人教版初中数学二次函数经典测试题

合集下载

第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册

第二十二章 二次函数 单元测试(含答案) 2024-2025学年人教版数学九年级上册

第二十二章 二次函数一、选择题(每题3分,共24分)1.下列各式中,y 是x 的二次函数的是( )A .y =1x 2B .y =x 2+1x +1C .y =2x 2−1D .y =x 2−12.下列抛物线中,与y =−3x 2+1抛物线形状、开口方向完全相同,且顶点坐标为(−1,2)的是( )A .y =−3(x +1)2+2B .y =−3(x−1)2+2C .y =3(x +1)2+2D .y =−3(x +1)2+23.在平面直角坐标系中,将二次函数y =3x 2的图象向下平移3个单位长度,所得函数的解析式为( )A .y =3x 2−1B .y =3x 2+1C .y =3x 2−3D .y =3x 2+34.若A (−1,y 1),B (1,y 2),C (4,y 3)三点都在二次函数y =−(x−2)2+k 的图象上,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 3<y 2<y 15.二次函数y =−x 2−2x +c 2−2c 在−3≤x ≤2的范围内有最小值为−5,则c 的值( )A .3或−1B .−1C .−3或1D .36.已知二次函数y =x 2−3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2−3x +m =0的两实数根是( )A .x 1=0,x 2=−1B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=37.如图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面3m ,水面宽6m .如图(2)建立平面直角坐标系,则抛物线的解析式是( )A .y =−13x 2B .y =13x 2C .y =−3x 2D .y =3x 28.如图,已知经过原点的抛物线y =a x 2+bx +c(a ≠0)的对称轴是直线x =−1,下列结论中:①ab >0,②a +b +c >0,③当−2<x <0时y <0.正确的个数是( )A.0个B.1个C.2个D.3个二、填空题(每题4分,共20分)9.抛物线y=−3(x−1)2−2的对称轴是直线 .10.若y=(m−2)x m2−2+x−3是关于x的二次函数.则m的值为 .11.抛物线y=a x2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点为(3,0),对称轴为直线x=1,则当y≤0时,x的取值范围是 .12.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m处达到最高,高度为5m,水柱落地处离池中心距离为6m,则水管的长度OA是 m.13.如图,在平面直角坐标中,抛物线y=a x2+bx(a>0)和直线y=kx(k>0)交于点O和点A,则不等式a x2 +bx<kx的解集为 .三、解答题(共56分)14.如图所示,二次函数y=a x2+bx+c(a≠0)的图保与x轴相交于A,B两点,其中点A的坐标为(−1,0),M(2,9)为抛物线的顶点.(1)求抛物线的函数表达式.(2)求△MCB的面积.15.如图所示,在平面直角坐标系中,二次函数y=a x2+4x−3的图象的顶点是A,与x轴交于B,C两点,与y轴交于点D.点B的坐标是(1,0).(1)求A,C两点的坐标,并根据图象直接写出当y>0时x的取值范围.(2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后的图象所对应的二次函数的表达式. 16.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.17.第十九届亚运会在杭州隆重举办,政府鼓励全民加强体育锻炼,李明在政府的扶持下投资销售一种进价为每件50元的乒乓球拍.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+900.(1)设月利润为W(元),求W关于x的函数表达式.(2)销售单价定为每件多少元时,所得月利润最大?最大月利润为多少元?(3)若物价部门规定这种乒乓球拍的销售单价不得超过75元,李明想使获得的月利润不低于3000元,求销售单价x的取值范围.18.如图,二次函数y=a x2+bx+c的图象交x轴于A(−1,0),B(2,0),交y轴于C(0,−2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内一个动点,求点M运动过程中,四边形ACMB面积的最大值;(3)点P在该二次函数图象的对称轴上,且使|PB−PC|最大,求点P的坐标。

人教版初三数学二次函数单元测试题及答案

人教版初三数学二次函数单元测试题及答案

人教版初三数学二次函数单元测试题及答案1.下列关系式中,属于二次函数的是(x为自变量)()A。

y = 2x + 1B。

y = x^3C。

y = -x^2 + 2x - 3D。

y = 3x - 42.函数y = x^2 - 2x + 3的图像的顶点坐标是()A。

(1,-4)B。

(-1,2)C。

(1,2)D。

(0,3)3.抛物线y = 2(x - 3)^2的顶点在()A。

第一象限B。

第二象限C。

x轴上D。

y轴上4.抛物线的对称轴是()A。

x = -2B。

x = 2C。

x = -4D。

x = 45.已知二次函数y = ax^2 + bx + c的图像如图所示,则下列结论中,正确的是()A。

ab。

0,c。

0B。

ab。

0,c < 0C。

ab。

0D。

ab < 0,c < 06.二次函数y = ax^2 + bx + c的图像如图所示,则点在第___象限()A。

一B。

二C。

三D。

四7.如图所示,已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像的顶点P的横坐标是4,图像交x轴于点A(m,0)和点B,且m。

4,那么AB的长是()A。

4 + mB。

mC。

2m - 8D。

8 - 2m8.若一次函数y = ax + b的图像经过第二、三、四象限,则二次函数y = ax^2 + bx的图像只可能是()无法确定9.已知抛物线和直线在同一直角坐标系中的图像如图所示,抛物线的对称轴为直线x = -1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1 < x1 < x2,x3 < -1,则y1,y2,y3的大小关系是()A。

y1 < y2 < y3B。

y2 < y3 < y1C。

y3 < y1 < y2D。

y2 < y1 < y310.把抛物线y = x^2 - 2x + 3的图像向左平移2个单位,再向上平移3个单位,所得抛物线的函数关系式是()A。

人教版初中数学二次函数基础测试题附答案解析

人教版初中数学二次函数基础测试题附答案解析

人教版初中数学二次函数基础测试题附答案解析一、选择题1.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C【解析】【分析】 根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.【详解】由图象可得,a >0,b >0,c <0,∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确,当x =﹣1时,y =a ﹣b +c <0,由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确, ∵12b a ->-,a >0,得122b a >>,故③正确, 故选C .【点睛】 本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.2.如图,二次函数()200y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()200ax bx c a ++=≠有一个根为1a-,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1a 代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案.【详解】由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣2b a>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣1a ,把﹣1a 代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C.【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.3.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D【解析】【分析】根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断.【详解】 由题可知22b a-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c =,故可得4,0a b c -==①因为0c =,故①正确;②因为二次函数过点()()0,0,4,0,故②正确;③当1x =-时,函数值为0a b c -+<,故③正确;④由图可知,当04x <<时,0y <,故④正确;⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误;故选:D.【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.4.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位【答案】A【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A .【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.5.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ), ∴244ac b a =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.7.如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②3a+c=0;③ax2+bx≤a+b;④若M(﹣0.5,y1)、N(2.5,y2)为函数图象上的两点,则y1<y2.其中正确的是()A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a -=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.9.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【解析】【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA , ∴ ,HF HE EF AE AB BE == G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.10.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③﹣43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个【答案】B【解析】 解:∵抛物线开口向下,∴a <0,∵顶点坐标(1,n ),∴对称轴为直线x =1,∴2b a - =1,∴b =﹣2a >0,∵与y 轴的交点在(0,3),(0,4)之间(包含端点),∴3≤c ≤4,∴abc <0,故①错误;3a +b =3a +(﹣2a )=a <0,故②正确;∵与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴3≤﹣3a ≤4,∴﹣43≤a ≤﹣1,故③正确; ∵顶点坐标为(1,n ),∴当x =1时,函数有最大值n ,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确;一元二次方程2ax bx c n ++=有两个相等的实数根x 1=x 2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B .点睛:本题考查了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a 、b 的关系.11.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.12.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( ) A . B .C .D .【答案】B【解析】【分析】由题意可求m <﹣2,即可求解.【详解】∵抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,∴△=4﹣4(﹣m ﹣1)<0∴m <﹣2∴函数y =的图象在第二、第四象限,故选B .【点睛】本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.13.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】 解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =- 21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.14.如图,已知将抛物线21y x =-沿x 轴向上翻折与所得抛物线围成一个封闭区域(包括边界),在这个区域内有5个整点(点M 满足横、纵坐标都为整数,则把点M 叫做“整点”).现将抛物线()()2120y a x a =++<沿x 轴向下翻折,所得抛物线与原抛物线所围成的封闭区域内(包括边界)恰有11个整点,则a 的取值范围是( )A .1a ≤-B .12a ≤-C .112a -<≤D .112a -≤<- 【答案】D【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】解:∵ ()()2120y a x a =++<∴该抛物线开口向下,顶点(-1,2),对称轴是直线x=-1.∴点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)符合题意,此时x 轴.上的点(-2, 0)、(0, 0)也符合题意,将(0,1)代入()()2120y a x a =++<得到1=a+2.解得a=-1.将(1, 0)代入()()2120y a x a =++<得到0= 4a+2.解得a=1-2∵有11个整点,∴点(0,-1)、点(-2, -1)、点(-2,1)、点(0,1)也必须符合题意. 综上可知:当1-1a<-2≤ 时,点(-1,2)、点(-1,1)、点(-1, 0)、点(-1,-1)、点(-1,-2)、点(-2, 0)、(0,0)、点(0,-1)、点(-2,-1)、点(-2,1)、点(0, 1),共有11个整点符合题意, 故选: D.【点睛】 本题考查了二次函数图象与系数的关系,抛物线与x 轴的交点的求法,利用图象解决问题是本题的关键.15.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=V ,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ V 底边AP 上的高保持不变1422APQ S t t =⋅⋅=V ,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.16.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.17.如图1,△ABC 中,∠A =30°,点P 从点A 出发以2cm /s 的速度沿折线A →C →B 运动,点Q 从点A 出发以vcm /s 的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示,有下列结论:①v =1;②sin B =13;③图象C 2段的函数表达式为y =﹣13x 2+103x ;④△APQ 面积的最大值为8,其中正确有( )A .①②B .①②④C .①③④D .①②③④ 【答案】A【解析】【分析】①根据题意列出y =12AP •AQ •sin A ,即可解答 ②根据图像可知PQ 同时到达B ,则AB =5,AC +CB =10,再代入即可③把sin B =13,代入解析式即可④根据题意可知当x=﹣522ba=时,y最大=2512【详解】①当点P在AC上运动时,y=12AP•AQ•sin A=12×2x•vx=vx2,当x=1,y=12时,得v=1,故此选项正确;②由图象可知,PQ同时到达B,则AB=5,AC+CB=10,当P在BC上时y=12•x•(10﹣2x)•sin B,当x=4,y=43时,代入解得sin B=13,故此选项正确;③∵sin B=13,∴当P在BC上时y=12•x(10﹣2x)×13=﹣13x2+53x,∴图象C2段的函数表达式为y=﹣13x2+53x,故此选项不正确;④∵y=﹣13x2+53x,∴当x=﹣522ba=时,y最大=2512,故此选项不正确;故选A.【点睛】此题考查了二次函数的运用,解题关键在于看图理解18.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个【解析】试题解析:①由开口向下,可得0,a <又由抛物线与y 轴交于正半轴,可得0c >,再根据对称轴在y 轴左侧,得到b 与a 同号,则可得0,0b abc ,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确;③当2x =-时,0,y < 即420a b c -+< (1)当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+>所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .19.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结i 论:①abc >0;②b 2﹣4ac >0;③2a+b =0;④a ﹣b+c <0.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据开口方向确定a 的取值范围,根据对称轴的位置确定b 的取值范围,根据抛物线与y 轴的交点确定c 的取值范围,根据抛物线与x 轴是否有交点确定b 2﹣4ac 的取值范围,根据x =﹣1函数值可以判断.解:Q 抛物线开口向下,0a ∴<,Q 对称轴12b x a=-=, 0b ∴>,Q 抛物线与y 轴的交点在x 轴的上方,0c ∴>,0abc ∴<,故①错误;Q 抛物线与x 轴有两个交点,240b ac ∴->,故②正确;Q 对称轴12b x a=-=, 2a b ∴=-, 20a b ∴+=,故③正确;根据图象可知,当1x =-时,0y a b c =-+<,故④正确;故选:C .【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.20.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( ) A . B .C .D .【答案】C【解析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.【详解】解:由方程组2y ax bxy bx a⎧=+⎨=-⎩得ax2=−a,∵a≠0∴x2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【点睛】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.。

人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案

人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案

人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案一、单选题1.根据表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,可以判断方程20ax bx c ++=的一个解x 的范围是( )x0 0.5 1 1.5 2 2y ax bx c =++ -1-0.513.57A .00.5x <<B .0.51x <<C .1 1.5x <<D .1.52x <<2.如表是一组二次函数y =x 2﹣x ﹣3的自变量和函数值的关系,那么方程x 2﹣x ﹣3=0的一个近似根是( )x 1 2 3 4 y ﹣3﹣1 39 A .1.2B .2.3C .3.4D .4.53.下表给出了二次函数()20y ax bx c a =++≠中x ,y 的一些对应值,则可以估计一元二次方程()200ax bx c a ++=≠的一个近似解1x 的范围为( )x … 1.2 1.3 1.4 1.5 1.6 … y…1.16-0.71-0.24-0.250.76…A .11.2 1.3x <<B .11.3 1.4x <<C .11.4 1.5x <<D .11.5 1.6x <<4.已知二次函数()20y ax bx c a =++≠的图象如图所示,有下列4个结论:①0abc >;②24b ac >;③a (m 2−1)+b (m −1)<0(m ≠1);④关于x 的方程21ax bx c ++=有四个根,且这四个根的和为4,其中正确的结论有( )A .①②③B .②③④C .①④D .②③5.根据下列表格中二次函数y =ax 2+bx+c 的自变量x 与y 的对应值,判断关于x 的一元二次方程ax 2+bx+c=0的一个解的大致范围是( )x ﹣1 0 1 2 3 4 y﹣7﹣5﹣151323A .1<x <2B .﹣1<x <1C .﹣7<x <﹣1D .﹣1<x <56.已知二次函数224y x x =-+,下列关于其图象的结论中,错误..的是( ) A .开口向上B .关于直线1x =对称C .当1x >时,y 随x 的增大而增大D .与x 轴有交点7.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标(1,)n ,与y 轴的交点在0203(,),(,)之间(包含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m2(1)(1)0a m b m -+-≤总成立;④关于x 的方程214ax bx c a ++=-无实数根.其中结论正确的个数为( )A .1个B .2个C .3个D .4个8.将抛物线2(1)y x =+的图象位于直线9y =以上的部分向下翻折,得到如图图象,若直线y x m =+与此图象有四个交点,则m 的取值范围是( )A .574m << B .354m << C .495m << D .374m << 9.已知函数f (x )=x 2+2x ,g (x )=2x 2+6x +n 2+3,当x =1时,f (1)=12+2×1=3,g (1)=2+6+n 2+3=n 2+11.则以下结论正确的有( )①若函数g (x )的顶点在x 轴上,则6n = ②无论x 取何值,总有g (x )>f (x );③若﹣1≤x ≤1时,g (x )+f (x )的最小值为7,则n =±3; ④当n =1时,令()()2()g x h x f x =,则h (1)•h (2)…h (2023)=2024.A .1个B .2个C .3个D .4个10.已知,抛物线y =ax 2+2ax 在其对称轴的左侧y 随x 的增大而减小,关于x 的方程ax 2+2ax =m (m>0)的一个根为﹣4,而关于x 的方程ax 2+2ax =n (0<n <m )有两个整数根,则这两个根的积是( ) A .0B .﹣3C .﹣6D .﹣8二、填空题11.若抛物线2=2++y x mx n -与x 轴交于A ,B 两点,其顶点C 到x 轴距离是8,则线段AB 的长为 . 12.根据下列表格的对应值,判断20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的取值范围是x3.23 3.24 3.25 3.26 2ax bx c ++ 0.06-0.02-0.030.0913.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣4,8),B (2,2),则关于x 的方程ax 2﹣bx ﹣c =0的解为 .14.抛物线 2y ax bx c =++ (a ,b ,c 为常数, 0a > )经过两点 ()()2,0,4,0A B - ,下列四个结论:①20b a += ;②若点 ()()2020,,2021,m n - 在抛物线上,则 m n < ;③0y > 的解集为 2x <- 或 4x > ;④方程 ()21a x bx c x +++=- 的两根为 123,3x x =-= .其中正确的结论是 (填写序号).15.若抛物线25y x bx =+-的对称轴为直线2x =,则关于x 的方程25x bx +-213x =-的解为 .16.若一元二次方程()200ax bx c ac ++=≠有两个不相等实根,则下列结论:①240b ac ->;②方程20cx bx a ++=一定有两个不相等实根;③设2bm a=-,当0a >时,一定有22am bm ax bx +≤+;④s ,()t s t <是关于x 的方程()()10x p x q +--=的两根,且p q <,则q t s p >>>,一定成立的结论序号是 .17.抛物线2y ax bx c =++(a ,b ,c 为常数,0)c <经过(11),,(0)m ,和(0)n ,三点,且3n ≥. 下列四个结论:①0b <;②2414ac b a->;③当3n =时,若点(2)t ,在该抛物线上,则>1t ;④若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则10<3m ≤. 其中正确的是 (填序号即可).18.抛物线()20y ax bx c a =++≠的对称轴为1x =,经过点()3,n -,顶点为D ,下列四个结论:21a b +=①;240b ac ->②;③关于x 的一元二次方程2ax bx c n ++=的解是13x =-和25x =;④设抛物线交y 轴于点C ,不论a 为何值,直线CD 始终过定点()15,n -.其中一定正确的是 (填写序号).三、解答题19.已知抛物线的顶点坐标为()2,0,且经过点()1,3-.(1)求该抛物线的解析式;(2)若点(m,−27)在该抛物线上,求m 的值.20. 排球场的长度为18m ,球网在场地中央且高度为2.24.m 排球出手后的运动路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()²(0)y a x h k a =-+<.(1)某运动员第一次发球时,测得水平距离x 与竖直高度y 的几组数据如下:水平距离/x m 0 2 4 6 11 12 竖直高度/y m2.482.722.82.721.821.52①根据上述数据,求这些数据满足的函数关系()²(0)y a x h k a =-+<; ②判断该运动员第一次发球能否过网 ▲ (填“能”或“不能”).(2)该运动员第二次发球时,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()20.024 2.88y x =--+,请问该运动员此次发球是否出界,并说明理由.21.如图,抛物线()2y ax bx c a 0=++≠经过点()A 03,,()B 23,和()C 10-,,直线()y mx n m 0=+≠经过点B ,C ,部分图象如图所示,则:(1)该抛物线的对称轴为直线 ;(2)关于x 的一元二次方程2ax bx c 0++=的解为 ; (3)关于x 的一元二次方程2ax bx c mx n ++=+的解为 .22.已知抛物线y=ax 2+x+1(0a ≠)(1)若抛物线的图象与x 轴只有一个交点,求a 的值; (2)若抛物线的顶点始终在x 轴上方,求a 的取值范围.23.如图,二次函数y =2x +bx +c 的图象与x 轴只有一个公共点P ,与y 轴交于点Q ,过点Q 的直线y=2x +m 与x 轴交于点A ,与这个二次函数的图象交于另一点B ,若S △BPQ =3S △APQ ,求这个二次函数的解析式.24.二次函数解析式为223y ax x a =--.(1)判断该函数图象与x 轴交点的个数;(2)如图,在平面直角坐标系中,若二次函数图象顶点是A ,与x 轴交于B ,C 两点,与y 轴交于D ,点C 的坐标是()3,0,求直线CD 的解析式;(3)请你作一条平行于x 轴的直线交二次函数的图象于点M ,N ,与直线CD 于点R ,若点M ,N ,R 的横坐标分别为m ,n ,r ,且r m n <≤,求m n r ++的取值范围.25.抛物线L :212y x bx c =-+与直线L ':22y kx =+交于A 、B 两点,且()2,0A .(1)求k 和c 的值(用含b 的代数式表示c ); (2)当0b =时,抛物线L 与x 轴的另一个交点为C . ①求ABC 的面积;②当15x -≤≤时,则1y 的取值范围是_________.(3)抛物线L :212y x bx c =-+的顶点(),M b n ,求出n 与b 的函数关系式;当b 为何值时,点M 达到最高.(4)在抛物线L 和直线L '所围成的封闭图形的边界上把横、纵坐标都是整数的点称为“美点”,当20b =-时,直接写出“美点”的个数_________.参考答案1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】B 5.【答案】A 6.【答案】D 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】412.【答案】3.24 3.25x << 13.【答案】x 1=﹣4,x 2=2 14.【答案】①③ 15.【答案】1224x x ==, 16.【答案】①②③④ 17.【答案】②③④ 18.【答案】④③19.【答案】(1)y =−3(x −2)2(2)5m =或1-20.【答案】(1)解:①由表中数据可得顶点()42.8,设2(4) 2.8(0)y a x a =-+<把()02.48,代入得16 2.8 2.48a += 解得:0.02a =-∴所求函数关系为20.02(4) 2.8y x =--+;②能.(2)解:判断:没有出界.第二次发球:()20.024 2.88y x =--+ 令0y =,则()20.024 2.880x --+= ,解得18(x =-舍) 216x =21618x =<∴该运动员此次发球没有出界.21.【答案】(1)x 1=(2)1x 1=- 2x 3= (3)1x 2= 2x 1=-22.【答案】(1)解:由题意得方程ax 2+x+1=0有两等实数根.∴△=b 2-4ac =1-4a =0,∴a =14. ∴当a =14时函数图象与x 轴恰有一个交点; (2)解:由题意得4104a a-> 当a >0时,4a -1>0,解得a >14;当a <0时,4a -1<0,解得a <14.∴a <0.∴当a >14或a <0时,抛物线顶点始终在x 轴上方.23.【答案】y =x 2﹣4x+424.【答案】(1)函数图象与x 轴交点的个数是2(2)3y x =- (3)12m n r ≤++<25.【答案】(1)1k =- 44c b =-(2)10;1421y -≤≤ (3)244n b b =-+- 2b = (4)90。

初中数学人教版九年级上册 第二十二章 二次函数 单元试卷(含答案)

初中数学人教版九年级上册  第二十二章  二次函数 单元试卷(含答案)

第二十二章二次函数单元试卷一、单选题1.下列函数中,属于二次函数的是()A.y=x−2B.y=x2C.y=x2−(x+1)2D.y=2x22.抛物线y=−x2−2x一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将抛物线y=x2+4分别向左、向下平移2个单位后得到的抛物线的解析式是( )A.y=(x+2)2+2B.y=(x−2)2−2C.y=(x−2)2+2D.y=(x+2)2−24.已知抛物线y=−x2+bx+4经过(−2,n)和(4,n)两点,则n的值为( )A.﹣2B.﹣4C.2D.45.如图,已知y1=ax2+bx+c(a≠0)与y2=kx+b(k≠0)相交于A(−1,0)、B(−4,3)两点,则y1>y2的x的取值范围是()A.x<−4B.−4<x<−1C.x>−1D.x<−4或x>−1 6.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟7.已知函数y =3x 2−6x +k (k 为常数)的图象经过点A (0.8,y 1),B (1.1,y 2),C(2,y 3),则有( ).A .y 1<y 2<y 3B .y 1>y 2>y 3C .y 3>y 1>y 2D .y 1>y 3>y 28.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是( )A .6425m 2B .43m 2C .83m 2D .4m 29.下表给出了二次函数y =ax 2+bx +c 的自变量x 与函数值y 的部分对应值:x …1 1.1 1.2 1.3 1.4…y…−1−0.67−0.290.140.62…那么关于x 的方程ax 2+bx +c =0的一个根的近似值可能是( )A .1.07B .1.17C .1.27D .1.3710.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,c <﹣1,其对称轴为直线x =﹣1,与x 轴的交点为(x 1,0)、(x 2,0),其中0<x 1<1,有下列结论:①abc >0;②﹣3<x 2<﹣2;③4a ﹣2b +c <﹣1;④a ﹣b >am 2+bm (m ≠﹣1);其中,正确的结论个数是( )A .1个B .2个C .3个D .4个二、填空题11.已知二次函数y =(x +1)(x−3),则该二次函数的对称轴为 .12.若一条抛物线的顶点在y 轴上,则这条抛物线的表达式可以是(只需写一个)13.若函数y =x 2+2x ﹣b 的图象与坐标轴有三个交点,则b 的取值范围是 .14.从地面竖直向上抛出一个小球,小球的高度h(m)与小球运动时间t(s)之间的函数关系式为ℎ=30t−5t 2,则小球高度为40m 时,t= .15.已知抛物线y=a(x+2)2+k(a>0),当x≥时,y随x的增大而增大.16.定义{a,b,c}为函数y=ax2+bx+c的“特征数”如:函数y=x2+3x+2的“特征数”是{1,3,2},函数y=x2−4的“特征数”是{1,0,−4},在平面直角坐标系中,将“特征数”是{2,0,4}的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是.(a>0)与y轴交于点A,过点A作x 17.如图,在平面直角坐标系中,抛物线y=ax2−2ax+83轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB 的中点,则a的值为.三、解答题18.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数,该函数图像与x轴总有交点;(2)若图像与x轴仅有一个交点,当−2≤x≤1时,求y的取值范围.19.如图,小明站在点O处练习发排球,将球从O点正上2m的A点处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x−ℎ)2+k.已知球与O点的水平距离ON为6m时,达到最高3m,球场的边界距O点的水平距离为18m.(1)请确定排球运行的高度y(m)与运行的水平距离满足的函数关系式;(2)请判断排球第一次落地是否出界?请通过计算说明理由.20.某商品每件进价25元,在试销阶段该商品的日销售量y(件)与每件商品的日销售价x (元)之间的关系如图中的折线ABC所示(物价局规定,该商品每件的销售价不得低于进价且不得高于50元).(1)直接写出y与x的函数关系式;(2)若日销售单价x(元)为整数,则当日销售单价x(元)为多少时,该商品每天的销售利润最大?最大利润是多少;(3)若该商品每天的销售利润不低于1200元,求销售单价x的取值范围.21.已知二次函数的图象如图所示.(1)求这个二次函数的表达式;(2)观察图象,当−2<x<1时,y的取值范围为______;(3)若将该二次函数图象向上平移m个单位长度后恰好过点(−2,0),求m的值.x2+bx+c与y轴交于点A(0,2),与x轴交22.如图,在平面直角坐标系中,抛物线y=−23于B(−3,0)、C两点(点B在点C的左侧),抛物线的顶点为D(1)求抛物线的解析式及顶点D的坐标;(2)点P是线段OB上的动点,过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标.23.我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20﹣10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出该专卖店当一次销售x(时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?24.如图,二次函数y=x²−2x−3的图象与x轴交于A,B两点,与y轴交于点C,M为抛物线的顶点.(1)求A,B两点的坐标;(2)求△MBC的面积;(3)对称轴上是否存在点N,使得以B,C,N为顶点的三角形是直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.参考答案:题号12345678910答案B A A B D C C C C B11.直线x=112.y=2x213.b>﹣1且b≠014.2s或4s15.−216.{2,−4,3}17.218.(1)解:令y=0,则kx2+(k+1)x+1=0,∵Δ=(k+1)2−4k=k2+2k+1−4k=k2−2k+1=(k−1)2⩾0,∴无论k取任何实数,方程kx2+(k+1)x+1=0总有实数根,∴无论k取任何实数,该函数的图象与x轴总有交点;(2)解:∵该函数的图象与x轴只有一个交点,∴Δ=(k−1)2=0.解:k=1,∴y=x2+2x+1=(x+1)2.∴该二次函数开口向上,对称轴为x=−1∴当x=−1,函数取得最小值0;当x=1时,函数取得最大值4∴y的取值范围为0⩽y⩽4.19.(1)解:由题意可知:该抛物线顶点为M(6,3),∴y=a(x−6)2+3,把A(0,2)的坐标代入解析式,得a(0−6)2+3=2,解得a=−136,∴排球运行的高度y(m)与运行的水平距离满足的函数关系式为y=−136(x−6)2+3;(2)解:设第一次落地点为B,令y=0,则−136(x−6)2+3=0,解之得:x1=6−63(舍),x2=6+63,∵6+63<18,∴排球第一次落地没出界.20.(1)设AB段的解析式为:y=kx+b,由图可知:图象经过(25,200),(35,100),则:{25k+b=20035k+b=100,解得:{k=−10 b=450,∴y=−10x+450;设BC段的解析式为:y=mx+n,由图可知:图象经过(50,40),(35,100),则:{50m+n=4035m+n=100,解得:{m=−4 n=240,∴y=−4x+240∴y={−10x+450(25≤x≤35)−4x+240(35≤x≤50).(2)设销售利润为W元,则①当25≤x≤35时,W=(x−25)(−10x+450)=−10(x−35)2+1000,∴x=35时,W max=1000元.②当35≤x≤50时,W=(x−25)(−4x+240)=−4(x−42.5)2+1225,∵x为整数,∴x=42或43时,W取最大值,W max=1224.∵1224>1000,∴当日销售单价为42元或43元时,每天的销售利润最大,最大利润为1224元.(3)由(2)知,当25≤x≤35时,该商品每天的最大销售利润为1000元;∴只有在35≤x≤50时,每天的销售利润才可能不低于1200元;∴−4(x−42.5)2+1225≥1200,当−4(x−42.5)2+1225=1200,解得:x1=40,x2=45,∵−4<0,∴−4(x−42.5)2+1225≥1200的解集为40≤x ≤45.21.(1)解:根据图象可知,二次函数的顶点为(−1,−4),设二次函数的表达式为y =a (x +1)2−4,且图象过点(1,0),∴0=a ×(1+1)2−4,解得:a =1,∴二次函数的表达式为y =(x +1)2−4,(2)由(1)得:二次函数的表达式为y =(x +1)2−4,∴当x =−1时,y 有最小值−4,当x =1或x =−2时,y =0,∴当−2<x <1时,y 的取值范围为−4≤y <0,(3)由题意得:平移后的解析式为y =(x +1)2−4+m ,∵过点(−2,0),∴0=(−2+1)2−4+m ,解得:m =3.22.(1)由题意得:{c =20=−6−3b +c,解得:{b =−43c =2,∴抛物线解析式为:y =−23x 2−43x +2=−23(x +1)2+83,∴顶点D 坐标(−1,83);(2)∵由(1)得y =−23x 2−43x +2,当y =0时,y =−23x 2−43x +2=0,解得:x 1=1,x 2=−3,∴点C (1,0),设点E (m,−23m 2−43m +2),则点P (m,0),∵PE =PC ,∴−23m 2−43m +2=1−m ,∴m 1=1(舍去),m 2=−32,∴点E(−32,52).23.略24.(1)A(−1,0),B(3,0)(2)3(3)存在;N1(1,−3+172),N2(1,−3−172),N3(1,−4),N4(1,2).。

(常考题)人教版初中数学九年级数学上册第二单元《二次函数》测试(含答案解析)(1)

(常考题)人教版初中数学九年级数学上册第二单元《二次函数》测试(含答案解析)(1)

一、选择题1.函数y =ax 2与y =ax +a ,在第一象限内y 随x 的减小而减小,则它们在同一直角坐标系中的图象大致位置是( )A .B .C .D .2.将二次函数221y xx =+-化为2()y x h k =-+的形式时,结果正确的是( ) A .2(1)2y x =+-B .2(1)2y x =--C .2(1)2y x =-+D .2(1)3y x =++3.如图是函数y =x 2+bx+c 与y =x 的图象,有下列结论:(1)b 2﹣4c >0;(2)b+c+1=0;(3)方程x 2+(b ﹣1)x+c =0的解为x 1=1,x 2=3;(4)当1<x <3时,x 2+(b ﹣1)x+c <0.其中正确结论的个数为( )A .1B .2C .3D .44.如图是抛物线y =ax 2+bx+c (a≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a ﹣b+c >0;②3a+b =0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个5.二次函数2y x bx =+的图象如图,对称轴为直线1x =.若关于x 的一元二次方程20x bx t +-=(t 为实数)在23x -<<的范围内有解,则t 的取值范围是( )A .1t ≥-B .13t -≤<C .18t -≤<D .38t << 6.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .4 7.抛物线2(2)3y x =-+的对称轴是( ) A .直线2x =- B .直线3x = C .直线1x = D .直线2x = 8.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( )A .16q <B .16q >C .16q ≤D .16q ≥ 9.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< 10.下列各图象中有可能是函数()20y ax a a =+≠的图象( )A .B .C .D . 11.如图,已知抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则下列结论:①0abc >;②关于x 的一元二次方程20ax bx c ++=的根是-1,3;③2a b c +=;④y 最大值43c =;其中正确的有( )个.A .4B .3C .2D .112.如图所示,一段抛物线:()233044y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180°得到2C ,交x 轴于2A ;将2C 绕2A 旋转180°得到3C ,交x 轴于3A ;⋅⋅⋅如此进行下去,直至得到506C ,则抛物线506C 的顶点坐标是( )A .()2020,3B .()2020,3-C .()2022,3D .()2022,3-二、填空题13.如图,正方形OABC 的边长为2,OA 与x 负半轴的夹角为15°,点B 在抛物线()20y ax a =<的图象上,则a 的值为_.14.将抛物线2y x 向上平移1个单位,再向左平移2个单位后,得到的抛物线的顶点坐标是__________.15.如图,在喷水池的中心A 处竖直安装一个水管AB ,水管的顶端B 处有一个喷水孔,喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,则水管AB 的长为_____m .16.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次不等式220x x m -++>的解集为______________________.17.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.18.如图,抛物线()()13y a x x =+-与x 轴交于A ,B 两点(点A 在B 的左侧),点C 为抛物线上任意一点....(不与A ,B 重合),BD 为ABC 的AC 边上的高线,抛物线顶点E 与点D 的最小距离为1,则抛物线解析式为______.19.已知(-3,y 1),(-2,y 2),(1,y 3)是抛物线2312y x x m =++上的点,则y 1,y 2,y 3的大小关系为__.20.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为_____.三、解答题21.如图用长为30m 的篱笆围成一个一边靠墙的矩形养鸡场ABCD ,已知墙长14m ,设边AB 的长为xm ,矩形ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并求出函数y 的最大值.(2)当y =108时,求x 的值.22.一网店经营一种玩具,购进时的单价是30元.根据市场调查表明:当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该玩具的销售单价为x 元(40x >),请你分别用x 的代数式来表示销售量y 件和销售该玩具获得利润w 元,并把结果填写在表格中:销售单价(元)x 销售量y (件)销售玩具获得利润w(元)x 应定为多少元?(3)若该网店要完成不少于550件的销售任务,求网店销售该品牌玩具获得的最大利润是多少?23.如图,抛物线2y x 2x 3=-++与x 轴交于A ,B 两点,交y 轴于点C ,点M 抛物线的顶点.(1)连接BC ,求BC 与对称轴MN 的交点D 坐标.(2)点E 是对称轴上的一个动点,求OE CE +的最小值.24.如图1,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若OC =2OA .(1)求抛物线的解析式;(2)抛物线对称轴l 上有一动点P ,当PC +PA 最小时,求出点P 的坐标;(3)如图2所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点.过点M 作直线l '∥l ,交抛物线于点N ,连接CN ,BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?25.在平面直角坐标系xOy 中,抛物线223=+-y mx mx 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,4AB =.(1)直接写出抛物线的对称轴为直线____,点A 的坐标为___.(2)求抛物线的解析式(化为一般式);(3)若将抛物线223=+-y mx mx 沿x 轴方向平移()0n n >个单位长度,使得平移后的抛物线与线段AC 恰有一个公共点,结合函数图象,回答下列问题:①若向左平移,则n 的取值范围是______.②若向右平移,则n 的取值范围是______.26.已知抛物线的顶点为()1,4-,且过点()2,5-.(1)求抛物线的解析式;(2)当0y >时,自变量x 的取值范围是______(直接写出结果).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据二次函数y =ax 2的增减性确定出 a >0,然后判断出二次函数的开口方向,再根据一次函数的性质确定出一次函数图象经过的象限与 y 轴的交点,然后判断即可.【详解】解:∵函数y =ax 2在第一象限内y 随x 的减小而减小,∴a >0,∴y =ax 2的图象经过原点且开口方向向上,y =ax +a 经过第一三象限,且与y 轴的正半轴相交.A . 二次函数开口向上,一次函数与y 轴的负半轴相交,不符合题意B .二次函数开口向上,一次函数与y 轴的正半轴相交,符合题意C.二次函数开口向下,一次函数与y轴的负半轴相交,不符合题意D.二次函数开口向下,一次函数与y轴的正半轴相交,不符合题意故选:B.【点睛】本题考查了二次函数的图象,一次函数的图象,是基础题,根据二次函数的增减性确定出a 是正数是解题的关键.2.A解析:A【分析】加上一次项系数的一半的平方凑成完全平方式,把一般式化为顶点式.【详解】221y x x=+-=22111x x++--=2(1)2y x=+-,故选:A.【点睛】此题考查二次函数的一般式转化为顶点式,掌握方法是解题的关键.3.B解析:B【分析】根据函数图象与x轴交点个数判断(1);利用待定系数法求出函数解析式,代入计算判断(2);由二次函数与一次函数的交点求出方程的解,判断(3)即可;利用函数图象比较函数值判断(4).【详解】由图象知,二次函数过(3,3)(0,3),(1,1),∴93313a b ca b cc++=⎧⎪++=⎨⎪=⎩,解得:133abc=⎧⎪=-⎨⎪=⎩,∴b+c+1=﹣3+3+1=1,故②错误;∵a=1,∴抛物线为y=x2-3x+3,∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0,故①错误;由图象知,抛物线y=x2+bx+c与直线y=x的交点坐标为(1,1)和(3,3),∴方程x2+(b﹣1)x+c=0的解为x1=1,x2=3,故③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x 2+(b ﹣1)x+c <0.故④正确;故选:B .【点睛】此题考查待定系数法求二次函数的解析式,二次函数的性质,二次函数与一元二次方程的关系,图象法比较函数值的大小,是一道较为基础的二次函数题.4.C解析:C【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:∵抛物线顶点坐标为(1,n ),∴抛物线的对称轴为直线x=1,∵与x 轴的一个交点在点(3,0)和(4,0)之间,∴当x=-1时,y >0,即a-b+c >0,故①正确;∵抛物线的对称轴为直线x=1,即-2b a=1, ∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n ),∴抛物线y=ax 2+bx+c (a≠0)与直线y=n 有唯一一个交点,即方程ax 2+bx+c=n 有两个相等的实数根,∴△=b 2-4a (c-n )=0,∴b 2=4a (c-n ),故③正确;∵抛物线的开口向下,∴y 最大=n ,∴直线y=n-1与抛物线有两个交点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,故④正确;故选:C .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 5.C解析:C【分析】根据对称轴求出b 的值,从而得到23x -<<时的函数值的取值范围,再根据一元二次方程x 2+bx-t=0(t 为实数)在-1<x <4的范围内有解相当于y=x 2+bx 与y=t 在x 的范围内有交点解答.【详解】解:对称轴为直线x=-21b =1, 解得b=-2,所以二次函数解析式为y=x 2-2x ,y=(x-1)2-1,x=1时,y=-1,x=-2时,y=4-2×(-2)=8,∵x 2+bx-t=0的解相当于y=x 2+bx 与直线y=t 的交点的横坐标,∴当-1≤t <8时,在-1<x <4的范围内有解.故选:C .【点睛】本题考查了二次函数与不等式,把方程的解转化为两个函数图象的交点的问题求解是解题的关键. 6.C解析:C【分析】根据抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上即可求出a 、b 、c 的正负,即可判断①;根据抛物线与x 轴的交点坐标即可判断②;把x=1代入抛物线即可判断③;求出抛物线的对称轴,根据图象即可判断④.【详解】解:∵抛物线的开口向上,对称轴在y 轴的右边,与y 轴的交点在y 的负半轴上, ∴a >0,-2b a>0,c <0, 即b <0,∴abc >0,∴①正确;由抛物线与x 轴有两个交点,∴△=b 2-4ac >0,故②正确;由图象可知:x=1时,y=a+b+c <0,故③正确; 由图象可得,当0<x<-2b a时,y 随着x 的增大而减小,故④错误; ∴正确的个数有3个.故选:C .【点睛】 本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力.7.D解析:D【分析】直接利用二次函数对称轴求法得出答案.【详解】解:抛物线y=(x-2)2+3的对称轴是:直线x=2.故选:D .【点睛】此题主要考查了二次函数的性质,正确掌握对称轴确定方法是解题关键.8.C解析:C【分析】根据抛物线与x 轴的交点情况可得到方程280x x q ++=根的情况,进而得到根的判别式大于等于0,即可得到关于q 的不等式,最后解不等式即可得到答案.【详解】解:∵抛物线28y x x q =++与x 轴有交点∴方程280x x q ++=有实数根∴2248416440b ac q q ∆=-=-⨯⋅=-≥∴16q ≤.故选:C【点睛】本题考查了二次函数图象性质与一元二次方程根的情况的关系、解一元一次不等式等,体现了数形结合的思想.9.D解析:D【分析】根据判别式的意义得到△=(-2a )2-4(a 2-3a+6)<0,解得a <2,再求出抛物线的对称轴为直线x=a ,根据二次函数的性质得到a≥-1,从而得到实数a 的取值范围是-1≤a <2.【详解】解∵抛物线22236y x ax a a =-+-+与x 轴没有公共点,∴△=(-2a )2-4(a 2-3a+6)<0,解得a <2,∵抛物线的对称轴为直线x=-22a -=a ,抛物线开口向上, 而当x <-1时,y 随x 的增大而减小,∴a≥-1,∴实数a 的取值范围是-1≤a <2.故选:D .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 10.B解析:B【分析】从0a >和0a <两种情况进行分析图象的开口方向和顶点坐标,选出正确的答案.【详解】解:当0a >时,开口向上,顶点在y 轴的正半轴;当0a <时,开口向下,顶点在y 轴的负半轴,故选:B .【点睛】本题考查的是二次函数系数与图象的关系,熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标与系数的关系是解题的关键.11.C解析:C【分析】利用抛物线开口方向得到a <0,利用抛物线的对称轴方程得到b=-2a >0,利用抛物线与y 轴的交点在x 轴上方得到c >0,则可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-1,0),则根据抛物线与x 轴的交点问题可对②进行判断;由于x=-1时,a-b+c=0,再利用b=-2a 得到c=-3a ,则可对③④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x=﹣b 2a=1, ∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误;∵抛物线的对称轴为直线x=1,抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x 轴的另一个交点坐标为(-1,0),∴关于x 的一元二次方程ax 2+bx+c=0的根是-1,3,所以②正确;∵当x=-1时,y=0,∴a-b+c=0,而b=-2a ,∴a+2a+c=0,即c=-3a ,∴a+2b-c=a-4a+3a=0,即a+2b=c ,所以③正确;a+4b-2c=a-8a+6a=-a ,所以④错误;故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.12.D解析:D【分析】 解方程2334x x -+=0得A 1(4,0),再利用旋转的性质得A 2(4×2,0),A 3(4×3,0),依此规律得到A 505(4×505,0),A 506(4×506,0),且抛物线C 506的开口向上,利用交点式,设抛物线C 506的解析式为y =34(x−2020)(x−2024),然后确定此抛物线顶点坐标即可.【详解】当y =0时,2334x x -+=0,解得x 1=0,x 2=4, ∴A 1(4,0), ∵将C 1绕A 1旋转180°得到C 2,交x 轴于A 2,将C 2绕A 2旋转180得到C 3,∴A 2(4×2,0),A 3(4×3,0),∴A 505(4×505,0),A 506(4×506,0),即A 505(2020,0),A 506(2024,0), ∵抛物线C 506的开口向上,∴抛物线C 506的解析式为y =34(x−2020)(x−2024), ∵抛物线的对称轴为直线x =2022, 当x =2022时,y =34(2022−2020)(2022−2024)=−3, ∴抛物线C 506的顶点坐标是(2022,−3).故选:D .【点睛】 本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的几何变换和二次函数的性质.二、填空题13.【分析】连接OB 过点B 作BD ⊥x 轴于D 根据正方形的性质求得∠BOA=45°OB=根据三角函数和勾股定理可得点B 的坐标为()代入抛物线即可求解【详解】如图连接OB 过点B 作BD ⊥x 轴于D ∵四边形OABC 解析:26- 【分析】 连接OB ,过点B 作BD ⊥x 轴于D ,根据正方形的性质求得∠BOA=45°,OB=22,根据三角函数和勾股定理可得点B 的坐标为(6-,2-),代入抛物线()20y axa =<即可求解.【详解】如图,连接OB ,过点B 作BD ⊥x 轴于D ,∵四边形OABC 是边长为2的正方形,∴∠BOA=45°,OB=22,∵AC 与x 轴负半轴的夹角为15°,∴∠AOD=45°﹣15°=30°,∴BD= 12OB= 2,OD= 22OB BD -= 82-= 6, ∴点B 的坐标为(6-,2-), ∵点B 在抛物线()20y axa =<的图象上, 则:()262a -=-,解得:26a =-, 故答案为2a =-故答案为:26-.【点睛】本题主要考查根据坐标求解析式,涉及到正方形的性质、勾股定理、三角函数值,解题的关键是熟练掌握所学知识求得点B 的坐标.14.【分析】根据二次函数图象左加右减上加下减的平移规律进行求解【详解】解:将抛物线y=x2向上平移1个单位再向左平移2个单位后得到的抛物线y=(x+2)2+1此时抛物线顶点坐标是(-21)故答案为:(-解析:()2,1-【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线y=x 2向上平移1个单位,再向左平移2个单位后,得到的抛物线y=(x+2)2+1.此时抛物线顶点坐标是(-2,1).故答案为:(-2,1).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.15.【分析】以喷水池中心A 为原点竖直安装的水管AB 所在直线为y 轴与水管垂直的AD 所在直线为x 轴建立直角坐标系设抛物线的解析式为y =a (x ﹣1)2+3(0≤x≤3)将(30)代入求得a 值则x =0时得的y 值 解析:94【分析】以喷水池中心A 为原点,竖直安装的水管AB 所在直线为y 轴,与水管垂直的AD 所在直线为x 轴建立直角坐标系,设抛物线的解析式为y =a (x ﹣1)2+3(0≤x≤3),将(3,0)代入求得a 值,则x =0时得的y 值即为水管的长.【详解】以喷水池中心A 为原点,竖直安装的水管AB 所在直线为y 轴,与水管垂直的AD 所在直线为x 轴建立直角坐标系,由于喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m , 所以设抛物线的解析式为:y =a (x ﹣1)2+3(0≤x≤3),代入(3,0),得:0=a (3-1)2+3,解得:a =34-. 将a 值代入得到抛物线的解析式为:y =34-(x ﹣1)2+3(0≤x≤3), 令x =0,则y =94. 即水管AB 的长为94m ,故答案为:94.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.16.【分析】根据二次函数的对称性求出二次函数图象与轴的另一个交点再写出x 轴下方部分的x 的取值范围即可【详解】由图可知对称轴为直线所以二次函数图象与x 轴的另一个交点坐标为(0)由图象可知:函数值大于0的的 解析:13x【分析】根据二次函数的对称性求出二次函数图象与x 轴的另一个交点,再写出x 轴下方部分的x 的取值范围即可.【详解】由图可知,对称轴为直线1x =,所以,二次函数图象与x 轴的另一个交点坐标为(1-,0),由图象可知:函数值大于0的x 的取值范围为:13x, 所以,220x x m -++>的解集为13x. 故答案为:13x.【点睛】本题考查了二次函数与不等式,主要利用了二次函数的对称性以及数形结合的思想,难点在于先求出函数图象与x 轴的另一个交点坐标. 17.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式.【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4∴y=2(x+1)2-1.故答案为:y=2(x+1)2-1.【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键.18.【分析】根据题意可确定出AB 两点的坐标从而求出对称轴为x=1依题意要使DE 最小则D 点必在对称轴上从而根据题意画出图形求解即可【详解】解:如图所示使DE 最小则D 点必在对称轴x=1上过点E 作EF ⊥AB 则 解析:2339424y x x =-- 【分析】根据题意可确定出A ,B 两点的坐标,从而求出对称轴为x=1,依题意要使DE 最小则D 点必在对称轴上,从而根据题意画出图形求解即可.【详解】解:如图所示,使DE 最小则D 点必在对称轴x=1上,过点E 作EF ⊥AB ,则AF=BF ,∴AD=BD ,∵BD 为ABC 的AC 边上的高线,∴∠ADB=90°,∴∠DBF=∠BDF=45°,∴DF=BF=2.当x=1时,y=-4a ,∵抛物线开口向上,∴a>0,∴EF=4a .∵DE=1,∴4a-2=1解得:a=34.∴抛物线解析式为3(1)(3)4y x x =+- 即2339424y x x =-- 故答案为:2339424y x x =--. 【点睛】 本题考查了二次函数的综合题,结图象求最值问题,利用好数形结合找出最小值的点是解题的关键.19.【分析】根据二次函数图象上点的坐标特征比较y1y2y3的大小比较后即可得出结论【详解】解:∵A(-3y1)B(-2y2)C (1y3)在二次函数y=3x+12x+m 的图象上∵y=3x+12x+m 的对解析:312y y y >>【分析】根据二次函数图象上点的坐标特征比较y 1、y 2、y 3的大小,比较后即可得出结论【详解】解:∵A (-3,y 1)、B (-2,y 2 )、C (1,y 3)在二次函数y= 3x 2+12x+m 的图象上,∵y= 3x 2+12x+m 的对称轴x=b 2a-=-2,开口向上, ∴当x=-3与x=-1关于x=-2对称,∵A 在对称轴左侧,y 随x 的增大而减小,则y 1>y 2,C 在对称轴右侧,y 随x 的增大而增大,∵1>-1,∴y 3>y 1,,∴y 3>y 1>y 2,故答案为:y 3>y 1>y 2.【点睛】本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标关于对称轴对称的特征比较y 1、y 2、y 3的大小是解题的关键.20.8【分析】根据题意当点C 的横坐标取最小值时抛物线的顶点与点A 重合进而可得抛物线的对称轴则可求出此时点D 的最小值然后根据抛物线的平移可求解【详解】解:∵点AB 的坐标分别为(14)和(44)∴AB=3由解析:8【分析】根据题意当点C的横坐标取最小值时,抛物线的顶点与点A重合,进而可得抛物线的对称轴,则可求出此时点D的最小值,然后根据抛物线的平移可求解.【详解】解:∵点A,B的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),可得:当点C的横坐标取最小值时,抛物线的顶点与点A重合,∴抛物线的对称轴为:直线1x=,∵点()3,0C-,∴点D的坐标为()5,0,∵顶点在线段AB上移动,∴点D的横坐标的最大值为:5+3=8;故答案为8.【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键.三、解答题21.(1)y=﹣12(x﹣15)2+112.5,y的最大值为112m2;(2)x的值为12【分析】(1)根据长方形的面积等于长乘以宽及墙体长度为14米,即可求出y与x的函数关系式,结合二次函数增减性得出二次函数最值;(2)把y=108代入(1)中的解析式,解方程得出答案.【详解】(1)根据题意可得:AD=12(30﹣x)m,y=12x(30﹣x)=﹣12x2+15x=﹣12(x﹣15)2+112.5,∵墙长为14m,∴0<x≤14,则x≤15时,y随 x 的增大而增大,∴当x=14m,即AB=14m,BC=8m时,长方形的面积最大,最大面积为:14×8=112(m2);∴y的最大值为112m2;(2)当y =108时,108=12x (30﹣x ), 整理得:x 2﹣30x+216=0,解得:x 1=12,x 2=18(不合题意舍去),答:x 的值为12.【点睛】本题考查了二次函数在实际问题中的应用,根据题意正确得出函数关系式并明确二次函数的性质是解题的关键.22.(1)101000x -+,210130030000x x -+-;(2)销售单价x 应定为50元或80元;(3)最大利润为8250元.【分析】(1)根据题意可直接进行列式求解即可;(2)由(1)可得210x 1300x 3000010000-+-=,然后求解即可;(3)由题意易得101000550x -+≥,然后可得4045x <≤,最后由二次函数的性质可进行求解.【详解】解:(1)由题意得:销售量()6001040101000y x x =--=-+;销售玩具获得利润()()23010100010130030000w x x x x =--+=-+-; 故答案为101000x -+,210130030000x x -+-;(2)由(1)及题意得:210x 1300x 3000010000-+-=,213040000x x -+=,解得:1250,80x x ==,∵40x >,∴1250,80x x ==;答:销售单价x 应定为50元或80元.(3)由题意得:101000550x -+≥,解得:45x ≤,∵40x >,∴4045x <≤,∵()2210130030000106512250w x x x =-+-=--+, ∴100a =-<,对称轴为直线65x =,∴当4045x <≤时,w 随x 的增大而增大,∴当x=45时,w 有最大值,即为()2104565122508250w =-⨯-+=;答:销售该玩具所获最大利润为8250元.【点睛】本题主要考查二次函数的应用,会根据题意正确列式并明确二次函数的相关性质是解题的关键.23.(1)(1,2)D ;(2【分析】(1)先根据抛物线的解析式求出点B 、C 的坐标和对称轴,从而可得点D 的横坐标,再利用待定系数法求出直线BC 的函数解析式,然后将点D 的横坐标代入直线BC 的函数解析式即可得其纵坐标;(2)先根据二次函数的对称性可得点C 关于对称轴的对称点的坐标,然后根据两点之间线段最短、两点之间的距离公式求解即可得.【详解】(1)对于二次函数2y x 2x 3=-++,当0y =时,2230x x -++=,解得1x =-或3x =,则(1,0),(3,0)A B -,当0x =时,3y =,则(0,3)C ,二次函数2y x 2x 3=-++化成顶点式为2(1)4y x =--+, 则二次函数的对称轴为1x =,点D 为BC 与二次函数的对称轴的交点,∴点D 的横坐标为1,设直线BC 的函数解析式为y kx b =+,将点(3,0),(0,3)B C 代入得:303k b b +=⎧⎨=⎩,解得13k b =-⎧⎨=⎩, 则直线BC 的函数解析式为3y x =-+,将1x =代入得:132y =-+=,即点D 的坐标为(1,2)D ;(2)如图,作点C 关于对称轴MN 的对称点C ',连接C E ',由二次函数的对称性得:点C '一定在此二次函数的图象上,其纵坐标与点C 的纵坐标相同,且C E CE '=,则OE CE OE C E '+=+,由两点之间线段最短得:当点,,O E C '共线时,OE C E '+取最小值,最小值为OC ', 设点C '的坐标为(,3)C a ',二次函数的对称轴为1x =,点C 的坐标为(0,3)C ,012a +∴=, 解得2a =,即(2,3)C ',则最小值22(20)(30)13OC'=-+-=,故OE CE+的最小值为13.【点睛】本题考查了二次函数的图象与性质、利用待定系数法求一次函数的解析式、两点之间线段最短等知识点,较难的是题(2),利用二次函数的对称性找出最小值是解题关键.24.(1)y=x2-3x+2;(2)点P的坐标为(32,12);(3)当t=1时,S△BCN的最大值为1.【分析】(1)先确定c,然后再根据OC=2OA确定A点的坐标,再将A点的坐标代入解析式求得b 即可解答;(2)如图:作点A关于直线l对称的对称点,即点B,连接BC,与直线l交于点P',此时PA+PB最小;然后求得直线BC的解析式,最后确定P'的坐标即可;(3)先求出M点坐标,然后再根据S△BCN=S△MNC+S△MNB确定二次函数关系式,最后运用二次函数求最值即可.【详解】解:(1)∵抛物线y=x2+bx+c过点C(0,2),∴c=2又∵OC=2OA,∴OA=1,即A(1,0);又∵点A在抛物线y=x2+bx+2上,∴0=12+b×1+2,b=-3;∴抛物线对应的二次函数的解析式为y=x2-3x+2;(2)如图:作点A关于直线l对称的对称点,即点B,连接BC,与直线l交于点P',则PA+PC的最小值为P'B+P'C=BC,设BC的解析式为y=mx+n,令x2-3x+2=0,解得:x=1或2,∴B(2,0),又∵C(0,2),∴202m n n +=⎧⎨=⎩,解得:12m n =-⎧⎨=⎩, ∴直线BC 的解析式为:y =-x +2,令x =32,代入,得:y =12,∴当PC +PA 最小时,点P 的坐标为(32,12); (3)如图:∵点M 是直线l '和线段BC 的交点,∴M 点的坐标为(t ,-t +2)(0<t <2),∴MN =-t +2-(t 2-3t +2)=-t 2+2t ,,∴S △BCN =S △MNC +S △MNB =12MN ▪t +12MN ▪(2-t )=12MN ▪(t +2-t )=MN =-t 2+2t (0<t <2), ∴S △BCN =-t 2+2t =-(t -1)2+1,∴当t =1时,S △BCN 的最大值为1.【点睛】本题考查了二次函数的综合应用,正确求出函数解析式并掌握数形结合思想是解答本题的关键.25.(1)1x =-,()3,0-;(2)223y x x =+-;(3)①04n <≤,②02n <≤【分析】(1)由对称轴为直线x=-2b a,可求解; (2)将点B 坐标代入可求解; (3)设向左平移后的解析式为:y =(x +1+n )2-4,设向右平移后的解析式为:y =(x +1-n )2-4,利用特殊点代入可求解.【详解】解:(1)∵抛物线y =mx 2+2mx -3的对称轴为直线x =22m m-=-1,AB=4, ∴点A (-3,0),点B (1,0),故答案为:x =-1,(-3,0);(2)∵抛物线y =mx 2+2mx -3过点B (1,0),∴0=m +2m -3,∴m =1,∴抛物线的解析式:y =x 2+2x -3,(3)如图,∵y =x 2+2x -3=(x +1)2-4,∴设向左平移后的解析式为:y =(x +1+n )2-4,把x =-3,y =0代入解析式可得:0=(-3+1+n )2-4,∴n =0(舍去),n =4,∴向左平移,则n 的取值范围是0<n ≤4;设向右平移后的解析式为:y =(x +1-n )2-4,把x =0,y =-3代入解析式可得:-3=(1-n )2-4,∴n =0(舍去),n =2,∴向右平移,则n 的取值范围是0<n ≤2,故答案为:0<n ≤4;0<n ≤2.【点睛】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平移的性质等知识,灵活运用这些性质解决问题是本题的关键.26.(1)()214y x =--或223y x x =--; (2)1x <-或3x >【分析】(1)直接利用顶点式求出二次函数解析式即可;(2)首先求出图象与x 轴交点,再利用抛物线图象得出当函数值y >0时,自变量x 的取值范围.【详解】(1)设抛物线的解析式为()214y a x =--把点()2,5-代入得 ()25214a =---∴1a =∴()214y x =--或223y x x =-- (2)(2)当y =0可得,0=(x −1)2−4,解得:1x =3,2x =−1,故抛物线与x 轴的交点为:(−1,0),(3,0),如图所示:可得:当函数值y >0时,自变量x 的取值范围为:x <−1或x >3.【点睛】此题主要考查了利用顶点式求抛物线解析式以及抛物线与x 轴的交点,正确画出函数图象是解题关键.。

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( ) A .m ,n ,p 均不为0 B .m ≠0,且n ≠0 C .m ≠0 D .m ≠0,或p ≠02.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )二、填空题(每小题4分,共8分)3.若y =x m -1+2x 是二次函数,则m =________. 4.二次函数y =(k +1)x 2的图象如图J22-1-1,则k 的取值范围为________.图J22-1-1三、解答题(共11分) 5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y =2x 2和y =-12x 2的图象,并根据图象回答下列问题(设小方格的边长为1):图J22-1-2(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点;(3)函数y =-12x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有最______值是______.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下列抛物线的顶点坐标为(0,1)的是( ) A .y =x 2+1 B .y =x 2-1 C .y =(x +1)2 D .y =(x -1)22.二次函数y =-x 2+2x 的图象可能是( )二、填空题(每小题4分,共8分)3.抛物线y =x 2+14的开口向________,对称轴是________.4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________. 三、解答题(共11分)5.已知二次函数y =-12x 2+x +4.(1)确定抛物线的开口方向、顶点坐标和对称轴; (2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( ) A .y =2x 2+x +2 B .y =x 2+3x +2 C .y =x 2-2x +3 D .y =x 2-3x +22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )A .y =-(x -2)2-1B .y =-12(x -2)2-1C .y =(x -2)2-1D .y =12(x -2)2-1二、填空题(每小题4分,共8分) 3.如图J22-1-3,函数y =-(x -h )2+k 的图象,则其解析式为____________.图J22-1-34.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是________.三、解答题(共11分)5.已知当x =1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下表是二次函数y =ax 2+bx +c 的自变量x 的值与函数y 的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解的范围是( )x 6.17 6.18 6.19 6.20y =ax 2+bx +c-0.03-0.010.020.04A.6<x <6.17 B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.202.二次函数y =2x 2+3x -9的图象与x 轴交点的横坐标是( ) A.32和3 B.32和-3 C .-32和2 D .-32和-2二、填空题(每小题4分,共8分)3.已知抛物线y =x 2-x -1与x 轴的交点为(m,0),则代数式m 2-m +2 011的值为__________.4.如图J22-2-1是抛物线y =ax 2+bx +c 的图象,则由图象可知,不等式ax 2+bx +c <0的解集是________.图J22-2-1三、解答题(共11分) 5.如图J22-2-2,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的关系式;(2)求不等式x 2+bx +c >x +m 的解集(直接写出答案).图J22-2-2时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.在半径为4 cm 的圆中,挖去一个半径为x cm 的圆,剩下一个圆环的面积为y cm 2,则y 与x 的函数关系为( )A .y =πx 2-4B .y =π(2-x )2C .y =-(x 2+4)D .y =-πx 2+16π2.已知某种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 二、填空题(每小题4分,共8分) 3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元,一天出售该种手工艺品的总利润y 最大.4.如图J22-3-1,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距地面4 m 的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高度为(精确到0.1 m ,水泥建筑物厚度忽略不计)________.图J22-3-1三、解答题(共11分)5.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分,如图J22-3-2.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.图J22-3-2基础知识反馈卡·22.1.11.C 2.D 3.3 4.k >-1 5.解:图略.(1)函数y =2x 2的图象开口向上,对称轴为y 轴,顶点坐标为(0,0).函数y =-12x 2的图象开口向下,对称轴为y 轴,顶点坐标为(0,0).(2)≠0 低(3)≤ =0 大 0 基础知识反馈卡·22.1.2 1.A 2.B3.上 y 轴 4.y =2⎝⎛⎭⎪⎫x +322-32 5.解:(1)将二次函数y =-12x 2+x +4配方,得y =-12(x -1)2+92.所以抛物线的开口向下,顶点坐标为⎝ ⎛⎭⎪⎫1,92,对称轴为x =1. (2)当x >1时,y 随x 的增大而减小;当x <1时,y 随x 的增大而增大.基础知识反馈卡·*22.1.31.D2.C3.y =-(x +1)2+54.-35.解:由题意可设函数关系式为y =a (x -1)2+5,∵图象过点(0,-3),∴a (0-1)2+5=-3,解得a =-8.∴y =-8(x -1)2+5,即y =-8x 2+16x -3.基础知识反馈卡·22.21.C 2.B 3.2 012 4.-2<x <35.解:(1)∵直线y =x +m 经过点A (1,0),∴0=1+m .∴m =-1. 即m 的值为-1.∵抛物线y =x 2+bx +c 经过点A (1,0),B (3,2), ∴⎩⎪⎨⎪⎧ 0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2. ∴二次函数的关系式为y =x 2-3x +2. (2){x |x <1或x >3}. 基础知识反馈卡·22.3 1.D 2.B 3.4 4.9.1 m5.解:(1)y =-35x 2+3x +1=-35⎝ ⎛⎭⎪⎫x -522+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC .∴这次表演成功.基础知识反馈卡·23.1 1.D 2.A3.∠D∠E DE DC 4.C顺时针90 5.解:(1)旋转中心是点B.(2)旋转了90度.(3)AC与EF垂直且相等.。

人教版九年级数学第二十二章二次函数试卷(含答案)

人教版九年级数学第二十二章二次函数试卷(含答案)

初中数学人教版九年级二次函数一、单选题1.将抛物线y =x 2+1向左平移3个单位长度得到抛物线( )A .y =(x +3)2+1B .y =(x ―3)2+1C .y =x 2+4D .y =x 2―22.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是( )A .有最大值 1.5,有最小值﹣2.5B .有最大值 2,有最小值 1.5C .有最大值 2,有最小值﹣2.5D .有最大值 2,无最小值3.对于任何实数ℎ,抛物线y =―x 2与抛物线y =―(x ―ℎ)2的相同点是( )A .形状与开口方向相同B .对称轴相同C .顶点相同D .都有最低点4.直线y =32x ―1 与抛物线 y =x 2―12x 的交点个数是( ) A .0个B .1个C .2个D .1个或2个5.山东全省2016年国庆假期旅游人数增长12.5%,其中尤其是乡村旅游最为火爆.泰山脚下的某旅游村,为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出,若每张床位每天收费提高20元,则相应的减少了10张床位租出,如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )A .140元B .150元C .160元D .180元6.已知抛物线C :y =x 2―4mx +m ―3,其顶点为D ,若点D 到x 轴的距离为3,则m 的值为( )A .0或14B .34C .―12D .12或―347.当 0≤x ≤m 时,函数 y =―x 2+4x ―3 的最小值为 ―3 ,最大值为1,则m 的取值范围是( )A .0≤m ≤2B .0≤m <4C .2≤m ≤4D .m ≥28.已知P1(x1,y1),P2(x2,y2)是抛物线y=a x2―2ax上的点,下列命题正确的是( )A.若|x1―1|>|x2―1|,则y1>y2B.若|x1―1|>|x2―1|,则y1<y2C.若|x1―1|=|x2―1|,则y1=y2D.若y1=y2,则x1=x29.在同一直角坐标系中,一次函数y=ax-b和二次函数y=ax2-b的图象大致为( ) A.B.C.D.10.如图,抛物线y=a x2+bx+c(a,b,c是常数,a≠0)的顶点在第四象限,对称轴是x=3,过一、二、四象限的直线y=kx―4k(k是常数)与抛物线交于x轴上一点,则下列结论正确的有( )个.①bk>0,②4b+3c=0,③4a+2b+c+2k<0,④当抛物线与直线的另一个交点也在坐标轴上时,则k=―2a,⑤m为任意实数,则有m(am+b)+c+a≥0.A.2B.3C.4D.5二、填空题11.如图,在平面直角坐标系中,二次函数y=x2-2x+c的图象经过点(0,2),则此二次函数顶点坐标为 .12.已知二次函数y=3(x﹣1)2+k的图象上三点A(2,y1),B(3,y2),C(﹣4,y3),则y1、y2、y3的大小关系是 .13.已知二次函数 y =x 2―2ax +a 2―3a +6 的图象与x 轴没有公共点,且当 x <―1 时,y 随x 的增大而减小,则实数a 的取值范围是 .14.规定:如果两个函数的图象关于y 轴对称,那么称这两个函数互为“Y 函数”.例如:函数y =x +3与y =―x +3互为“Y 函数”.若函数y =k 4x 2+(k ―1)x +k ―3的图象与x 轴只有一个交点,则它的“Y 函数”图象与x 轴的交点坐标为 .15.如图是抛物线y 1=a x 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标为A (1,―3),与x 轴的一个交点为B (4,0),点A 和点B 均在直线y 2=mx +n (m ≠0)上.①2a +b =0;②abc <0;③抛物线与x 轴的另一个交点为(―4,0);④方程a x 2+bx +c =―3有两个不相等的实数根;⑤不等式mx +n >a x 2+bx +c 的解集为1<x <4.上述五个结论中,其中正确的结论是 (填写序号即可).16.数y=ax 2+bx+c (a <0)图象与x 轴的交点A .B 的横坐标分别为﹣3,1,与y 轴交于点C ,下面四个结论:①16a ﹣4b+c <0;②若P (﹣5,y 1),Q ( 52,y 2)是函数图象上的两点,则y 1>y 2;③a=﹣ 13 c ;④若△ABC 是等腰三角形,则b=﹣ 273.其中正确的有 (请将结论正确的序号全部填上)三、解答题17.在平面直角坐标系xOy 中,点(4,3)在抛物线y =a x 2+bx +3(a >0)上.(1)求该抛物线的对称轴;(2)已知m >0,当2―m ≤x ≤2+2m ,y 的取值范围是―1≤y ≤3,求a ,m 的值.18.某单位为了创建城市文明单位,准备在单位的墙(线段MN 所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大,最大值是多少?19.如图所示,已知等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为20cm,AC与MN在同一条直线上.开始时点A与点N重合,正方形MNPQ不动,△ABC以2cm/s的速度向左运动,最终点A与点M重合.(1)求重叠部分的面积y(c m2)关于时间t(s)的函数表达式和自变量的取值范围.(2)分别求当t=1,2时,重叠部分的面积..20.如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A在y轴上),运动员乙在距O点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.解答下列问题:(注意:取43=7,26=5)(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)求足球第二次飞出到落地时,该抛物线的表达式;(3)运动员乙要抢到第二个落点D,他应再向前跑多少m?21.已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)在直线BC上方抛物线上取一点P,过点P作PQ⊥x轴交BC边于点Q,求PQ的最大值;(3)在直线BC上方抛物线上取一点D,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.22.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y的取值范围是m≤y≤n,且满足n―m=t(b―a)则称此函数为“t系郡园函数”(1)已知正比例函数y=ax(1≤x≤4)为“1系郡园函数”,则a的值为多少?(2)已知二次函数y=―x2+2ax+a2,当1≤x≤3时,y是“t系郡园函数”,求t的取值范围;(3)已知一次函数y=kx+1(a≤x≤b且k>0)为“2系郡园函数”,P(x,y)是函数y=kx+1上的一点,若不论m取何值二次函数y=mx2+(m―2)x―2m+1的图象都不经过点P,求满足要求的点P的坐标.答案解析部分1.【答案】A2.【答案】C3.【答案】A4.【答案】B5.【答案】C6.【答案】A7.【答案】C8.【答案】C9.【答案】D10.【答案】D11.【答案】(1,1)12.【答案】y 1<y 2<y 313.【答案】-1≤a <214.【答案】(3,0)或(4,0)15.【答案】①⑤16.【答案】①③17.【答案】(1)直线x =2(2)a =1,m =118.【答案】长方形的长为25米,宽为252米时,长方形的面积最大,最大是6252平方米19.【答案】(1)解:∵△ABC 以每秒2cm 的速度向左运动,∴t 秒后AN=2t ,AM=20-2t ,∵∠AMH=90°,∠BAC=45°,∴AM=HM=20-2t ,∴重叠部分的面积为y=S △AMH =12(20―2t )2=2t 2―40t +200,自变量的取值范围是0⩽t⩽10;(2)解:当t=1时,重叠部分的面积y =2×12―40×1+200=2―40+200=162(c m 2); 当t=2时,重叠部分的面积y =2×22―40×2+200=8―80+200=128(c m 2)20.【答案】(1)解:设y =a (x ―6)2+4,则1=a (0―6)2+4,∴a =―112y =―112(x ―6)2+4(2)解:当y=0时,0=―112(x ―6)2+4,解得:x =43+6=13,x =―43+6<0(不合题意,舍去),∴C (13,0)设第二次落地的抛物线为y =―112(x ―k )2+2,则当x=13时,y=0,则0=―112(13―k )2+2,解得:k =13+26=18,k =13―26<13(不合题意,舍去),∴y =―112(x ―18)2+2(3)解:当y=0,即0=―112(x ―18)2+2解得:x =18+26=23,x =18―26=13(不合题意,舍去),∴BD=23-6=17(m )答:运动员乙要抢到第二个落点D ,他应再向前跑17m.21.【答案】(1)解:将A (﹣1,0)、B (3,0)代入解析式得{a ―b +3=09a +3b +3=0,解得{a =―1b =2抛物线的解析式为:y =﹣x 2+2x+3;(2)解:∵抛物线的解析式为:y =﹣x 2+2x+3;∴C (0,3)又∵B(3,0)∴y BC =-x+3∵PQ ⊥x 轴设Q(t ,-t+3),则P(t ,-t 2+2t+3)∵P 在直线BC 上方抛物线上∴0<t<3,且PQ=(-t 2+2t+3)-(-t+3),∴PQ=-t 2+3t=-(t-32)2+94∴当t=32时,PQ 的最大值是94(3)解:如图作AM ⊥CF ,DN ⊥CF ,DE//BC 交y 轴于点E ,CG ⊥DE∵S △COF :S △CDF =3:2则公共底边CF 上的高线长之比AM :DN=3:2∵C (0,3)、B (3,0)∴CB=32∴ΔABC 是等腰直角三角形,且AM=12CB =322∴DN=2=CG∵∠CEG=∠OCB=45°∴ΔCEG 是等腰直角三角形∴CE=2CG=2∴E(0,5)∴y DE =-x+5令-x+5=﹣x 2+2x+3解得:x 1=1,x 2=2点D 的坐标为(1,4)或(2,3)22.【答案】(1)解:当a >0时,y 随x 的增大而增大∵1≤x ≤4∴当x=1时,y 最小值为a∴当x=4时,y 最小值为4a∴a≤y≤4a∴4a ―a =1×(4―1)∴a =1.当a <0时同理:a ―4a =1×(4―1)∴a =―1∴a的值是±1.(2)解:当x=1时,y=a2+2a―1当x=3时,y=a2+6a―9当x=a时,y=2a2∵x=―2a2×(―1)=a,开口方向向下当a≥3时,n=a2+6a―9,m=a2+2a―1∴2t=n―m=4a―8∴t=2a―4∴2a=t+4∵a≥3∴t+4≥6∴t≥2当{1∠a∠33―a≤a―1时解得:2≤a<3∴n=2a2,m=a2+2a―1∴2t=n―m=a2―2a+1∴t=12(a―1)2∵2≤a<3∴1≤a-1<2∴12≤12(a―1)2<2∴12≤t<2当时{1∠a∠33―a>a―1解得:1<a<2∴n=2a2,m=a2+6a―9∴2t=n―m=a2―6a+9∴t=12(a―3)2∵1<a<2∴-2<a-3<-1∴1<(a―3)2<4∴1 2<12(a―3)2<2∴12<t<2当a≤1时,n=a2+2a―1,m=a2+6a―9,∴2t=n―m=―4a+8∴t=―2a+4∴2a=4―t≤2∴t≥2.综上所述,t的取值范围为t≥12.(3)解:当k>0时,y随x的增大而增大∵a≤x≤b当x=a时,m=ka+1当x=b时,n=kb+1∴(kb+1)―(ka+1)=2(b―a)解得k=2∴y=2x+1∵y=mx 2+(m―2)x―2m+1∴y=m(x2+x―2)―2x+1.令x2+x―2=0,解得x1=1,x2=―2当x=1时,y=-1当x=-2时,y=5∴抛物线过定点(1,-1)(-2,5)把x=1时,代入y=2x+1中得:y=3把x=―2,代入y=2x+1中得:y=-3∴P为(1,3),或(―2,―3)设过点(1,―1),(―2,5)的直线为y=k1x+b1把点(1,―1),(―2,5)分别代入得{―1=k1+b15=―2k1+b1解出{k1=―2b1=1∴y=-2x+1联立:{y=―2x+1,y=2x+1解得{x=0,y=1,两直线相交于(0,1)所以抛物线也不能过点(0,1),∴点P过点(1,3),(―2,―3),(0,1).(1,3),(―2,―3),(0,1)11 / 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【详解】 ①由 x=2 时,y=4a+2b+c,由图象知:y=4a+2b+c<0,故正确; ②方程 ax2+bx+c=0 两根分别为 1,3,都大于 0,故正确; ③当 x<2 时,由图象知:y 随 x 的增大而减小,故错误;
④由图象开口向上,a>0,与 y 轴交于正半轴,c>0,x=﹣ =1>0,∴b<0,
∴bc<0,∴一次函数 y=x+bc 的图象一定过第一、三、四象限,故正确; 故正确的共有 3 个, 故选:C. 【点睛】 此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.
8.二次函数 y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c=
2;③a 1 ;④b>1,其中正确的结论个数是( ) 2
A.②④
B.①③④
C.①②④
D.②③④
【答案】C
【解析】
【分析】
利用抛物线开口方向得到 a 0 ,利用对称轴在 y 轴的右侧得到 b 0 ,利用抛物线与 y 轴
的交点在 x 轴下方得到 c 0 ,则可对 A 进行判断;利用当 x 1 时, y 0 可对 B 进行判
断;利用抛物线的对称性得到抛物线的对称轴为直线 x b 1,则可对 C 进行判断; 2a
4a
4a
即说法③错误
m0
4 m 4

y1
y2 总成立得,其对称轴
x
1 4a
1
4
解得 a 1 ,则说法④正确 12
综上,说法正确的个数是 2 个
故选:B.
【点睛】
本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质
是解题关键.
5.如图,二次函数 y=ax2+bx+c 的图象过点(-1,0)和点(3,0),有下列说法:①bc<0; ②a+b+c>0;③2a+b=0;④4ac>b2.其中错误的是( )
D.当﹣1<m<n<0 时,m+n< 2 a
【答案】C 【解析】 【分析】 根据二次函数的图象和性质对各项进行判断即可. 【详解】 解:∵函数经过点 M(﹣1,2)和点 N(1,﹣2), ∴a﹣b+c=2,a+b+c=﹣2, ∴a+c=0,b=﹣2, ∴A 正确; ∵c=﹣a,b=﹣2, ∴y=ax2﹣2x﹣a, ∴△=4+4a2>0, ∴无论 a 为何值,函数图象与 x 轴必有两个交点,
A.1 个
B.2 个
C.3 个
D.4 个
【答案】C
【解析】
【分析】
根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.
【详解】
由图象可得,
a>0,b>0,c<0,
∴abc<0,故①错误,
当 x=1 时,y=a+b+c=2,故②正确,
当 x=﹣1 时,y=a﹣b+c<0,
由 a+b+c=2 得,a+c=2﹣b,
7.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c<0; (2)方程 ax2+bx+c=0 两根都大于零;(3)y 随 x 的增大而增大;(4)一次函数 y=x+bc 的图象一定不过第二象限.其中正确的个数是( )
A.1 个
B.2 个
C.3 个
D.4 个
人教版初中数学二次函数经典测试题
一、选择题
1.已知二次函数 y=ax2+bx+c(a>0)经过点 M(﹣1,2)和点 N(1,﹣2),则下列说法错误的 是( ) A.a+c=0 B.无论 a 取何值,此二次函数图象与 x 轴必有两个交点,且函数图象截 x 轴所得的线段长 度必大于 2
C.当函数在 x< 1 时,y 随 x 的增大而减小 10
【答案】C
【解析】
【分Байду номын сангаас】
由图可知,x=2 时函数值小于 0,故(1)正确,函数与 x 轴的交点为 x=1.x=3,都大于 0,
故(2)正确 ,由图像知(3)错误,由图象开口向上,a>0,与 y 轴交于正半轴,c>0,
对称轴 x=﹣ =1,故 b<0,bc<0,即可判断一次函数 y=x+bc 的图象.
∵x1+x2= 2 ,x1x2=﹣1, a
∴|x1﹣x2|=2
1 1 >2, a2
∴B 正确;
二次函数 y=ax2+bx+c(a>0)的对称轴 x=﹣ b = 1 , 2a a
当 a>0 时,不能判定 x< 1 时,y 随 x 的增大而减小; 10
∴C 错误;
∵﹣1<m<n<0,a>0,
∴m+n<0, 2 >0, a
根据抛物线与 x 轴的交点个数对 D 进行判断.
【详解】 解: 抛物线开口向上,
a 0, 对称轴在 y 轴的右侧,
a 和 b 异号, b 0 ,
抛物线与 y 轴的交点在 x 轴下方, c 0,
bc 0 ,所以①错误;
当 x 1时, y 0 , a b c 0 ,所以②错误;
抛物线经过点 (1, 0) 和点 (3, 0) , 抛物线的对称轴为直线 x 1 , 即 b 1,
0(t 为实数)在﹣2<x<3 的范围内有实数根,则 t 的取值范围是( )
A. 12<t≤3
B. 12<t<4
C. 12<t≤4
D. 12<t<3
【答案】C
【解析】
【分析】
根据给出的对称轴求出函数解析式为 y=-x2−2x+3,将一元二次方程-x2+bx+3−t=0 的
实数根看做是 y=-x2−2x+3 与函数 y=t 的交点,再由﹣2<x<3 确定 y 的取值范围即可
则说法①正确
此二次函数的对称轴为
x
1 2
2a
1
1
2a
4a
a0
1 11 4a
x0 1 ,则说法②错误
由二次函数的性质可知,抛物线的开口向下,当 x 1 1时,y 随 x 的增大而增大;当 4a
x 1 1时,y 随 x 的增大而减小 4a
因 1 11 0 4a
则当 0 x 1 1时,y 随 x 的增大而增大;当 x 1 1时,y 随 x 的增大而减小
C.﹣2<P<0
D.﹣1<P<0
【答案】A
【解析】
【分析】
【详解】
解:∵二次函数的图象开口向上,∴a>0.
∵对称轴在 y 轴的左边,∴ b <0.∴b>0. 2a
∵图象与 y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0.
∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.
经过点 C 0,3 和 D3,0 ,若线段 AB 以每秒 2 个单位长度的速度向下平移,设平移的时
间为 t (秒).若抛物线与线段 AB 有公共点,则 t 的取值范围是( )
A. 0 t 10
【答案】B
B. 2 t 10
C. 2 t 8
D. 2 t 10
【解析】
【分析】
直接利用待定系数法求出二次函数,得出 B 点坐标,分别得出当抛物线 l 经过点 B 时,当
2a 2a b 0 ,所以③正确;
抛物线与 x 轴有 2 个交点, △ b2 4ac 0 , 即 4ac b2 ,所以④错误.
综上所述:③正确;①②④错误.
故选: C .
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数 y ax2 bx c(a 0) ,二次项系 数 a 决定抛物线的开口方向和大小;一次项系数 b 和二次项系数 a 共同决定对称轴的位置 (左同右异).常数项 c 决定抛物线与 y 轴交点 (0,c) .抛物线与 x 轴交点个数由△决定.
4.对于二次函数
y
ax2
1 2
2a
x
a
0
,下列说法正确的个数是(

①对于任何满足条件的 a ,该二次函数的图象都经过点 2,1 和 0, 0 两点;
②若该函数图象的对称轴为直线 x x0 ,则必有 0 x0 1; ③当 x 0 时, y 随 x 的增大而增大;
④若 P 4, y1 , Q4 m, y2 m 0 是函数图象上的两点,如果 y1 y2 总成立,则
把 x=﹣1 代入得:y=a﹣(2﹣a)﹣2=2a﹣4,
∵b>0,∴b=2﹣a>0.∴a<2.
∵a>0,∴0<a<2.∴0<2a<4.∴﹣4<2a﹣4<0,即﹣4<P<0.
故选 A.
【点睛】
本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.
3.抛物线 y= x2+bx+3 的对称轴为直线 x= 1.若关于 x 的一元二次方程 x2+bx+3﹣t=
可. 【详解】 由图象可知,a<0,c=1,
对称轴:x= b 1, 2a
∴b=2a, ①由图可知:当 x=1 时,y<0,∴a+b+c<0,正确; ②由图可知:当 x=−1 时,y>1,∴a−b+c>1,正确; ③abc=2a2>0,正确; ④由图可知:当 x=−3 时,y<0,∴9a−3b+c<0,正确; ⑤c−a=1−a>1,正确; ∴①②③④⑤正确. 故选:D. 【点睛】 本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.
抛物线 l 经过点 A 时,求出 y 的值,进而得出 t 的取值范围;
【详解】
解:(1)把点 C(0,3)和 D(3,0)的坐标代入 y=-x2+mx+n 中,
n 3 得, 32 3m n 0
相关文档
最新文档