函数方程的几种解法 (1)
对数函数方程---解法练习(4个常见方法)及例题

对数函数方程---解法练习(4个常见方法)及例题1. 概述对数函数方程是数学中常见的一类方程,在解决实际问题时经常会遇到。
本文将介绍四种常见的解法方法,并结合例题进行练,帮助读者更好地掌握如何解决对数函数方程。
2. 解法方法2.1. 变底法变底法是解决对数函数方程的一种常见方法。
通过将底数变换成相同的底数,将方程转化成一个简单的等式,从而求解。
具体步骤如下:步骤 1: 确定底数,使得方程两边的底数一致。
步骤 2: 将方程转化成一个等式。
步骤 3: 解方程。
步骤 4: 检验解是否符合原方程。
2.2. 换元法换元法是另一种解决对数函数方程的常见方法。
通过引入一个新的变量,将方程转化成一个简单的等式,从而求解。
具体步骤如下:步骤 1: 选择适当的变量进行代换。
步骤 2: 转化方程为一个等式。
步骤 3: 解方程。
步骤 4: 还原变量,得出最终解。
步骤 5: 检验解是否符合原方程。
2.3. 消元法消元法是解决对数函数方程的一种常用方法。
通过对方程进行合并、整理、消去一些变量,将方程转化成一个简单的等式,从而求解。
具体步骤如下:步骤 1: 合并同类项。
步骤 2: 整理方程,将对数函数移到一边。
步骤 3: 消去变量。
步骤 4: 解方程。
步骤 5: 检验解是否符合原方程。
2.4. 图像法图像法是解决对数函数方程的一种直观方法。
通过绘制对数函数的图像,并分析函数图像与方程的交点,求解方程。
具体步骤如下:步骤 1: 绘制对数函数的图像。
步骤 2: 分析图像与方程的交点。
步骤 3: 求解方程。
步骤 4: 检验解是否符合原方程。
3. 例题练例题 1: 解方程 $3\log_2(x-1)+\log_2(x+1)=2$。
> 解答:解答:> 使用变底法:> 步骤 1: 将底数变为2,得到 $2^{3\log_2(x-1)}\cdot2^{\log_2(x+1)}=2^2$。
> 步骤 2: 运用指数与对数的相互关系,得到 $(x-1)^3\cdot(x+1)=4$。
常微分方程的解法总结总结

常微分方程的解法总结前言常微分方程(Ordinary Differential Equation,ODE)是研究一阶或高阶导数与未知函数之间关系的数学方程。
在物理学、工程学和计算机科学等领域,常微分方程扮演着重要的角色。
解决常微分方程是这些领域中许多问题的关键。
本文将总结常用的常微分方程解法方法,帮助读者加深对常微分方程的理解并提供解决问题的思路。
一、可分离变量法可分离变量法是一种常见且简单的求解常微分方程的方法。
它适用于形如dy/dx = f(x)g(y)的一阶常微分方程。
解题思路:1.将方程写成dy/g(y) = f(x)dx的形式,将变量进行分离。
2.两边同时积分得到∫(1/g(y))dy = ∫f(x)dx。
3.求出积分后的表达式,并整理得到解 y 的表达式。
使用这种方法解决常微分方程的步骤相对简单,但要注意确认分母不为零以及选取合适的积分常数。
二、特殊方程类型的求解除了可分离变量法,常微分方程还存在一些特殊的方程类型,它们可以通过特定的方法进行解决。
1. 齐次方程齐次方程是指形如dy/dx = F(y/x)的方程。
其中,F(t) 是一个只有一个变量的函数。
解题思路:1.令 v = y/x,即 y = vx。
将方程转化为dy/dx = F(v)。
2.对于dv/dx = F(v)/x这个方程,可以使用分离变量法进行求解。
3.求出 v(x) 后,将其代入 y = vx 得到完整的解。
2. 齐次线性方程齐次线性方程是指形如dy/dx + P(x)y = 0的方程。
解题思路:1.使用积分因子法求解,将方程乘以一个积分因子,使得左边变成一个可积的形式。
2.求积分因子的方法是根据公式μ = e^(∫P(x)dx),其中 P(x) 是已知的函数。
3.通过乘积的方式求解完整的方程。
3. 一阶线性常微分方程一阶线性常微分方程是指形如dy/dx + P(x)y = Q(x)的方程。
解题思路:1.使用积分因子法,将方程乘以一个积分因子,使得左边变成一个可积的形式。
函数方程的几种解法

解函数方程的几种方法李素真摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。
关键词:函数方程;换元法;待定系数法;解方程组法;参数法含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。
函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。
1.换元法换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。
例1 已知x x f x sin )2(+=,求)(x f 。
解:令u x =2 )(0>u ,则u x log 2=,于是可得,)log sin()log ()(222u u u f +=)(0>u ,以x 代替u ,得)log sin(log 2)(22u x x f += )0(>x 。
例2 已知xxx x f 212ln )1(+=+ )0(>x ,求)(x f 。
解:令t x x =+1,则11-=t x )1(>t ,于是12ln 1121112ln )(+=-+-=t t t t f , 即12ln )(+=x x f 。
例3 已知x x f 2cos )cos 1(=+,求)(x f 。
解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2--=x t f ]2,0[∈x 。
2.待定系数法待定系数法适用于所求函数是多项式的情形。
当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。
一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。
例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。
解函数方程的几种方法

在推导过程中,主要利用不等式 , 的等式成立的充要条件 .
例2.8设 的定义域为(0,1),且
, , , .(1)
若 , , 且 ,求 .
分析 本题给出了函数 的一系列成立的条件,只要依据条件进行思考就很容易解决了.首先我们知道函数 有一个特殊值 ,而函数方程(1)中有 两个未知量,故而解决问题时考虑到消元,并尽量结合 的值来使问题简化.
例2.1已知 ,求 .
分析 此题是一个最基本的函数方程问题,要求解函数 的表达式,就需要将 和 进行转化.当然,我们可以先用换元法把 , 用 代替,消去 , ,就得到一个关于 的解析式,再用 替代 ,于是得解.但这里我们还给出了另外的解法,就是用 的参数表达式进行求解.
解法一 令 ,所以
,
因为
,
所以
,
即
.
又因为
,
所以
, ,
故
, .
解法二 设所求函数 的参数表达式
,
,
即得
,(1)
.(2)
,消去参数 ,得
,
整理,得
, , ,
即
, , .
在本题中,由于三角函数可以相互转化,很容易看出 与 之间的联系,然后直接利用换元法进行转化,但考虑到 (或 )的定义域,这个环节一般容易出错.故一般采用后面介绍的参数法相对来说也就简单多了.
2.2赋值法
赋值和代换是确定适合函数方程的函数性质的基本方法,根据所给条件,在函数定义域内赋与变量一个或几个特殊值,使方程化繁为简,从而使问题获解.
例2.2.1函数 ( 为非负整数),满足:
(i)对任意非负整数 ,有 ;
(ii)对任意 ,有 .
求 的值.
分析 本题欲求 的值,则须了解 有什么性质.由条件(i)、(ii)可以联想到 的取值是本题的关键,而分别利用条件(i)、(ii)进行推导,并结合反证法推出矛盾,得到 的唯一值,进而得解.
微分方程几种求解方法

微分方程几种求解方法微分方程是数学中重要的概念之一,用于描述变量之间的函数关系。
求解微分方程是数学和工程中的常见问题。
根据问题的性质和条件,有多种方法可以用来求解微分方程,下面将介绍几种常见的求解方法。
1.变量分离法:变量分离法是求解一阶常微分方程的常用方法。
它的基本思想是将微分方程中的变量分离,然后进行积分。
具体步骤是将微分方程写成形式dy/dx=f(x)g(y),然后将方程变换为g(y)dy=f(x)dx,再两边同时积分,即可得到方程的解。
这种方法适用于一阶常微分方程,如y'=f(x)。
2.齐次方程方法:齐次方程是指微分方程中不包含任意常数项的方程。
对于齐次方程可以使用变量代换法进行求解。
具体的步骤是将微分方程中y的函数形式换成u,然后进行代换,将微分方程变为可分离变量的形式。
然后用变量分离法来求解,最后再进行反代还原,得到原方程的解。
这种方法适用于一阶齐次常微分方程,如dy/dx=f(y/x)。
3.线性方程方法:线性微分方程是指微分方程中只有一阶导数,并且函数关系是线性的。
线性方程可以使用常数变易法或者待定系数法来进行求解。
常数变易法的基本思想是假设方程的解具有特定的形式,然后将其带入方程,通过确定待定的常数来求解。
待定系数法的基本思想是假设方程的解是一组形式已知的函数的线性组合,然后通过确定待定系数来求解。
这些方法适用于一阶线性常微分方程,如dy/dx+a(x)y=b(x)。
4.积分因子法:积分因子法是一种用于求解一阶非齐次线性常微分方程的方法。
它的基本思想是通过引入一个合适的因子,将一阶非齐次线性微分方程转化为恰当微分方程,从而利用变量分离法来求解。
具体步骤是先将非齐次方程写成标准形式dy/dx+p(x)y=q(x),然后通过选择合适的积分因子μ(x)来将方程转为恰当微分方程(即满足(dμ(x)/dx)y+p(x)μ(x)=q(x)),再对该恰当微分方程进行积分,即可得到原方程的解。
微分方程解法

微分方程解法微分方程是数学中非常重要的一种方程,它描述了变量之间的变化率关系。
解微分方程是找到满足给定条件的函数,使得该函数满足微分方程。
本文将探讨微分方程的解法,并介绍一些常用的解法方法。
一、常微分方程的解法常微分方程是只含有一个未知函数的微分方程。
常微分方程的解法方法主要有以下几种:1. 可分离变量法对于形如dy/dx=f(x)g(y)的方程,如果能将其分离成f(x)dx=g(y)dy 的形式,那么可以通过分别对方程两边进行积分来求得解。
这种方法适用于大部分可分离变量的微分方程。
2. 齐次方程法对于形如dy/dx=F(y/x)的方程,如果能将其转化为F(z)=z的形式,其中z=y/x,那么可以通过引入新变量z来简化微分方程的求解。
这种方法适用于一类具有齐次性质的微分方程。
3. 线性微分方程法对于形如dy/dx+p(x)y=q(x)的方程,如果p(x)和q(x)都是已知函数,那么可以通过求解一阶线性常系数齐次微分方程的解,再利用特解和齐次解的线性组合求得原方程的解。
线性微分方程是常微分方程中最常见的一类方程。
对于形如dy/dx=F(ax+by+c)的方程,如果通过适当的变量替换,将方程化为直线的斜率不变的形式,那么可以通过直线积分求解。
这种方法适用于一类具有特殊形式的微分方程,在求解过程中可通过合适的变换将其转化为更简单的方程。
5. 特殊类型方程法除了上述常见的解法方法外,还有一些特殊类型的微分方程有自己独特的解法。
例如,一阶线性微分方程、二阶常系数线性齐次微分方程、二阶线性方程等都有一些特殊性质和求解方法。
二、偏微分方程的解法偏微分方程是含有多个未知函数及其偏导数的方程。
相对于常微分方程,偏微分方程的求解更加复杂,常用的解法方法有以下几种:1. 分离变量法对于形如u_t=F(x)G(t)的方程,如果能将其分离为F(x)/G(t)=h(u)=h(x)+k(t)的形式,那么可以通过分别对方程两边进行积分来求得解。
常微分方程的数值解法

常微分方程的数值解法1. 引言常微分方程是自变量只有一个的微分方程,广泛应用于自然科学、工程技术和社会科学等领域。
由于常微分方程的解析解不易得到或难以求得,数值解法成为解决常微分方程问题的重要手段之一。
本文将介绍几种常用的常微分方程的数值解法。
2. 欧拉方法欧拉方法是最简单的一种数值解法,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上假设解函数为线性函数,即通过给定的初始条件在每个子区间上构造切线;- 使用切线的斜率(即导数)逼近每个子区间上的解函数,并将其作为下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。
3. 改进的欧拉方法改进的欧拉方法是对欧拉方法的一种改进,主要思想是利用两个切线的斜率的平均值来逼近每个子区间上的解函数。
具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上构造两个切线,分别通过给定的初始条件和通过欧拉方法得到的下一个初始条件;- 取两个切线的斜率的平均值,将其作为该子区间上解函数的斜率,并计算下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。
4. 二阶龙格-库塔方法二阶龙格-库塔方法是一种更为精确的数值解法,其基本思想是通过近似计算解函数在每个子区间上的平均斜率。
具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上计算解函数的斜率,并以该斜率的平均值近似表示该子区间上解函数的斜率;- 利用该斜率近似值计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。
5. 龙格-库塔法(四阶)龙格-库塔法是目前常用的数值解法之一,其精度较高。
四阶龙格-库塔法是其中较为常用的一种,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上进行多次迭代计算,得到该子区间上解函数的近似值;- 利用近似值计算每个子区间上的斜率,并以其加权平均值逼近解函数的斜率;- 计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。
求解二次函数表达式四种形式(一般式、交点式、双根式、对称式)

求解二次函数表达式四种形式(一般式、交点式、双根式、对称式)一、一般式:y=ax2+bx+c(a、b、c为常数,且a≠0),适用于任给三点坐标求二次函数解析式问题.例1:若二次函数的图象经过点A(1,3)、B(2,-2)、C(-1,1),求二次函数的解析式.解:设二次函数的解析式为y=ax2+bx+c,列出三元方程组:3=a+b+c-2=4a+2b+C,1=a-b+c解得:a=-2b=1.c=4:.二次函数的解析式为y=-2x2+x+4.二、顶点式:y=a(x-h)2+k[二次函数的顶点为(h、k),a为常数,且a≠0],适用于给出顶点及另外一点坐标求二次函数解析式问题.例2:二次函数的顶点的坐标为(2,5),且过点(1,3),求二次函数的解析式.解:设二次函数的解析式为y=a(x-2)2+5,3=a(1-2)2+5,解得:a=-2.:.y=-2(x-2)2+5=-2x2+8x-3.:.二次函数的解析式为y=-2x2+8x-3三、双根式:y=a(x-x1)(x-x2)[二次函数过点A(x1,0),B(x2,0),a为常数,且a≠0】,适用于给出与x轴两交点及另外一点坐标求二次函数解析式问题.例3:抛物线与x轴交于A(-1,0)、B(3,0),且经过C(1,4),求抛物线的解析式.解:设抛物线的解析式为y=a(x+1)(x-3),4=a(1+1)(1-3),解得:a=-1:.二次函数的解析式为y=-x2+2x+3四、对称式:y=a(x-x1)(x-x2)[二次函数过点A(x1,0),B(x2,0),a为常数,且a≠0】,适用于给出纵坐标相同的两个点及另外一点坐标求二次函数解析式问题.例4:抛物线经过点A(0,3)、B(1,4)、C(2,3),求抛物线的解析式.解:设二次函数的解析式为y=a(x-2)(x-0)+3,4=a(1-2)(1-0)+3,解得:a=-1:.y=-(x-2)(x-0)+3=-x2+2x+3:.二次函数的解析式为y=-x2+2x+3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解函数方程的几种方法 李素真
摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。
关键词:函数方程;换元法;待定系数法;解方程组法;参数法
含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。
函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。
1.换元法
换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。
例1 已知x x f x sin )2(+=,求)(x f 。
解:令u x =2)(0>u ,则u x log 2=,于是可得,)log sin()log ()(222
u u u f += )(0>u ,以x 代替u ,得)log sin(log 2
)(22u x x f +=)0(>x 。
例2 已知x
x x x f 212ln )1(+=+)0(>x ,求)(x f 。
解:令t x x =+1,则11-=t x )1(>t ,于是12ln 112111
2
ln )(+=-+-=t t t t f , 即1
2ln )(+=x x f 。
例3 已知x x f 2cos )cos 1(=+,求)(x f 。
解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2
--=x t f ]2,0[∈x 。
2.待定系数法
待定系数法适用于所求函数是多项式的情形。
当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。
一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。
例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。
解:由于)1(+x f 与)1(-x f 不改变)(x f 的次数,而它们的和是2次的,所以)(x f 为二次函数,故可设c bx x a x f ++=2)(,从而有
由已知条件得 422)(22222+-=+++x x c a bx x a
根据两个多项式相等的条件得
22=a ,22-=b ,4)(2=+c a ,由此得1=a ,1-=b ,1=c ,故有1)(2+-=x x x f 。
例5 已知)(x f 是x 的二次函数,且x x x f f 242)]([-=,求)(x f 。
解:因为c 是x 的二次函数,故可设c bx x a x f ++=2)(,由此,c c bx x a b c bx x a a c x bf x f a x f f ++++++=++=)()()()()]([2222
将上式化简并代入x x x f f 242)]([-=,得x x c bc c a x b abc x ab c a b a x b a x a 2)()2()2(24222223243-=+++++++++
比较对应项的系数有
⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+-=++==0
0222021222223c bc c a b abc ab c a b a b a a ,解之得⎪⎩⎪⎨⎧-===101c b a ,故1)(2-=x x f 。
3.解方程组法
此方法是将函数方程的变量或关系式进行适当的变量代换,得到新的函数方程,然后与原方程联立,解方程组,即可求出所求的函数。
例6 设)(x f 是对0x =及1x =以外的一切实数有定义的实值函数,并且1()()1x f x f x x
-+=+,求()f x 。
解:以1x x -代换x , 得 1121()()1x x f f x x x
--+=-。
以11x -代换x , 得 12()()11x f f x x x
-+=--。
由 1()()1x f x f x x -+=+1121()()1x x f f x x x
--+=-12()()11x f f x x x -+=-- 消去1()x f x -,1()1f x
- 得 321(),(0,1)2(1)x x f x x x x --=≠-。
例7 解函数方程13()2()4f x f x x +=
解:函数方程中的未知函数()f x 和1()f x 不能用x 的同一个解析式表达出,若把它们看作是方程中的两个未知元,就必须设法消去一个才能解出另一个。
为此,分别以t 和1t 代替方程中的x ,相应地得到 13()2()4f t f t t
+= 和143()2()f f t t t
+=。
将该两式看作是关于未知元()f t 和1()f t 的二元一次方程组,即可求解。
得85()12f t t t
=-。
于是2128()5t f t t -=。
即2128()5x f x x -=为函数方程的解。
例8 ()f x 是定义在()0,+∞上的实值函数,且1()()lg 1f f x x x =+,求()f x 。
解:以
1x 代替x ,得1()()(lg )1f x f x x =-+ 消去1()f x ,得1lg (),(0)1lg x f x x x -=>+。
4.参数法
参数法是通过设参数、消参数得出函数的对应关系,从而求出)(x f 的表达式。
例9 已知2(1cos )sin f x x +=,求()f x 。
解:设所求函数()y f x =的参数表达式为 21cos sin x t
y t =+=,所以 2cos 1sin t x t y =-=。
联立方程组消去参数t ,得2(1)1x y -+=,所以[]21(1),0,2y x x =--∈。
即[]2()1(1),0,2f x x x =--∈。
例10 已知2(2cos )5sin f x x -=-,求()f x 。
解:设所求函数()y f x =的参数表达式为:
22cos 5sin x t y t =-=-,所以 2cos 2sin 5t x t y =-=-。
联立方程组消去参数t ,得248y x x =-+,即[]2()48,1,3f x x x x =-+∈。
参考文献:
【1】高夯,现代数学与中学数学(第二版)[M],北京:北京师范大学出版社,2010.
【2】姚开成,函数方程的几种解法[J],新疆石油教育学院学报,2000.
【3】聂锡军,函数方程的解法及应用[J],丹东师专学报,1997.
【4】胡皓,函数方程的一些解法[J],西昌师范高等专科学校学报,2002.
【5】刘维江,函数方程的解法及应用[J],安顺师专学报,2001.
【6】徐凤林,几类函数方程的解法[J],山东轻工业学院学报,2007.。