n -(C )()12n n + (D)()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027 (D) 13(7)正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D )32(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S=(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A )303(B )6 (C )12 (D )73 (11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是 (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡⎤-⎣⎦ (D ) 2222⎡⎤-⎢⎥⎣⎦,第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试(海南卷)
文科数学
注意事项
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符
合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2
x -x -20=﹜,则A B= (A) ∅ (B ){}2 (C ){}0 (D) {}2-
(2)
131i
i
+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -
(3)函数()f x 在0x=x 处导数存在,若p :f l
(x 0)=0;q :x=x 0是()f x 的极值点,则
(A )p 是q 的充分必要条件
(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件
(4)设向量a ,b 满足106,则a ·b=
(A )1 (B ) 2 (C )3 (D) 5
(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项n S = (A ) ()1n n + (B )()1n n -
(C )
()12
n n + (D)
()12
n n -
(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为
(A )1727 (B ) 59 (C )1027 (D) 13
(7)正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥
11DC B A -的体积为
(A )3 (B )
3
2
(C )1 (D )32
(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的
S=
(A )4 (B )5 (C )6 (D )7
(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪
--≤⎨⎪-+≥⎩
,则2z x y =+的最大
值为
(A )8 (B )7 (C )2 (D )1
(10)设F 为抛物线2
:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则
AB =
(A )
30
3
(B )6 (C )12 (D )73 (11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是 (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞
(12)设点0(x ,1)M ,若在圆2
2
:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是
(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡⎤-⎣⎦ (D ) 2222⎡⎤-⎢⎥⎣
⎦,
第Ⅱ卷
本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个考试考生都必须做
答。
第22题~第24题为选考题,考生根据要求做答。
二、填空题:本大概题共4小题,每小题5分。
(13)甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.
(14)函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为_________.
(15)已知函数)(x f y =的图像关于直线x =2对称,)3(f =3,则)1(-f =_______.
(16)数列{n a }满足n
n a a -=
+11
1,2a =2,则1a =_________. 三、解答题:解答应写出文字说明过程或演算步骤。
(17)(本小题满分12分)
四边形ABCD 的内角A 与C 互补,AB=1,BC=3, CD=DA=2. (I )求∠C 和BD; (II )求四边形ABCD 的面积。
(18)(本小题满分12分)
如图,四凌锥P —ABCD 中,底面ABCD 为矩形,PA 上面ABCD ,E 为PD 的点。
(I )证明:PB //平面AEC;
(II )设置AP=1,AD=3,三凌锥P-ABD 的体积V=
4
3
,求点A 到平面PBD 的距离。
(19)(本小题满分12分)
某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。
根据这50位市民
(I )分别估计该市的市民对甲、乙部门评分的中位数;
(II )分别估计该市的市民对甲、乙部门的评分做于90的概率; (III )根据茎叶图分析该市的市民对甲、乙两部门的评价。
(20)(本小题满分12分)
设F 1 ,F 2分别是椭圆C :122
22=+b
y a x (a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴
垂直,直线MF 1与C 的另一个交点为N 。
(I )若直线MN 的斜率为
4
3
,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN|=5|F 1N|,求a ,b 。
(21)(本小题满分12分)
已知函数f (x )=232
3
++-ax x x ,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为 -2.
(I )求a ; (II )证明:当1<k 时,曲线()y f x =与直线2y kx =-只有一个交点。
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E ,证明:
(I )BE=EC ;
(II )AD ·DE=2PB 2。
(23)(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为p=2cos θ,θ∈[0,2
π
]。
(I )求C 的参数方程;
(II )设点D 在C 上,C 在D 处的切线与直线l :y=3x+2垂直,根据(I )中你得到的参数方程,确定D 的坐标。
(24)(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x+
a
1
|+|x-a|(a>0)。
(I )证明:f (x )≥2;
(II )若f (3)<5,求a 的取值范围。