预热器
预热器工作原理

预热器工作原理预热器是一种常见的热交换设备,用于将冷却介质或者流体加热至一定温度,以满足后续工艺或者设备的要求。
它在各种工业领域中广泛应用,如石油化工、能源、制药等。
预热器的工作原理是通过传导、对流和辐射等方式,将热量从一个介质传递到另一个介质。
下面将详细介绍预热器的工作原理及其主要组成部份。
1. 工作原理:预热器通常由两个流体流经相互接触的管道组成,分别是冷却介质和待加热介质。
冷却介质可以是水、空气或者其他流体,而待加热介质可以是原油、天然气或者其他需要加热的物质。
当冷却介质从一个管道流过时,它会带走待加热介质的热量,使其温度降低。
同时,冷却介质的温度会升高,然后通过冷却介质的循环系统或者其他方式将热量释放出去。
通过这种方式,预热器能够将冷却介质和待加热介质之间的热量传递,使待加热介质的温度升高,达到预定的工艺要求。
2. 主要组成部份:预热器通常由以下几个主要组成部份构成:(1) 管束:管束是预热器的核心部份,由许多平行罗列的管子组成。
这些管子通常是金属材料制成,如不锈钢、碳钢等。
待加热介质从一个管道流入管束,冷却介质从另一个管道流过管束,通过管子的壁面进行热量传递。
(2) 壳体:壳体是管束的外部保护结构,通常由金属材料制成,如碳钢、铜等。
壳体的设计可以提供足够的强度和密封性,以确保预热器的正常运行。
(3) 进出口管道:进出口管道用于将待加热介质和冷却介质引入和排出预热器。
这些管道通常由金属材料制成,并且在连接处采用密封装置,以防止介质泄漏。
(4) 支撑结构:支撑结构用于支撑和固定预热器的各个组成部份,通常由金属材料制成,如钢材等。
支撑结构的设计需要考虑预热器的分量和稳定性,以确保其安全运行。
3. 热量传递方式:预热器通过传导、对流和辐射等方式实现热量传递。
(1) 传导:传导是指热量通过物质的直接接触传递。
在预热器中,待加热介质和冷却介质通过管壁进行热量传导。
热量从高温区域传递到低温区域,使待加热介质的温度升高。
空气预热器

扇形板与径向密封片
空预器启动前检查准备
1.空预器及其相关的检修工作已结束,工作票全部收 1.空预器及其相关的检修工作已结束,工作票全部收 回,空预器外形完整,人孔门关闭,现场清理干净。 2.联系检修手动盘车至少盘转一周,以确认转子是否 2.联系检修手动盘车至少盘转一周,以确认转子是否 能自由转动,无卡涩。 3.检查驱动减速箱的油位在油位计的2/3处。 3.检查驱动减速箱的油位在油位计的2/3处。 4.检查导向轴承,推力轴承箱油位在油位计的2/3处, 4.检查导向轴承,推力轴承箱油位在油位计的2/3处, 轴承冷却水畅通。 5.摇测电机绝缘合格,变频器电源正常投入。 5.摇测电机绝缘合格, 6.检查主、辅电机变频器控制箱就地/远方切换开关投 6.检查主、辅电机变频器控制箱就地/ 远方位。 7.检查吹灰装置完好,确认消防水源可随时投入。 7.检查吹灰装置完好,确认消防水源可随时投入。 8.火灾监控装置投入。 8.火灾监控装置投入。 9.在控制盘及就地做空预器主、辅电机的联锁启动试 9.在控制盘及就地做空预器主、辅电机的联锁启动试 验和事故按钮试验合格,就地确认空预器转动方向正 确。
密封装置( 密封装置(四) 在回转式预热器的上述三种密封间隙中, 漏风量最大的是径向间隙漏 (一般约占总漏 风量的2 3);其次环向的密封间隙漏风; 风量的2/3);其次环向的密封间隙漏风; 最小是轴向风。在间隙及漏风通流截面积 相同条条件下,冷端处的漏风量较热端为 大,这是因为空气区与烟气区的压差,冷 端要比热端为大;且冷端的空气温度低, 密度大,故冷端的漏风量也为教大,通常 约为热端漏风的二倍左右。
运行监视和调整
机组运行中如发现送风机、引风机电流或送风机动叶、 引风机进口导叶和对应负荷不匹配要全面进行空预器密 封装置的检查 检查空预器火灾报警装置无损坏,控制盘无报警 检查空预器运行中电机外壳温度正常,空预器电机、油 泵电机及相应的电缆无过热现象,现场无绝缘烧焦气味温度正常,轴承润滑油温度正常 空气预热器运行,监视预热器一次风进出口压差、二次 风进出口压差、烟气进出口压差在正常范围内,压差异 常升高,应及时增加吹灰或提高空气预热器冷端温度 正常运行中空预器每8 正常运行中空预器每8小时进行一次吹灰,也可视积灰 情况增加吹灰次数,低负荷燃油时应连续吹灰
预热器工作原理

预热器工作原理预热器是一种用于加热流体的设备,常见于工业生产过程中。
它的主要功能是在流体进入主要加热设备之前,将其进行预热,以提高加热效率和节约能源。
预热器工作原理涉及热传导、热交换和流体动力学等方面。
一、热传导原理预热器利用热传导将热量从热源传递到流体中。
热传导是指热量从高温区域传递到低温区域的过程。
预热器通常由金属材料制成,金属具有良好的导热性能,能够快速将热量传递给流体。
二、热交换原理预热器通过热交换的方式将热量从热源转移到流体中。
热交换是指两种物质之间通过接触而进行热量交换的过程。
预热器内部通常有许多细小的管道或板片,热源通过这些管道或板片传递热量给流体。
流体在管道或板片中流动,与热源接触,吸收热量,从而实现热量的传递。
三、流体动力学原理预热器中的流体动力学原理主要涉及流体的流动和传热过程。
流体通过预热器时,通常会经过多个管道或板片,这些管道或板片的设计和布置会影响流体的流速和传热效果。
合理的管道或板片设计可以增加流体与热源的接触面积,提高传热效率。
预热器的工作过程可以简单描述如下:1. 流体进入预热器:冷却的流体通过入口进入预热器。
2. 热源传递热量:热源(如蒸汽、热水等)通过预热器内部的管道或板片传递热量给流体。
热源的温度高于流体的温度,热量会从热源传递到流体中。
3. 流体吸收热量:流体在与热源接触的过程中,吸收热量,温度逐渐升高。
4. 热源流出预热器:热源在传递热量给流体后,温度降低,流出预热器。
5. 预热后的流体流出预热器:经过预热后的流体通过出口流出预热器,进入下一个加热设备进行进一步加热。
预热器的工作原理使得流体在进入主要加热设备之前,通过预先加热,达到节能的目的。
预热器能够有效地利用热能,提高加热效率,减少能源消耗。
同时,预热器还可以减少主要加热设备的负荷,延长设备的使用寿命。
总结:预热器通过热传导、热交换和流体动力学原理,将热量从热源传递给流体,实现流体的预热。
预热器工作原理的核心是热量的传递和流体的流动。
预热器工作原理

预热器工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII预热器的结构及工作原理授课人:时间:一、预热器的结构预热器主要由旋风筒、风管、下料溜管、锁风阀,撒料板、内筒挂片等部分组成。
旋风筒和连接管道组成预热器的换热单元功能如下图所示:旋风筒换热单元功能结构示意图物料落入旋风筒上升管道后运动轨迹示意图二、预热器的工作原理1、预热器的换热功能预热器的主要功能是充分利用回转窑和分解炉排出的废气余热加热生料,使生料预热及部分碳酸盐分解。
为了最大限度提高气固间的换热效率,实现整个煅烧系统的优质、高产、低消耗,必需具备气固分散均匀、换热迅速和高效分离三个功能。
2、物料分散喂入预热器管道中的生料,在与高速上升气流的冲击下,物料折转向上随气流运动,同时被分散。
物料下落点到转向处的距离(悬浮距离)及物料被分散的程度取决于气流速度、物料性质、气固比、设备结构等。
因此,为使物料在上升管道内均匀迅速地分散、悬浮,应注意下列问题:(1)选择合理的喂料位置为了充分利用上升管道的长度,延长物料与气体的热交换时间,喂料点应选择靠近进风管的起始端,即下一级旋风筒出风内筒的起始端。
但必须以加入的物料能够充分悬浮、不直接落入下一级预热器(短路)为前提。
(2)选择适当的管道风速要保证物料能够悬浮于气流中,必须有足够的风速,一般要求料粉悬浮区的风速为16~22m/s。
为加强气流的冲击悬浮能力,可在悬浮区局部缩小管径或加插板(扬料板),使气体局部加速,增大气体动能。
(3)合理控制生料细度(4)喂料的均匀性要保证喂料均匀,要求来料管的翻板阀(一般采用重锤阀)灵活、严密;来料多时,它能起到一定的阻滞缓冲作用;来料少时,它能起到密封作用,防止系统内部漏风。
(5)旋风筒的结构旋风筒的结构对物料的分散程度也有很大影响,如旋风筒的锥体角度、布置高度等对来料落差及来料均匀性有很大影响。
(6)在喂料口加装撒料装置早期设计的预热器下料管无撒料装置,物料分散差,热效率低,经常发生物料短路,热损失增加,热耗高。
预热器工作原理

预热器工作原理预热器是一种常见的设备,用于在工业生产过程中提高热效率和节约能源。
它的主要作用是将冷却的流体加热至一定温度,以便进一步被其他设备或者系统利用。
在本文中,我们将详细介绍预热器的工作原理及其应用。
一、预热器的基本原理预热器的工作原理基于热交换的基本原理。
它通过将冷却的流体与热源接触,从而实现热量的传递。
预热器通常由一个或者多个管道组成,其中热源通过管道内流动,而冷却的流体则通过管道的外部流动。
热源和冷却的流体之间通过管壁进行热量传递,使得冷却的流体被加热,而热源则被冷却。
二、预热器的分类根据不同的工作原理和应用场景,预热器可以分为多种类型。
以下是几种常见的预热器分类:1. 管壳式预热器:管壳式预热器是一种常见的热交换设备,它由一个外壳和一组管子组成。
冷却的流体通过管子的外部流动,而热源则通过管子的内部流动。
热量通过管壁传递,将冷却的流体加热。
2. 换热器:换热器是一种通过直接接触实现热量传递的预热器。
它通常由一组平行罗列的金属板组成,热源和冷却的流体分别通过板的两侧流动。
热量通过板的表面传递,将冷却的流体加热。
3. 蒸汽发生器:蒸汽发生器是一种将液体转化为蒸汽的预热器。
它通常由一个加热器和一个冷凝器组成。
液体通过加热器加热,转化为蒸汽,然后通过冷凝器冷却成液体。
三、预热器的工作过程预热器的工作过程可以分为以下几个步骤:1. 热源流动:热源从预热器的一个端口进入,并通过内部的管道流动。
热源可以是燃气、蒸汽、热水等。
2. 冷却的流体流动:冷却的流体从预热器的另一个端口进入,并通过外部的管道流动。
冷却的流体可以是空气、水、油等。
3. 热量传递:热源和冷却的流体通过预热器的管壁进行热量传递。
热量从热源传递到冷却的流体,使得冷却的流体被加热。
4. 出口流体温度控制:通过调节热源的温度、流速等参数,可以控制出口流体的温度。
这样可以确保预热器的工作效果符合要求。
四、预热器的应用领域预热器广泛应用于各个工业领域,以提高能源利用效率和降低生产成本。
空气预热器工作原理及分类

空气预热器空气预热器是利用锅炉尾部烟气的热量加热燃料燃烧所需空气以提高锅炉热效率的热交换器。
工作原理是:受热面的一次通过烟气,另一面通过空气,进行热交换,使空气得到加热,提高空气温度,同时使烟气温度下降,提高烟气的余热利用程度。
作用1、改善并强化燃烧经过余热器后的空气进入炉内,加速了燃料的干燥、着火和燃烧过程,保证了锅炉内的稳定燃烧,提高了燃烧效率。
2、强化传热由于炉内燃烧得到了改善和强化,加上进入炉内的热风温度提高,炉内平均温度水平也有提高,从而可强化炉内辐射传热。
3、减小炉内损失,降低排烟温度,提高锅炉热效率由于炉内燃烧稳定,辐射热交换的强化,可以降低化学不完全燃烧损失;另一方面空气预热器利用烟气余热,进一步降低了排烟损失,因此提高了锅炉热效率。
根据经验,当空气在预热器中升高1.5℃,排烟温度可以降低1℃.在锅炉烟道中安装空气预热器后,如果能把空气余热150-160℃,就可以降低排烟温度110-120℃,可将锅炉热效率提高7%-7.5%。
可以节约燃料11%-12%。
4、热空气可以作燃料干燥剂对于层燃炉,有热空气可以使用水分和灰分较高的燃料,对于电站锅炉,热空气是脂粉系统的重要干燥剂和煤粉输送介质。
二、空气预热器分类空气预热器一般分为板式、回转式和管式三种。
1、板式空气预热器这种空气预热器多用1.5-4mm的薄钢板制成。
将钢板焊接成成长方形的盒子,将若干盒子拼成一组,整个空气预热器由2-4个盒子组成。
烟气由上向下通过,经过盒子外侧,空气则横向通过盒子的内部,在下部转弯向上,两次与烟气交互传递能量,使烟气与空气形成逆向流动,获得较好的传热效率。
板式空气预热器由于耗用刚才较多,结构不紧凑;焊缝多且易渗漏,现在很少采用。
2、回转式空气预热器回转式空气预热器又可分为两种型式:一种是受热面旋转的转子回转式,另一种是风道旋转的风道回转式。
转子回转式空气预热器是由转动的圆形转子和固定的外壳组成,转子式受热面,它被分为许多仓格,里面装有蓄热板,蓄热板吸收燃气热量并蓄积起来,等到转至空气那面,再将袭击的热量释放给空气,自身温度降低。
预热器工作原理

预热器工作原理预热器是一种用于加热流体的设备,其工作原理是通过传导、对流和辐射的方式将热能传递给流体,提高流体的温度。
预热器通常被广泛应用于石油化工、电力、钢铁等工业领域,以提高能源利用效率和降低能源消耗。
1. 传导传热原理:预热器中常使用的传导传热方式是通过热交换管或者热交换板来实现的。
热交换管或者热交换板与流体接触,通过传导将热量从高温区域传递到低温区域。
热交换管或者热交换板通常由导热性能较好的材料制成,如不锈钢、铜等。
2. 对流传热原理:预热器中的流体在经过热交换管或者热交换板时,会产生对流现象。
对流传热是通过流体的运动来传递热量的过程。
流体在经过热交换管或者热交换板时,会与其表面接触,通过对流传热将热量从高温区域传递到低温区域。
对流传热的效果受到流体流速、流体性质、热交换管或者热交换板的表面积等因素的影响。
3. 辐射传热原理:预热器中的热交换管或者热交换板表面通常会涂覆一层辐射吸收材料,如黑色涂层。
当高温区域的热交换管或者热交换板表面辐射热量时,黑色涂层会吸收辐射热量,并通过辐射传递给流体。
辐射传热是通过电磁波辐射的方式将热量传递给流体的过程。
预热器的工作原理可以通过以下步骤来描述:1. 流体进入预热器:流体从进料管道进入预热器,流体的温度通常较低。
2. 热交换管或者热交换板传导传热:流体在预热器中通过热交换管或者热交换板,与其表面接触。
热交换管或者热交换板的高温区域将热量传导给流体,使流体的温度逐渐升高。
3. 流体产生对流传热:流体在经过热交换管或者热交换板时,产生对流现象。
对流传热使得热量更加均匀地传递给流体,提高了传热效率。
4. 辐射传热:热交换管或者热交换板表面的黑色涂层吸收高温区域的辐射热量,并通过辐射传递给流体。
辐射传热进一步提高了流体的温度。
5. 流体出口:经过预热器的流体温度显著提高,流体从出料管道流出,可用于后续工艺或者回收利用。
预热器的工作原理可以通过优化设计和改进操作来提高传热效率。
预热器工作原理

预热器工作原理预热器是一种设备,用于将流体(通常是气体或者液体)在进入主要加热设备之前进行预热。
它的工作原理是通过传导、对流或者辐射来吸收热量,将其传递给待加热的流体。
预热器的主要目的是提高热效率,减少能源消耗。
一、传导预热器传导预热器是一种将热量通过直接接触传递给待加热流体的设备。
它通常由金属制成,具有良好的导热性能。
传导预热器的工作原理是利用热传导定律,通过热量的传导使流体温度升高。
在传导预热器中,待加热的流体流经与高温物体接触的金属表面,热量从高温物体传递到流体中。
这种传导方式可以高效地将热量传递给流体,提高加热效果。
二、对流预热器对流预热器是一种利用流体的对流传热来进行预热的设备。
它通常由管道或者板片组成,流体在其中流动。
对流预热器的工作原理是通过流体与加热表面之间的对流传热来实现热量的传递。
在对流预热器中,待加热的流体通过与加热表面接触,热量从加热表面传递到流体中。
对流预热器的热效率取决于流体的流速、流体与表面的接触面积以及流体的传热性能。
三、辐射预热器辐射预热器是一种利用辐射传热来进行预热的设备。
它通常由辐射管或者辐射板组成。
辐射预热器的工作原理是利用高温辐射体发射的辐射能量,通过辐射传热将热量传递给待加热的流体。
在辐射预热器中,待加热的流体通过与高温辐射体接触,辐射能量被吸收并转化为热量。
辐射预热器的热效率取决于辐射体的温度、辐射体与流体的接触面积以及流体对辐射能量的吸收能力。
四、多种预热器的组合应用在实际应用中,往往采用多种预热器的组合来提高热效率。
例如,可以将传导预热器、对流预热器和辐射预热器组合在一起使用。
在这种情况下,流体先经过传导预热器进行初步预热,然后通过对流预热器进一步提高温度,最后再通过辐射预热器进行最终的预热。
这种组合应用可以充分利用不同预热器的优势,提高整体的热效率。
总结:预热器是一种通过传导、对流或者辐射来吸收热量,将其传递给待加热流体的设备。
传导预热器利用热传导定律,将热量通过直接接触传递给流体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章预热器
水泥生产煅烧熟料的预分解技术,从根本上改变了物料的传热状态,使物料由堆积状态转为悬浮状态下进行,物料与气流的接触面积大幅度增加,因此传热速率极快,传热效率高。
预分解窑系统装备主要有预热器、分解炉、回转窑、冷却机,依次完成物料与气流热交换过程。
3.1 预热器
预热器是实现熟料烧成四个热交换过程中第一个的装备,使生料粉与热气流在悬浮状态下充分接触,完成物料预热及部分碳酸盐分解过程。
为提高此过程的热交换效率,要设法提高生料在热气流中的均散程度、增加固气间的接触几率;并提高每个旋风筒的选粉效率。
3.1.1 预热器工艺任务
预分解窑的预热器,使用较多的是旋风式预热器。
旋风式预热器一般由4~6级旋风筒及各级旋风筒之间的连接管道、下料管(包括锁风阀、撒料器)等组成。
各级旋风筒置串联向上,最顶部的旋风筒,为两个并联,以尽量降低废气带走的粉尘量与热量。
现在最常用由6个旋风筒组成的五级旋风式预热器,自上而下分为顶部Cl 旋风筒的筒体是细而高双旋风筒,目的是为了提高分离效率。
而C2~C5 是矮胖型旋风筒,是为了达到更低压力损失。
每级换热单元同时具备气固混合、换热和气固分离三个功能。
窑炉内的废气从底端旋风筒逐级向上端旋风筒运动,而生料则是从顶端旋风筒逆流向底端运动(图 1-1)。
当生料以切线方向进入旋风筒C1后,利用自身重力、惯性力和及随废气旋转的离心力,在旋风筒外壁与内筒(排风口)间的环状空间作旋流向下的外涡旋运动,一直延伸到锥体底部(图3.1-3),物料便从气流中分离并沉降,进入到C2级下料管,与排出的废气彼此开始热交换,在共同进入C2旋风筒,大部分粗粉受离心力作用与含细粉的废气分离,靠重力从本级下料管排出,落入到更下一级旋风筒的排风管道中,再与更高温度的废气热交换;回转窑,另一方面,携带细粉的废气进入旋风筒后,在风机负压作用下继续旋转上升作内涡旋运动,直至从筒上端的排风口排出。
它们充分利用熟料煅烧与分解后废气中的余热,对即将入窑的生料进行烘干与预热,最大限度提高气、固两相间的热交换效率。
为此,该设备的结构设计就要让它具备让气、固相混合均匀、有足够热交换时间、并最后高效分离的三个功能。
最终生料粉由50℃预热至800℃,而窑尾废气由1100℃降至300℃左右。
仅凭单个旋风筒一次换热,远不能回收废气中余热,而需要多级旋风筒的多次换热。
这就是预热器要由多个旋风筒串联成塔的理论依据。
3.1.2预热器各部分的作用
1、旋风筒作用
旋风筒主要作用:完成气、固相的分离和生料粉的收集,还有一定的换热作用。
旋风筒使气固分离的能力大小,用分离效率表示。
分离效率越高,就越能减少已受热的生料继续随气流做内、外循环的可能,既可减少电能的消耗,也降低了热物料飞出所带走的热损失。
但分离效率过高,就要弱化本级旋风筒内的气、固相热交换效率。
2 、换热管道
各个旋风筒之间的联接管道在换热方面起着主要作用,所以有人干脆将其称为“换热管道”。
换热管道是旋风预热器系统中的重要部分,承担着物料分散、均布、锁风和换热的任务。
气固之间80%以上的换热在进风管道中就已完成,换热时间仅需0.02~0.04s。
在旋风筒连接管道内进行的热交换是以对流为主。
影响换热速率的主要因素是接触面积F,只要料粉充分分散于气流中,换热面积就比处于结团或堆积状态时,增大上千倍。
风速很重要。
风速太低,影响传热效率,甚至会使料沉降积聚;风速过高,增大系统阻力,增加电耗,并影响旋风筒的分离效率。
一级旋风筒一般为并联的双旋风筒一般选用12~18m/s。
各级旋风筒分离效率及圆筒断面风速,见表3.1-2。
3、撒料装置
为使生料迅速分散悬浮,防止大料团难以分散甚至短路冲入下级旋风筒,在换热管道下料口通常装有撒料装置。
一般撒料装置有板式撒料器和箱式撒料器两种形式。
板式撒料器一般安装在下料管底部,撒料板伸入管道中的长度可调,伸入长度与下料管安装的角度有关,必须根据生料状况调节,以保持良好的撒料分散效果。
由于撒料板暴露在炽热的烟气中,磨蚀严重,寿命较短。
箱式撒料器下料管安装在撒料箱体的上部,下料管安装角度和箱内的撒料板倾斜角度经过试验优化固定。
撒料箱经优化选定角度,打上浇注料后,既能保证撒料效果,又能降低成本,延长寿命。
作用:防止下料管下行物料进入换热管道时的向下冲料,并促使下冲物料冲至下料板后飞溅、分散。
4下料管及锁风翻板排灰阀(锁风阀)
旋风筒下料管应保证下料均匀通畅,同时密封严密,防止漏风。
如密封不严,换热管道中的热气流经下料管窜至上级旋风筒下料口,引起已收集的物料二次飞扬,降低分离效率。
因此,应在上级旋风筒下料管与下级旋风筒出口换热管道的入料口之间的适当部位装设锁风阀(翻板排灰阀)。
锁风阀(又称翻板阀)的作用既保持下料均匀畅通,又起密封作用。
它装在上级旋风筒下料管与下级旋风筒出口的换热管道入料口之间的适当部位。
锁风阀应锁风严密、开启灵
活、工作可靠。
安装位置不能离撒
料装置太近,以免物料冲击力过
小,影响撒料装置功能的发挥;也
不能离旋风筒太近,否则压力过小
易使出料受阻,料流不畅。
常用的
锁风阀一般有单板式、双板式和瓣
式三种。
一般来说,倾斜式或料流
量较小的下料管,多采用单板阀;垂直的或料流量较大的下料管,多采用双板阀。
作用:下料、锁风。
做到换热管道中的气流及下料管中的物料“气走气路、料走料路”,各行其路。