整式的加减

合集下载

《整式》整式的加减

《整式》整式的加减

合并同类项
在处理函数表达式时,需要合并同 类项,以简化表达式。
化简二次根式
对于包含二次根式的函数表达式, 需要利用化简二次根式的方法,将 表达式转化为更简单的形式。
03
整式加减的注意事项
确定符号
确定符号
01
在进行整式加减时,首先要确定每个项的符号,以便正确进行
运算。
括号内的项要一起加减
02
在处理括号时,需要将括号内的每一项都按照运算顺序进行加
减。
先化简,再加减
03
为了使运算更加简便,可以先对每个项进行化简,例如合并同
类项、提取公因式等,然后再进行加减运算。
符号运算规则
同号相加
同号是指相同的符号,如两个正 数或两个负数相加。同号相加时
,只需要将系数相加即可。
异号相加
异号是指不同的符号,如一个正 数和一个负数相加。异号相加时 ,需要先取绝对值较大的数的符 号作为结果的符号,然后将绝对
掌握有理数的加减法规则
有理数的加减法包括同号有理数相加、异号有理数相加、有理数的减法等,相加时需要将 绝对值相加,符号相同的数相加结果仍为同号有理数,异号有理数相加时需要取绝对值较 大的有理数的符号。
运用有理数的加减法解决实际问题
有理数的加减法可以用于解决一些实际问题,例如计算数值、解方程等。
THANK YOU
抽象思维
整式的加减涉及到抽象的数学概念,教师需要培养学生的抽象思维 能力,让学生能够将具体问题抽象成数学模型。
批判性思维
教师需要引导学生对解题方法和答案进行批判性思考,鼓励学生提 出疑问和不同的观点,培养学生的批判性思维能力。
06
整式加减的进一步学习建议
学习因式分解

整式的加减运算

整式的加减运算

整式的加减运算整式是指由常数、变量及它们的积和积的幂次和(其中幂次是非负整数)构成的式子。

整式的加减运算是指将两个整式进行相加或相减的操作。

在进行整式的加减运算时,需注意一些规则和步骤。

一、加法运算整式的加法运算是将两个整式的各项按照同类项进行相加,并将得到的同类项合并。

下面通过几个具体的例子来介绍整式的加法运算。

例一:将多项式3x^2+2x+5和4x^2-3x+1相加。

解:首先将同类项相加,即将x^2的系数相加,x的系数相加,常数项相加。

3x^2 + 2x + 5+ 4x^2 - 3x + 1_______________7x^2 - x + 6因此,3x^2+2x+5和4x^2-3x+1相加的结果为7x^2-x+6。

例二:将多项式2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加。

解:按照同类项相加的原则进行计算。

2x^3 + 4x^2 - 3x + 7+ (-3x^3) + (-2x^2) + 5x + (-2)_____________________________-x^3 + 2x^2 + 2x + 5因此,2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加的结果为-x^3+2x^2+2x+5。

二、减法运算整式的减法运算是将两个整式的各项按照同类项进行相减,并将得到的同类项合并。

下面通过几个具体的例子来介绍整式的减法运算。

例一:将多项式6x^2+2x-3和2x^2-5x-2相减。

解:将减数的每一项加上相反数再按照同类项相加。

6x^2 + 2x - 3- (2x^2 - 5x - 2)________________4x^2 + 7x - 1因此,6x^2+2x-3和2x^2-5x-2相减的结果为4x^2+7x-1。

例二:将多项式5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减。

解:按照同类项相减的原则进行计算。

5x^3 - 4x^2 + 3x - 1- (-2x^3 + 5x^2 + 4x - 2)________________________7x^3 - 9x^2 - x + 1因此,5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减的结果为7x^3-9x^2-x+1。

整式的加减

整式的加减

整式的加减概念总汇1、整式加减的有关概念(1)同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

几个常数项也是同类项。

如: 6x 2y 2和-4x 2y 2就是同类项,-3和5也是同类项;但b a 24与23ab 就不是同类项,因为相同字母的指数不相同。

(2)合并同类项:把多项式中的同类项合并成一项,即把同类项的系数相加,字母和字母的指数不变。

如:6x 2y 2+(-4x 2y 2)=2x 2y 2说明:①只有同类项才可合并,不是同类项的不能合并;②合并同类项,只合并系数,字母与字母的指数不变;③合并同类项后若其系数是带分数,要把它化成假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0。

(3)去括号法则:括号前面是正号,把括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,把括号和括号前的负号去掉,括号里的各项都要改变符号。

如:A +(5A +3B )—(A —2B )=A +5A +3B -A +2B =5A +5B 。

说明:去括号法则相当于乘法分配律的应用,如:A +(5A +3B )—(A —2B )=A +1×(5A +3B )+(-1)×(A -2B )=A +5A +3B +(-1)A +(-1)×(-2B )=A +5A +3B -A +2B =5A +5B 。

如果括号前面有数字因数,就按乘法分配律去括号。

如: 21(3a 2-2ab +4b 2)-2(43a 2-ab -3b 2) =23a 2-ab +2b 2-23a 2+2ab +6b 2=ab +8b 2 (4)添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。

说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。

可把+(a -b )看作(+1)(a -b ),把-(a -b )看作(-1)(a -b )则有+(a -b )=a -b , -(a -b )= -a +b ,这样乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。

整式的加减

整式的加减

04
整式加减在实际生活中的应用
整式加减在解决实际问题中的应用
求解最大值
在解决一些实际问题时,需要通过整式的加减运算来求解最 大值或最小值,比如在规划最短路径、时间或费用等问题中 。
求解最优解
在一些优化问题中,需要通过整式的加减运算来求解最优解 ,比如在求解函数的极值或最优组合等问题中。
整式加减在数学竞赛中的应用
数列求和
在数学竞赛中,常常会涉及到数列求和的问题,需要使用整式的加减来计算 ,比如在求解等差数列和等比数列的和时。
代数变形
数学竞赛中常常涉及到代数变形的问题,整式的加减是实现代数变形的重要 手段之一,比如在化简分式、分解因式等变形过程中。
整式加减在科研和生产中的应用
物理学中的力学研究
在物理学中,力学研究是重要的领域之一,整式的加减可以用来表示和分析力学 中的矢量、速度、加速度等物理量之间的关系和变化规律。
整式加减中的符号规则
1 2 3
同号相加
两个同号的整式相加,符号不变,取相同的字 母和相同字母的幂,系数相加作为结果的系数 。
异号相加
两个异号的整式相加,相加作为 结果的系数。
零加减
任何整式加减零,结果都为零。
整式加减中的合并同类项规则
同一字母的幂和系数
注意符号的处理
整式的加减中,要注意各项系数的正负号,特别是在去括号时,要正确处理符号的变化。
提高整式加减运算能力的方法
01
熟记运算法则
只有熟练掌握运算法则才能更好地进行整式的加减运算。
02
多做习题
通过大量的练习来提高自己的运算能力和速度。
03
注重细节
在进行整式的加减时,要注意运算的细节,如括号的正确使用,符号

整式的加减

整式的加减

2. 若A和B都是五次多项式,则( A. A+B一定是多项式 C. A-B是次数不高于5的整式
3. 单项式 3m a b n 2与的 3m 2 a n 2b 差为单项式,则 a 2015 b2015 的值( ) A.0 B.1 C.2 D. 3
练一练
4. 已知三角形的第一边长是a+2b,第二边比第一边长(b-2), 第三边比第二边小5,则三角形的周长为_______________. 5. 计算 5(a b) 2(b a) 3(a b) _________________. 6. 当x=1时, ax5 bx3 cx 1 3 ,当x=-1时,ax5 bx3 cx 1 ____________________. 7. 求 5 a b 2 a b 2 a b a b a b a b 的值,
探究类型之五
规律型问题的探究
例6 按下图方式摆放餐桌和椅子.
(1)1张餐桌可坐6人,2张餐桌可坐___________ 人; 10
(2)按照上图方式继续排列餐桌,完成下表:
桌子张数 可坐人数 3 4 5 6 … n
14
18
22
26
4n+2
(3)你能用不同的方法解释你所表示的规律吗?
1张餐桌可坐的人数为6;
的“+”号去掉,括号里各项的符号都不改变;括号前面
是“-”号,把括号和它前面的“-”号去掉,括号里各项的
符号都要改变.
(3) 进行整式的加减运算时,如果有括号先去括号,再
合并同类项.
探究类型之一
整式的有关概念
例1 将下列各代数式填入相应的横线上:
1 ab 1 2 4 6 2 , , x y , x 1 , 4x 2 y 1 , 6 x 7 2 2 3 x

整式的加减法总结

整式的加减法总结

整式的加减法一、整式的有关概念回顾(1)单项式: 表示数与字母的乘积的代数式, 叫做单项式, 单独的一个数或一个字母也是单项式, 如、2πr 、a , 0 ……都是单项式。

1.都是数字与字母的乘积的代数式叫做单项式。

2.单项式的数字因数叫做单项式的系数。

3.单项式中所有字母的指数和叫做单项式的次数。

4.单独一个数或一个字母也是单项式。

5.只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式, 它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算, 而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时, 应化成假分数。

11、单项式的系数是1或―1时, 通常省略数字“1”。

12.单项式的次数仅与字母有关, 与单项式的系数无关。

(2)多项式: 几个单项式的和叫做多项式1.几个单项式的和叫做多项式。

2.多项式中的每一个单项式叫做多项式的项。

3.多项式中不含字母的项叫做常数项。

4.一个多项式有几项, 就叫做几项式。

5.多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念, 但有次数的概念。

7、多项式中次数最高的项的次数, 叫做这个多项式的次数。

(3)整式:单项式和多项式统称为整式, 如:-, ……是整式1.单项式和多项式统称为整式。

2.单项式或多项式都是整式。

3.整式不一定是单项式。

4.整式不一定是多项式。

5.分母中含有字母的代数式不是整式;而是今后将要学习的分式。

(4)升幂排列与降幂排列:例如:把多项式5x2+3x-2x3-1按x的指数从大到小的顺序排列, 可以写成-2x3+5x2+3x-1, 这叫做这个多项式按字母x的降幂排列。

若按x的指数从小到大的顺序排列, 则写成-1+3x+5x2-2x3, 这叫做这个多项式按字母x的升幂排列。

这两种排列有一个共同点, 那就是x的指数是逐渐变小(或变大)的。

我们把这种排列叫做升幂排列与降幂排列。

整式的加减

整式的加减

整式的加减整式加减的三种形式:直接的整式加减问题,间接的整式加减问题,正式的化简求值问题。

1、直接的整式加减问题:这类问题是最简单的整式加减问题,可以按照去括号法则去掉括号,然后再合并同类项。

当算式中没有同类项时,这个算式就是运算的最后结果。

例:计算2x 2y-5x 2y+32x 2y+5xy 2练一练:计算:(21+2x-x 2)-2(3x 2+7x-2)2、间接的整式加减问题:这类问题可根据题意列出代数式。

即用加减符号将各个多项式连接成整式加减的算式,每一个多项式都要用括号括起来,然后去括号、合并同类项。

例:求多项式-8ab 2+3a 2b 与-2ab 2+5a 2b 的差。

练一练:若多项式(2ax 2-x 2+3x+2)-(5x 2-4x 2+3x )的值与x 无关,求啊的值。

3、整式的化简求值问题:求多项式的时候,一般思路是先化简,再把字母的取值代入到化简后的算式中求值。

例:当a=31时,求5a 2-5a+4-3a 2+6a-5的值。

练一练:化简并求值,5a 2b-{2a 2b-【3ab 2-(4ab 2-12a 2b)】}其中a=2、b=-1同步练习1一、填空题:1.单项式2xy,6x 2y 2,-3xy,-4x 2y 2的和为__________.2.单项式-3x 2依次减去单项式-4x 2y ,-5x 2,2x 2y 的差为_________.3.283m n x y +与2342m n x y+-是同类项,则m+n=_________. 4.计算(3a 2+2a+1)-(2a 2+3a-5)的结果是_________.5.个位上数字是a,十位上数字是b,百位上的数字是c 的三位数与把该三位数的个位数字、百位数字对调位置后所得的三位数的差为________.6.已知A=3x 2y-4y 3,B=-x 2y 2+2y 3,则2A-3B=___________.7.(3)23ππ--- =_________。

《整式的加减》教学设计(精选22篇)

《整式的加减》教学设计(精选22篇)

《整式的加减》教学设计《整式的加减》教学设计什么是教学设计教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。

《整式的加减》教学设计(精选22篇)作为一位杰出的老师,编写教学设计是必不可少的,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。

我们该怎么去写教学设计呢?下面是小编精心整理的《整式的加减》教学设计(精选22篇),欢迎阅读,希望大家能够喜欢。

《整式的加减》教学设计1教学目标:教学内容分析:本节课的教学内容是《整式的加减》(第1课时),是在学习了整式的有关概念之后的一节课。

整式的加减是整式的运算、因式分解、解一元二次方程及函数的基础,是“数”向“式”的正式过渡,它具有十分重要的地位,而整式加减的知识基础则是同类项的概念及同类项的合并,整式的加减主要是通过合并同类项从而把整式化简,所以本节课在中学数学中的地位不言而喻。

教学重点和难点:同类项的概念及合并同类项的方法教学设计思路:长期以来,学生主动学习的意识淡薄,对教师的依赖性很大,学生长期处于被动接受的学习状态,使学生变得内向、被动、缺少自信、恭顺……窒息了学生的创造性。

新课程要求“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流合作的能力”。

为此要求我们教师努力变“知识给予”为“教育交往”,变“教程”为“学程”,在课堂上向学生提供从事数学活动的机会,帮助学生改变旧的学习模式,引导学生在学习活动中自主探究问题和解决问题,使每一个学生在数学课堂中各有所得。

为了突出教学的重点、突破教学的难点,本节课拟采用探究式教学法:通过观察生活实例,从学生已有的生活经验出发,采取合作探究的学习方式,通过小组合作讨论等方式开展学习活动,让学生独立自主地发现问题、分析问题并独立地解决问题,在探究的过程中,获得成功的体验,增强学习数学的信心,发展学生学习数学的积极性,并通过探究活动,使学生体验探究的过程,培养思维的变通性和严密性,培养学生的探索精神和创新能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3整式的加减(1)
教学目标:
1、掌握整式、单项式及其系数与次数,多项式的项、次数,常数项;
2、明确以上各概念之间的关系。

重点:
单项式、系数、次数的概念。

难点:
次数、单项式的识别、多项式的次数。

过程:
一、复习引入
列代数式
(1)若正方形的边长为a ,则正方形的面积是 ;
(2)若三角形一边长为a ,这边上的高为h ,则这个三角形的面积是 ;
(3)若m 表示一个有理数,则它的相反数是 ;
(4)小明从每月的零花钱中储存x 元钱捐给希望工程,一年下来小明共捐款
元。

让学生概括以上这些代数式的共同特点,提出单项式的概念。

二、新课
1、单项式:都是由数和字母的乘积组成的,这样的代数式叫单项式。

特别地:单独一个数或一个字母也是单项式。

举例
判断:(1)1+x ;(2)x 1;(3)2r π;(4)b a 22
3- 提问:单项式与代数式有什么关系?
单项式是一种特殊的代数式,它是由数与字母的乘积组成的一类代数式。

2、单项式的系数:单项式中的数字因数,叫单项式的系数。

注意系数中的1或-1中的1可以省略,π是数。

如:h r 2
-;r π31;22h a -;227y x -;xyz ;327xy 注意:系数一般不写成带分数。

3、单项式的次数:单项式中,所有字母的指数的和,叫这个单项式的次数。

如:以上各单项式的次数分别是什么?
4、多项式:几个单项式的和。

多项式的项:组成多项式的各单项式。

无字母的项叫常数项。

多项式的次数:多项式中,次数最高项的次数。

多项式的项数:多项式中项的个数。

如:3
232917y x yz x y x ++-+-叫四次五项式。

请指出它的项、次数、项数。

5、整式:单项式和多项式的统称。

如以上各式。

三、巩固练习
P80:练习1、2。

注意书写格式。

四、小结
1、几个概念及概念间的关系;
2、注意几点。

五、作业
P89:1、2;基础训练、同步1。

相关文档
最新文档