伯努利方程的应用实际液体流动 (1)

合集下载

伯努利方程原理以及在实际生活中的运用

伯努利方程原理以及在实际生活中的运用

xx方程原理以及在实际生活中的运用67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。

在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。

xx方程p+ρρv ²=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g 为重力加速度;c为常量。

它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。

伯努利方程的常量,对于不同的流管,其值不一定相同。

相关应用(1)等高流管中的流速与压强的关系根据xx方程在水平流管中有ρv ²=常量故流速v大的地方压强p就小,反之流速小的地方压强大。

在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。

下面就是一些实例伯努利方程揭示流体在重力场中流动时的能量守恒。

由伯努利方程可以看出,流速高处压力低,流速低处压力高。

三、伯努利方程的应用:1.飞机为什么能够飞上天?因为机翼受到向上的升力。

飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。

由伯努利方程可知,机翼上方的压强小,下方的压强大。

这样就产生了作用在机翼上的方向的升力。

2.喷雾器是利用流速大、压强小的原理制成的。

让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

3.汽油发动机的汽化器,与喷雾器的原理相同。

汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。

浅谈伯努利方程在流体力学中的应用

浅谈伯努利方程在流体力学中的应用

浅谈伯努利方程在流体力学中的应用作者:张丽来源:《教育教学论坛》2016年第28期摘要:伯努利方程是流体力学的重要理论基础,它为我们计算工程数据及解释日常生活中的一些现象,如管道总水头的计算、香蕉球的形成原理等,提供了重要的理论依据。

关键词:伯努利方程;流体力学;研究中图分类号:G642 文献标志码:A 文章编号:1674-9324(2016)28-0207-02作为力学的一个重要分支,流体力学以流体为主要研究对象,是研究流体平衡和运动规律的科学。

流体力学在许多工业科技中有着广泛的应用。

水利工程的建设、造船工业的迅速发展都离不开水静力学和水动力学的建立和研究,航空事业则离不开气体动力学的深入发展。

一、伯努利方程的推导伯努利方程只能应用于一条流线上的不同点,且必须是不可压缩理想流体在重力场中做定常流动。

二、伯努利方程的应用(一)当流体为液体时,伯努利方程的应用(二)当流体为气体时,伯努利方程的应用能量方程④的适用条件是:流动绝热但并不要求等熵,流动可以有摩擦。

即使通过强间断面,能量方程仍然使用。

伯努利方程⑤的适用条件是:无黏性,因而无机械能损失,流动过程有无热量的输入都不影响它的应用。

只有在等熵的流动中④和⑤才能相等[3]。

三、结语在生活中的很多方面都有伯努利方程的应用,工程中有很多这样的例子,如矿山通风机工况点确定[4]、都江堰修建等,都需要很多关于流体的计算来保证工程的安全,伯努利方程就在其中起了很大的作用。

参考文献:[1]孔珑.工程流体力学[M].第三版.中国电力出版社,2007.[2]刘仁隆.故事物理学[M].科学出版社,1980:52-58.[3]刘大有.伯努利方程应用中的若干问题[J].力学与实践,1991,(4).[4]赵昌友.伯努利方程及应用[J].池州学院学报,2014,28(6):。

流体力学 伯努力方程

流体力学 伯努力方程
14
测流速原理该点在水面下的深度为d故该处的压强pgdb点在管口之前流速v根据伯努利方程所以在实际应用时上式须修正为其中c为比多管的修正系数由实验来确定
三、伯努利方程应用举例 1.小孔泄流 在大容器的器壁上水深为 h 处,开一直径 为d 的小圆孔,不计任何阻力,求小孔的泄 流量。 由伯努力方程 p0 p0 v 2 0 h 0 g 2 g g 2 g
h1
B
C A
pC p0 gh1
h2
其中p0为大气压
11
(2)当虹吸管下端开启时, h1 下端和A处的压强仍为:
p下 端 p0 , pA p0
B
C A
h2
而vB vc v下端 , v A 0 . 所以 pB p0 g( h2 h1 ) , pC p0 gh2
(2)取1-2-4的一个流线,由伯努利方程
P1 1 2 1 1 v1 P2 v 2 P4 v2 2 4 2 2 2 P4 P0
1 2 2 P1 P0 v 4 v1 P0 100, P1 -P0 100Pa 2 1 2 2 P2 P0 v 4 v 2 P0 , 2 P3 =P0 P2 P0 0 P3 P0 0
Qv v1S1 v2 S2
2( 汞 )g hS1 S 2
2 2
( S1 S 2 )
2 2
6
H
1 1 2 2 p1 v1 p2 v2 2 2
v1S1 v2 S2
v1 主管 细管 v2
p p1 p2 gh

Q v1S1 S1S2
例题2 在如图所示的虹吸管装置中,已 知 h1 和 h2 ,试问:(1)当截面均匀的虹吸管 下端被塞住时,A、B和C处的压强各为多大? (2)当虹吸管下端开启时,A、B和C处的压 强又各为多大? 这时水流出虹吸管的速率为 多大?

§1-2伯努利方程及其应用

§1-2伯努利方程及其应用

§1-2伯努利方程及其应用
例1.3 如图1—5所示,液槽内离开液面h处开一小孔。液体密度为ρ, 液面上方是空气,它被液槽盖封闭住,其绝对压强为p,在液槽侧面小 孔处的压强为大气压强p0。当p>>p0时,试证明小孔处的液流速度 为: v2 = 2( p − p0 ) / ρ
解:将整个流体当作一个流管,用 v1和v分别表示水面处和 2 孔口处的流速。由连续性方程知 v 2 且因为S1>>S2,故 v 2 >> v1 可以近似地取 v1 = 0
第一章 流体的运动
§1-2伯努利方程及其应用
大 学 物 理
主讲教师:杨宏伟
第一章 流体的运动
§1-2伯努利方程及其应用
一 、 伯努利方程 伯努利方程是由瑞士物理学家伯努利 (D.Bernoulli)提出来的,是理想流体 作稳定流动时的基本方程,对于确定流 体内部各处的压力和流速都有很大的实 际意义,在水利、造船、航空航天等部门 有着广泛的应用。
第一章 流体的运动
§1-2伯努利方程及其应用
例1.2水管里的水在压强P=4×105Pa的作用下流入房 间,水管内直径为2.0cm,管内水的流速为4m/s。引入 到5m高处二层楼浴室的水管,内直径为1.0cm,试求浴 室内水的流速和压强(已知水的密度ρ=1000kg/m3)。 解:由连续性原理知
2
S1v1 = S 2 v2
A
B
将整个管子作流管,由连续性方 程 S1v1 = S 2 v2 以及伯努利方程 (1-5) 2
C
D E
p + 0.5 ρv = 恒量
图1—6 空吸作用 图1—6 空吸作用
第一章 流体的运动 由于 S1 >> S 2

伯努利方程的应用实际液体的流动 (1)

伯努利方程的应用实际液体的流动 (1)

8.3 8.8 13
影响液体和气体流动性的因素是不同的。
在国际单位制中黏度的单位是Pas (帕秒)。黏度也 常用P (泊)作单位
1 P = 0.1 Pa s
17
二、 黏性流体的运动规律
p1
1 2

2 v1
gh1 p2
1 2

2 v2
gh2 w
黏性流体作稳定流动时所遵从的规律。 如果黏性流体沿着粗细均匀的管道作定常流动
vr Re
21
由层流过渡到湍流的雷诺数,称为临界雷诺数 Rec 。圆形管道的临界雷诺数Rec在1000 ~ 1500的 范围内。 当流速的值使雷诺数Re处于临界值Rec时,此时 的流速就是临界流速,大小为
Rec vc r
如果流速从低于vc增大到高于vc,那么流动将 会从层流转变为湍流。
黏性流体在水平放置的圆形截面的管道中作层流时, 算得流量 为
p1 p2 4 QV ( )r 8 l
l 和 r 分别是管道的长度和半径。上式称为泊肃叶定律。
流阻 如果令 R f 8l ,那么上式可写成: 4
R
P P 1P 2 Q Rf Rf
20
*四、湍流和雷诺数 (Turbulent flow ) 湍流 流体中沿垂直于管轴方向的速度分量的 不规则流动。 实验表明,发生湍流的临界流速与雷诺数 Re 相对应。 雷诺数
若流体密度为,小球密度为,半径为r,速率为 v,则小球所受的三个力平衡,即 23
4 3 4 3 r g 6 r v r g 3 3
由此可得小球下落的速率
2r v ( ) g 9
假如测出速率v,可求出液体的黏度 ; 若流体的 黏度已知, v已测出,可求得小球(或液滴)的半径。

伯努利方程在液压系统中的应用

伯努利方程在液压系统中的应用

伯努利方程在液压系统中的应用
伯努利方程是描述流体在流动过程中能量守恒的基本方程之一,它在液压系统中有着广泛的应用。

液压系统中的液体流动可以被看作是一种能量转换的过程,而伯努利方程可以用来描述这种能量转换的过程。

在液压系统中,我们经常需要计算液体的流速、压力、流量等参数。

这些参数的计算需要用到伯努利方程。

伯努利方程可以描述液体在流动过程中,压力、速度和高度之间的关系。

具体地说,伯努利方程可以表示为:
P1 + ρgh1 + 1/2ρv1^2 = P2 + ρgh2 + 1/2ρv2^2 其中,P1、P2分别为管道两端的压力,ρ为液体的密度,g为重力加速度,h1、h2分别为两端的高度,v1、v2分别为两端的速度。

这个方程表明,当液体从一段管道流向另一段管道时,压力、速度和高度之间的变化是相互关联的。

伯努利方程在液压系统中的应用十分广泛。

例如,在液压缸的设计中,我们需要计算液体的流速和压力,以保证液压缸的运动正常。

在液体泵的设计中,我们需要计算液体的流量和压力,以保证泵的输出满足要求。

在水力发电厂的设计中,我们需要计算水流的速度和压力,以求得最大的发电效率。

总之,伯努利方程在液压系统中的应用非常广泛,它可以用来计算液体的各种参数,从而帮助我们设计出更加高效、可靠的液压系统。

- 1 -。

实际流体总流的伯努利方程式

实际流体总流的伯努利方程式

实际流体总流的伯努利方程式在流体力学的世界里,伯努利方程可谓是个“大咖”。

想象一下,咱们在河边,看着水流淌,水流的快慢、流向,都是由这位“伯努利”爷爷来掌控的。

没错,流体的流动其实很有意思,像一场精心编排的舞蹈,每一个动作都有它的道理。

想要理解这些道理,咱们不妨轻松聊聊这方程的实际应用。

你知道的,科学可不一定是枯燥的,相反,它常常让生活充满惊喜。

你可千万别小看这方程,它告诉我们流体在不同地方的压强、速度和高度之间的关系。

比如说,你在河里放了一根小木棒,水流一冲,木棒就开始随水漂流。

这个时候,水的速度快慢就会直接影响木棒的漂浮状态。

就像人生,有时候水流缓慢,让你悠哉游哉;有时候水流汹涌,让你不得不拼命抓住木棒。

伯努利方程就像一位智者,告诉我们在不同情况下该怎么应对。

有趣的是,咱们喝的饮料也与伯努利方程有千丝万缕的联系。

想想当你用吸管喝饮料,吸管里的液体就像是个小小的流体,它的流动是因为你在吸的时候创造了一个低压区。

这一低压区就把饮料“吸”了上来,这背后也有伯努利的影子在默默地起作用。

这真是个神奇的现象!感觉就像是魔法一样,只不过这魔法有科学依据而已。

咱们在开车的时候,风阻也是伯努利方程的一个应用。

车速越快,车身周围的空气流动就越快,压强就会降低。

这就是为什么运动型车的设计常常像流线型一样,减少空气阻力,帮你飞速前行。

想象一下,你坐在车里,耳边呼啸而过的风声,那感觉简直爽翻了。

开车不仅是为了到达目的地,还是一场与空气的对决,谁都想在这场对决中占据上风。

再说说飞行,飞机的翅膀可真是聪明得很。

飞机在飞行时,翅膀上方的空气流动速度更快,压力更低,下面的压力较高,这就让飞机飞得又高又稳。

简直是个完美的例子,展示了伯努利方程的魅力。

飞机一旦起飞,真像一只鸟儿,翱翔在蔚蓝的天空中,心情自然美滋滋。

水管里的水流也是伯努利方程的典型案例。

水管不同的直径会影响水流的速度和压力。

当水流过一个变窄的地方,速度自然会加快,压力就会降低。

流体力学-总流伯努利方程的应用

流体力学-总流伯努利方程的应用
B
四、一般的水力计算
一、一般的水力计算

A
0

C B
0.2m 3.0m
0
Eg 1. 如图所示消防水龙,泵出口压力为2个大气压(表压), dA为50mm,dC为20mm,水龙带水头损失为0.5m,喷嘴水头 损失为0.1m,求Vc,Q,Pb?,
A
0

C B
0.2m 3.0m
0
令α 为孔板流量系数,实际流量为:
d 2 Q
2g p1 p2
4

注: α在出厂前需要对其依赖的参数进行试验测 定, 并对用户给出图表。
(3)喷嘴流量计
0
Q


D
2 2
2g p1 p2
4

注: μ 为喷嘴流量计的流量系数。
二、毕托管测速
1 滞止现象
滞止现象:绕流流过物体表面时,会在流体正前方和固体 壁面的接触位置形成一个速度等于零的点。该点称为滞止 点,该点的压强称为滞止压强。
道截面面积A1与喷嘴出口截面面积A2之间应满足什么条件才能使 抽水装置开始工作?
1
1
2
2
3 3
思考题:
1.拿两张薄纸,平行提在手中,当用嘴顺纸间缝隙 吹气时,问薄纸是不动、靠拢、还是张开?为什么?
2.水流在等径斜管中流动,高处为A点,低处为B点, 讨论压强出现以下二种情况时的流动方向。 pA>pB; pA=pB A
3 毕托管测速
静压测量
△h 1A
驻压测量 单孔测速
流线上任一点速度为:
u1
2g pA p1
注:1、过程中忽略了阻力; 2、测速时安装的准确性;
实际流体速度:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v B 2 gh
可见, 小孔处水的流速,与物体从h处自由 下落到小孔处的速率是相同的。
10
3.粘滞流体在半径为R的水平流管中流动,流量为 Q,如在半径为R/4的水平流管中流动,其流 量为_____________。 4. 如图所示,在大水桶侧面开一小孔,要使流出液体 的射程L最大,其孔的高度h应开在______处。
6
解:在A 处气流速率为零, 在流线OA上运用伯努 利方程, 得到
p A gh A pO ghO
对于流线QB
1
2
vO
2
p B ghB
1 2
v B pQ ghQ
2
1 2
vQ
2
点O和点Q非常接近, 可认为各量相等。又因皮托 管一般都很细, 点A与点B的高度相差很小, hA = hB 。 考虑到这些条件, 得
y
一般情况下, 速率梯度的大小不是常量, z0 处速 率梯度的大小为 dv ( ) z0 dz 实验表明, 流体内部相邻两流体层间黏力的大小 正比于接触面积, 正比于该处速率梯度的大小,即
f 的方向如图中的箭头。 比例系数称为流体的黏 z0 度, 是流体黏性的量度, o 与温度有密切关系。
dv f ( ) z0 S dz
22
*五、斯托克斯黏性公式 (Stokes’ viscosity resistance formula )
当固体物在黏性流体中作相对运动时,将受到流 体的阻力作用。
斯托克斯黏性公式 固体小球以不大的速率在流 体中运动时,所受黏性阻力大小为
F = 6rv
流体黏度,r小球半径,v小球相对流体运动速率。
若流体密度为,小球密度为,半径为r,速率为 v,则小球所受的三个力平衡,即 23
4 3 4 3 r g 6 r v r g 3 3
由此可得小球下落的速率
2r v ( ) g 9
假如测出速率v,可求出液体的黏度 ; 若流体的 黏度已知, v已测出,可求得小球(或液滴)的半径。
1
3. 流线 为了形象地描述流体的 运动 , 在流体中画一系列 曲线 , 每一点的切线方向 与流经该点流体质点的速 度方向相同,称为流线。 定常流动中的流线 · 不随时间变化; · 质点的运动轨迹; · 任何两条流线不相交。 4. 流管 流线围成的管状区域。
· · · ·
· · · ·
2
理想流体的连续性方程 (the equation of continuity )
/ (10-3
Pas)
1.792 1.0050 0.6560 0.4688 0.3565 0.2838
16
表 3
气 体
几种气体的黏度随温度的变化
空 气 0 20 671 18 18.1 42 二氧化碳 0 20 302 14 14.8 27 氢 气
温 度 /℃
-1
20 251
/ (10-6 Pas)
8.3 8.8 13
影响液体和气体流动性的因素是不同的。
在国际单位制中黏度的单位是Pas (帕秒)。黏度也 常用P (泊)作单位
1 P = 0.1 Pa s
17
二、 黏性流体的运动规律
p1
1 2

2 v1
gh1 p2
1 2

2 v2
gh2 w
黏性流体作稳定流动时所遵从的规律。 如果黏性流体沿着粗细均匀的管道作定常流动
关于理想流体的几个概念 (perfect fluid ) 1. 理想流体
理想流体 绝对不可压缩和完全没有黏性的流体。
2. 定常流动 一般情况下,同一时刻流体各处的流速不同,但有 些场合 , 流体质点流经空间任一给定点的速度是确 定的,且不随时间变化,称为定常流动。例如, 沿 着管道或渠道缓慢流动的水流, 在一段不长的时间 内可以认为是定常流动。
A
B
C
pA
1 2
v A gh A p B v B ghB
2
9
2
1
2
其中水面上点A和孔口处点B都与大气接触, 所以 那里的压强都等于大气压p0 。
取小孔处的高度为零,则 hA = h。容器的横截面 比小孔的截面大得多, 根据连续性方程, vA << vB ,故 认为vA = 0。将以上条件代入上式, 即可求得小孔处 的流速为
vr Re
21
由层流过渡到湍流的雷诺数,称为临界雷诺数 Rec 。圆形管道的临界雷诺数Rec在1000 ~ 1500的 范围内。 当流速的值使雷诺数Re处于临界值Rec时,此时 的流速就是临界流速,大小为
Rec vc r
如果流速从低于vc增大到高于vc,那么流动将 会从层流转变为湍流。
黏性流体在水平放置的圆形截面的管道中作层流时, 算得流量 为
p1 p2 4 QV ( )r 8 l
l 和 r 分别是管道的长度和半径。上式称为泊肃叶定律。
流阻 如果令 R f 8l ,那么上式可写成: 4
R
P P 1P 2 Q Rf Rf
20
*四、湍流和雷诺数 (Turbulent flow ) 湍流 流体中沿垂直于管轴方向的速度分量的 不规则流动。 实验表明,发生湍流的临界流速与雷诺数 Re 相对应。 雷诺数
对于不可压缩流体
v2
S2
S1 v1= S2 v2 或
S v = 恒量
v1
S1
上式称为理想流体的连续性方程。 在方程两边同乘以流体密度, 即
S v = 恒量
上式是一般流体的连续性方程。
3
伯努利(Bernoulli)方程
1 2 1 2 p1 v1 gh1 p2 v 2 gh2 2 2
p A pB
vB 是待测气流的流速。
1
2
vB
2
7
如果压强计中液体的密度为 , 则
p A p B gh
比较上面两式得
1 2
所以
v B gh
2 gh
2
vB

这样,就可以由压强计两液面的高度差h, 计算 出待测气流速率。
8
例2:求水从容器壁小孔中流出时的速率。 解:水从小孔中流出时的流速可 以根据伯努利方程求解。设水面距 离小孔的高度为h,ABC为一条流 线(见图)。A和B分别是这条流线在 水面和小孔处的两点, 在这条流线 上运用伯努利方程, 得
24
2
25
p1 gh1 p2 gh2 w

( p1 p2 ) g (h1 h2 ) w
18
可见,由于黏力的存在, 要流体在管道中作定常 流动,须保证管道两端的压强差 (p1p2) 或保证管道 两端的高度差 (h1h2) 或者两者兼而有之。
19
*三、泊肃叶定律 (Poiseuille’s law )z f源自 fy15
表 1 流 体
酒精 甘油 水银 氧 氮 氦 表2 温 度/℃
几种流体的黏度 黏 度 / (10-3 Pas)
16 830 1.55 0.0196 0.0177 0.0196
温 度/℃
20 20 20 15 23 23
水的黏度随温度的变化 0 100 20 40 60 80
p A v A gh A 2 1
2
pB
1 2
v B ghB
5
2
练 习

B 例1:皮托管是测定流体流 Q A 速的仪器, 常用来测定气体的 流速。 它由两个同轴细管组 o 成, 内管的开口在正前方。外 h 管的开口在管壁上, 如图中B 所示。两管分别与U型管的两 臂相连, 在U型管中盛有液体(如水银), 构成了一个压 强计, 由U型管两臂的液面高度差h确定气体的流速。
S2
v2
S′ 2
1 p v 2 gh 恒量 2
S1
v1 ′ S1 h1 h2
上面两式都称为伯努利方程, 它们描述了理想流 体作定常流动时的基本规律。
4
例1、有流量为0.12m3/s的水流过如图所示的管子。A点 的压强为2×105N/m2,A点的截面积为100cm2,B点截面积 为60cm2。假设水的内摩擦可以忽略不计,求A、B点的 流速和B点的压强。 解:由连续性方程,得 SA vA= SB vB=Q 得vA= ? vB=? 由伯努利(Bernoulli)方程 得PB=?
H h
L
11
5.伯努力方程的适用条件是( ) 6. 注射器活塞面积为1.2cm2,注射用针头截面积为 1mm2,当注射器水平放置时用4.9N的力推动活塞, 使活塞移动了4cm,问水从注射器中流出所需的 时间为多少? 7.课本第38页,全部掌握.
12
13
黏性流体的运动
一、流体的黏性 (viscosity of fluid ) 黏性 作相对运动的两层流体之间的接触面上, 存在一对阻碍两流体层相对运动的大小相等而方 向相反的摩擦力 ,这种摩擦力称为流体的黏力, 或内摩擦力。 由于黏性的存在 , 管道中流动的流体出现了分层 流动, 各层只作相对滑动而彼此不相混合, 这种现象 z 称为层流。 v 图示为充满两个平行板之 间的流体的流动。两板之间 各流体层的速率梯度的大小 14 为 dv / dz ,在此处是常量。o
相关文档
最新文档