nature一篇文献的翻译《生物催化工程的第三次浪潮》
2013英语一text3翻译

2013英语一text3翻译在过去几年里,英语考试中的翻译部分一直备受关注。
2013年的英语一翻译部分选取了一篇关于地球外生命探索的文章。
本文旨在通过对该文本的解析,帮助考生提高翻译技巧和阅读理解能力。
首先,让我们了解这篇文章的主题和背景。
文章讨论了地球外生命存在的可能性,以及科学家如何寻找外星生命的迹象。
在文章中,作者列举了一些有关外星生命存在的理论依据,并对这些依据进行了深入分析。
接下来,我们来分析文章的结构和组织。
文章分为三个部分:引言、主体和结论。
在引言部分,作者提出了地球外生命探索的重要性。
主体部分详细介绍了科学家寻找外星生命的依据和方法。
结论部分总结了全文内容,并对未来探索地球外生命的前景进行了展望。
为了更好地理解文章内容,我们需要提取关键信息和观点。
在文章中,作者提到了以下几点关键信息:1.地球外生命存在的可能性引发了许多科学家的关注和研究。
2.科学家通过研究行星环境和天体物理等领域来寻找外星生命的迹象。
3.一些探测器和观测项目,如Kepler太空望远镜和SETI项目,致力于寻找外星生命的信号。
4.尽管目前尚未发现确凿证据,但地球外生命的探索仍具有巨大潜力和价值。
最后,我们来总结全文内容和启示。
这篇文章向我们展示了科学家在探索地球外生命方面的最新成果和挑战。
尽管目前尚无确凿证据证明外星生命的存在,但这一领域的研究仍具有重要意义。
一方面,探索地球外生命有助于拓展我们对宇宙的认识。
另一方面,这一研究也提醒我们要珍惜地球上的生命,保护生态环境。
通过深入分析这篇文本,我们可以提高自己的阅读理解能力,并为未来的翻译考试做好准备。
同时,这篇文章也激发了我们对未知宇宙的好奇心,激发了探索地球外生命的热情。
2013年考研英语一第四篇文章阅读精讲

2013年考研英语一第四篇文章阅读精讲文章主题:文章讨论了人类对自然的干预和改造对生态系统的影响,指出过度干预可能导致生态系统的破坏和物种的灭绝。
文章通过举例说明,强调了保护生态系统的重要性。
文章结构:1. 引言:提出人类对自然的干预和改造对生态系统的影响问题。
2. 正文:过度干预可能导致生态系统的破坏和物种的灭绝。
举例说明人类对生态系统的干预和改造。
强调保护生态系统的重要性。
3. 结论:总结文章主旨,呼吁人们保护生态系统。
重点词汇:1. intervention:干预,介入。
2. transformation:改造,改变。
3. ecosystem:生态系统。
4. destruction:破坏,毁灭。
5. extinction:灭绝,消亡。
6. overexploitation:过度开发。
7. biodiversity:生物多样性。
8. conservation:保护,保存。
9. sustainable:可持续的。
10. interventionism:干预主义。
长难句解析:1. The world has already started down this path, with various environmental problems caused by the reckless use of technology and the relentless consumption of resources.(人类已经开始沿着这条道路前进,由于技术的滥用和资源的无节制消耗,已经引发了各种环境问题。
)2. The lesson from nature is that ecosystems are resilient only to the extent that they can fend for themselves, and human intervention is not always helpful.(从自然界中得到的教训是,生态系统只有在能够自我维持的情况下才具有弹性,而人类的干预并不总是有益的。
bioengineering and translational medicine简介

bioengineering and translational medicine简介《Bioengineering & Translational Medicine》是一本专注于工程生物医学领域的学术期刊。
以下是关于该期刊的简要介绍:
- 该期刊由美国化学工程师协会(AlChE)于2016年创办,现为AlChE会刊,每年出版3期,现在由Wiley出版管理,期刊主编为哈佛大学的Samir Mitragotri 教授。
- 该期刊旨在及时、准确、全面地报道国内外工程生物医学工作者在该领域的科学研究等工作中取得的经验、科研成果、技术革新、学术动态等。
- 该期刊已被多个数据库收录,包括SCIE、BIOSIS Previews、STM Source、PubMed via PMC deposit (NLM)、Biotechnology Source等。
- 该期刊发表的文章类型以研究文章(Article)为主,同时也有综述(Review)、社论(Editorials)等。
- 该期刊主编Samir Mitragotri教授是美国哈佛大学的工程与应用科学教授,也是Bioengineering & Translational Medicine的期刊主编。
他是一位在药物靶向输送、生物医学材料、生物启发工程等领域有深入研究的科学家,已经撰写及合著了210余篇期刊论文,并拥有约150项专利。
总的来说,《Bioengineering & Translational Medicine》是一本在工程生物医学领域具有较高影响力和权威性的学术期刊,为该领域的科研工作者提供了重要的学术交流平台。
【精品】策划生物催化的第三次浪潮

策划生物催化的第三次浪潮来源:生物谷日期:2012年09月13日生物催化是在合成化学中应用酶和微生物,将天然催化剂用于酶尚未进化到的新目的。
经过几次技术研究和创新浪潮,生物催化领域现被证明已经达到了工业化水平。
第一次生物催化浪潮始于一个多世纪前,科学家意识到活体细胞的某些成分可以用于有用的化学转化(与此不同的是,发酵过程早已经成为常事上千年了)。
比如,Rosenthaler使用从植物中提取的苯甲醛和氢氰酸合成了(R)-苯乙醇腈(维生素B17的有效成分之一),人们也已经知道微生物体内进行着甾体的羟基化反应。
更近的例子是,蛋白酶被用于洗衣液中,葡萄糖异构酶被用于将葡萄糖转化为更甜的果糖,盘尼西林G 酰基转移酶被用于生产半合成抗生素。
这些应用主要面临的挑战在于生物催化剂有限的稳定性,但这些缺陷首先由酶的固定化得以克服,该方法还易化了酶的重复利用。
第二次生物催化浪潮介于二十世纪八十至九十年代,最初的蛋白质工程技术,典型的是基于结构的,拓宽了酶的底物范围从而可以合成非常见的合成中间物上。
这一改变使得生物催化扩展至药物中间体和精细化学生产领域。
这方面的例子包括:脂肪酶催化拆分手性前体用于合成地尔硫卓(一种降压药)的手性前体,醇腈裂解酶催化合成除草剂的中间体,羰基还原酶催化合成纯化对映体醇用于生产降低胆固醇的沙汀类药物,脂肪酶催化合成酯化腊,如化妆品的添加物肉豆蔻醇肉豆蔻酸酯或鲸蜡醇蓖麻油酸酯,腈水合酶(提取自玫瑰红红球菌)催化丙烯腈水合生成丙烯酰胺用于形成聚合物。
除了酶的固定化,现有的挑战还包括为非天然底物优化生物催化剂。
现在这第三次生物催化浪潮始于PimStemmer和FrancesArnold在二十世纪九十年代中后期的工作。
他们开创性地借助分子生物学的方法通过体外版的达尔文进化快速而广泛的改变生物催化剂。
现在这种方法通常被称为定向进化,尽管该词从1972年的全细胞实验后一直在使用。
这项技术最开始的做法包括:将蛋白质中氨基酸的随机突变通过重复循环累积起来,然后选择或筛选所得到的文库,最终得到稳定性更高、底物更专一、手性选择性更好的变体。
新核心大学英语版读写教程第三单元课文翻译

Unit 3 Translation of the TextsMain Reading:化学计量学对食品安全的影响恰当应用信息技术会有奇效John R. Joyce 摘自《科学计算》食品安全,或者说是潜在缺乏安全,是我们时常关注的话题;各类媒体更是在这方面做足了文章。
不管是因为食品传播疾病的爆发还是因为类似三聚氰胺的化学污染,食品召回事件似乎没完没了。
然而,很多情况下,这种风险通常是被夸大了的,可能是因为评级,也可能是因为担心责任。
这并不是说接触到受污染食品不会对健康造成严重伤害,而是说为了把受污染食品撤出市场,召回范围通常是扩大了的。
这样做的原因可能有很多,但主要原因之一就是通常无法及时追踪到污染源而不能把未污染的类似产品在市场保留。
在食品安全中恰当应用实验信息技术能为极大改变这种现状,但也应该认识到这也不是能解决所有食品安全问题的金钥匙。
我们可以实验信息技术看成是一块多面的宝石,每个面代表不同的信息系统。
没有哪个单一方面比其他的方面重要。
但是,结合在一起,他们就能变成光芒四射的珠宝,引导我们一路解决这个问题。
尽管有人试图对这个系统进行分类,但所有分类都不是很严格的,因为它们大多有功能的重合。
尽管我们没有足够的空间对所有这些方面做深入的介绍,以下列出的是我们可能遇到的各类实验信息系统的非互斥的分类清单:•实验信息管理系统•分析自动化/色谱分析数据系统•科学数据管理系统•生产工艺控制•化学计量•跟踪系统•质量管理系统这些系统有的是为了生产高品质食品,有的为了分析食品样本并储存分析结果,有的为了利用这些结果来评估食品质量和安全。
然而,虽然每个系统都可以是独立的,但最佳效果还是这些系统相互结合在一起的。
我们最近检查了很多类似的数据系统,我们的讨论就仅限于化学计量。
根据国际纯化学与应用化学联盟的维基介绍,化学计量学是“是一门应用数学或统计学方法把对化学系统或工艺的测量数据与系统的状态相联系的科学,是多元实验设计与建模工具在化学领域的应用。
nature catalysis decision sent to author 情况

nature catalysis decision sent to author 情况
摘要:
1.催化剂的定义和作用
2.Nature Catalysis 期刊的简介
3.论文投稿流程和决策过程
4.作者收到决策后的行动
正文:
催化剂是一种可以加速化学反应速率,但在反应结束后并不参与反应的物质。
在化学和工业领域中,催化剂起着至关重要的作用,它们可以使反应过程更高效、更环保、更经济。
Nature Catalysis 是一本专注于催化剂研究领域的顶级期刊,它致力于发表关于催化剂的理论和实验研究成果。
当一篇关于催化剂研究的论文投稿到Nature Catalysis 期刊后,编辑会对论文进行初步评估,以确定它是否符合期刊的发表标准。
如果论文通过了初步评估,它会被送到同行评审环节。
在这个环节中,至少两名专家会对论文进行深入评估,包括论文的研究方法、数据分析和结论等方面。
在专家评审完成后,Nature Catalysis 的编辑会根据专家的意见做出决策。
如果论文被接受,编辑会通知作者,并要求作者对论文进行一些必要的修改。
如果论文被拒绝,编辑会给出拒绝的原因,并建议作者将论文改进后投稿到其他合适的期刊。
当作者收到Nature Catalysis 的决策后,他们需要仔细阅读编辑和专家的意见,并对论文进行相应的修改。
如果论文被接受,作者需要按照期刊的要
求进行修改,并提交最终版本的论文。
生物催化作业原文

Journal of Molecular Catalysis B:Enzymatic 65 (2010) 18–23Contents lists available at ScienceDirectJournal of Molecular Catalysis B:Enzymaticj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /m o l c a tbLipases for use in industrial biocatalysis:Specificity of selected structural groups of lipasesSangeeta Naik a ,∗,Aditya Basu a ,Rakhi Saikia a ,Bhawna Madan a ,Pritish Paul a ,Robin Chaterjee c ,Jesper Brask b ,Allan Svendsen baNovozymes South Asia Pvt.Ltd.,193,Hoody Circle,Whitefield Road,Bangalore,India bNovozymes A/S,Krogshoejvej 36,2880Bagsvaerd,Denmark cDepartment of Biochemistry at School of Biotechnology,Royal Institute of Technology,Stockholm,Swedena r t i c l e i n f o Article history:Available online 11 January 2010“Dedicated to Kalle Hult on his 65th birthday”.Keywords:LipaseBiocatalysisSubstrate specificity Enantio selectivitya b s t r a c tLipases for biocatalysisThe substrate specificity of a selected group of lipases was investigated.The enzymes selected were from four structural groups.Group 1:lipases having wide alcohol binding cleft but a narrow acyl binding cleft (Rhizomucor miehei lipase,Thermomyces lanuginosus lipase,Fusarium oxysporum lipase);Group 2:lipases which exhibit strong restriction on the acid part having a narrow tunnel to accommodate the acyl group but wider alcohol binding site (Candida antarctica A,Candida rugosa lipase);Group 3:lipases having wide acyl binding cleft but narrow alcohol binding cleft (C.antarctica lipase B,Ustilago maydis lipase),and Group 4:having wider alcohol and wider acyl binding clefts (Fusarium solani pisi cutinase,Humicola insolens cutinase).Owing to the wide substrate specificity and higher expression levels in recombinant host,these lipases have tremendous importance for hydrolysis and synthesis reactions.Various sub-strates with substitutions on the alcohol and/or the acid part of the ester molecule were selected.The experimental results support the classification of lipases on the basis of their binding sites.For substrates with heavy alcohol side,C.Antarctica lipase A and R.miehei lipase type enzymes gave the highest extent of hydrolysis,while for acid heavy substrates the highest conversions were shown by C.antarctica lipase B.It is noteworthy that the acid heavy substrates which had aromatic side chains were hydrolyzed only by C.antarctica lipase B type of enzymes.Lipases were found to be more active on the alcohol-substituted substrates than acid-substituted substrates.© 2010 Elsevier B.V. All rights reserved.1.IntroductionOver the last few years,processes have been developed,using hydrolases,oxidoreductases or lyases as biocatalysts in phar-maceutical,agricultural,or synthetic organic chemistry industry.Lipases (triacylglycerol acyl hydrolases)exhibit wide substrate specificity,stereoselectivity and enantioselectivity and are there-fore,industrially significant enzymes [1,2].The use of lipases in non-aqueous environments proves an excellent methodology for the preparation of single-isomer chiral drugs by enzymatic hydrolysis,transesterification or aminolysis reactions.Applications of lipases in asymmetric synthesis include kinetic resolution of racemic alcohols,acids,esters or amines,as well as the desym-metrization of prochiral compounds [3–7].In the pharmaceutical industry,there has been an ever-increasing trend for chiral drug substances to focus enantiomers instead of racemic mixtures,∗Corresponding author.Tel.:+918030582171;fax:+918030582174.E-mail address:snai@ (S.Naik).A major part of the drugs manufactured today contains enan-tiopure molecules [8];hence,highly enantioselective reactions for the production of enantiopure building blocks are of great industrial importance.Enzymes are an attractive class of cata-lysts often used in the synthesis of enantiopure compounds.They usually exhibit high enantioselectivity,operate under mild reac-tion conditions and have a large substrate scope [9].However,with substrates that are very different from the natural sub-strate,enzymes can display low enantioselectivity and/or poor reactivity.A solution to this problem is to genetically modify the enzyme and thereby increase the substrate acceptance or enantioselectivity.Designing enantioselectivity of enzymes is one of the most attractive but challenging trials in the field of protein engineer-ing for synthesis of enantiometically pure compounds,there is,however,no practical theory for introducing mutations into any enzyme to change its enantioselectivity.One way would be to model substrate lipases and esterases by substrate-imprinted dock-ing,which takes into account the substrate transition states,productive and non-productive hydrogen bonds as well as com-1381-1177/$–see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.molcatb.2010.01.002S.Naik et al./Journal of Molecular Catalysis B:Enzymatic65 (2010) 18–2319Table1Classification of lipases on the basis of structural and physico-chemical properties of scissile fatty acid binding sites.Lipase class Group Active-site propertiesRmL type1Large alcohol binding cleft but a narrowacyl binding cleftCaLA type2Strong restriction on the acid part having anarrow tunnel to accommodate the acylgroup but wider alcohol binding siteCaLB type3Lipases having large acyl binding cleft butnarrow alcohol binding cleftCutinase type4Having wider alcohol and wider acylbinding cleftplete proteinflexibility.[10].Another approach would be to incorporate a desired enantioselectivity to enzymes by directed evolutionary strategy,which comprises iterative cycles of mutation and identification of improved variants by screening or selec-tion[11–14].In one report,CaLA was made enantioselective for 4-nitrophenyl2-methylheptanoate,by using the CASTing(Com-binatorial active-site saturation test)[15],while another that the enantioselectivity of hydantoinase has been inverted towards D,L-5-(2-methylthioethyl)hydantoin by error-prone PCR and fol-lowing saturation mutagenesis[16],and enantioselectivity of a lipase from Pseudomonas aeruginosa was inverted by the combi-nation of error-prone PCR and DNA shuffling[17].Lipases have been classified on the basis of structural and physico-chemical properties of scissile fatty acid binding sites to understand the substrate specificity of lipases[18].In the current study,the substrate specificity of four structural groups of lipases (Table1):Group1:lipases having large alcohol binding cleft but a narrow acyl binding cleft(Rhizomucor miehei lipase(RmL),Ther-momyces lanuginosus lipase(TlL),Fusarium oxysporum lipase(FoL)); Group2:exhibit strong restriction on the acid part having a narrow tunnel to accommodate the acyl group but wider alcohol bind-ing site(Candida antarctica A(CaLA),Candida rugosa lipase(CrL)); Group3:lipases having large acyl binding cleft but narrow alcohol binding cleft(C.antarctica lipase B(CaLB),Ustilago maydis lipase (UmL)),and Group4:having wider alcohol and wider acyl binding cleft(Fusarium solani pisi cutinase(FsC),Humicola insolens cutinase (HiC))was investigated.The work presented here compares the substrate specificity of the various groups of lipases and also looks at the enantioselectivity of CaLB and some of its reported variants,M72L,T103G,and W104H [19].2.Experimental2.1.Strains,culture media and growth conditionsPichia.pastoris CoLS702[Mut−]strain(this strain is a deletion mutant of P.pastoris GS115strain,wherein the AOX1gene has been deleted)was used for heterologous expression of CaLA,CaLB, TlL,CrL-1,HiC and CaLB variants T103G,M72L and W104H.The strains were grown and maintained in YPD medium containing yeast extract(10g/l),peptone(20g/l),and dextrose(20g/l).For expression of the heterologous protein,the Pichia fermentation medium consisted of yeast extract(10g/l),peptone(20g/l),sor-bitol(10g/l),Potassium phosphate buffer(pH6.0,50mM),and yeast nitrogen base without ammonium sulphate and amino acids (3.4g/l).All fermentations were carried out in baffled Erlenmeyer flasks(1l)containing300ml of fermentation medium at27.5◦C and150rpm.The cells were induced after24h of growth with methanol(1%)and the temperature reduced to22◦C.Methanol induction was followed every24h for6days after which the cells were removed by centrifugation at12,000×g for25min,the super-natant wasfiltered through0.2hollowfibrefilter and processed for purification.2.2.Construction of expression plasmidsA P.pastoris vector CoLS789was used for the expression of CaLA, CaLB,TlL,CrL-1,HiC and CaLB variants T103G,M72L and W104H. This in-house vector has a HIS4selection marker,a multiple cloning site,the3 and5 sequences of a AOX1gene of P.pastoris and a pUC origin of replication.The genes with the native peptide signal were sub-cloned under the control of AOX1promoter.The resulting con-structs were used to transform Escherichia coli DH5␣.The plasmids were subjected to DNA sequencing for confirming the sequence.2.3.Preparation of P.pastoris competent cells and transformationYPD100mL(1%(w/v)yeast extract,2%(w/v)peptone,2%(w/v) dextrose)medium was inoculated with a single P.pastoris colony and grown over night at30◦C,200rpm to an OD600of0.8–1.0. Cells were collected by centrifugation(10min,1500×g,and20◦C), washed with50ml of sterile water and suspended in2ml of 100mM LiCl2.The cells were washed twice with100mM LiCl2 and distributed in100l aliquots.To each cell aliquot was added 240L of PEG3350(50%),36L of LiCl2(1M),25L of single stranded DNA and50L of linearized plasmid DNA.The cells were mixed and were incubated at30◦C for30min without shaking and heat shock was given at42◦C for25min.The transformation mix was centrifuged and supernatant was discarded.The transformants were suspended in100L of sterile water spread on SD(Syn-thetic Dropout)plates(1.34%Yeast Nitrogen Base with ammonium sulphate without amino acids),4×10−5%(w/v)biotin,2%(w/v) dextrose)and incubated at30◦C for2–4days.The transformants were selected by their ability to synthesize and utilize histidine. 2.4.PurificationThe purification methods for the various proteins are outlined below.Unless otherwise stated all columns used were of20ml col-umn volume(CV),and equilibration,washing and elution steps consisted to10CV buffer.2.4.1.CaLA and CaLBAmmonium sulphate(0.8M)was added to the fermentation broth and the broth passed through Butyl toyopearl hydropho-bic column which was previously equilibrated with Ammonium acetate(0.8M).The matrix was washed with equilibration buffer and the bound protein was eluted isocratically,first with water and later with ethanol(50%).The eluted protein was dialyzed against HEPES(pH7.0,50mM)and passed through UnoQ(anion exchange). The unbound sample consisted of the purified protein which was concentrated using centrifugal concentrators and used for enzyme assay.2.4.2.TlLSodium chloride(2M)was added to the fermentation broth and the broth passed through Decyl agarose hydrophobic col-umn which had been previously equilibrated with sodium borate buffer(pH9.0,50mM).The matrix was washed with equilibration buffer and the bound protein was eluted isocratically with equi-libration buffer containing Isopropanol(30%).The eluted fraction were pooled,the conductivity was adjusted<7mS/cm and passed through Q-Sepharose(anion exchange)which had been previously equilibrated with sodium borate buffer(pH9.0,50mM).The matrix was washed with equilibration buffer and the bound protein was eluted using a linear gradient of sodium chloride(1M)in equilibra-20S.Naik et al./Journal of Molecular Catalysis B:Enzymatic65 (2010) 18–23Fig.1.The four selected structural classes of lipases.Representatives from each group oriented with superimposed active site.Active-site serine is shown in yellow,and with the acid binding part pointing upwards and the alcohol binding part pointing downwards.For the CrL the acid binding part is a deep tunnel going into the structure.Group 1;RmL (TlL:1GT6),Group 2;CaLA (CrL;1CrL),Group 3;CaLB (CaLB;1TCA),and Group 4;FsC (FsC;1CUS).tion buffer.The eluted protein was pooled,concentrated and used for enzyme assay.2.4.3.CrL-1Ammonium sulphate (0.8M)was added to the fermentation broth and the broth passed through Butyl toyopearl hydropho-bic column which was previously equilibrated with Ammonium acetate (0.8M).The matrix was washed with equilibration buffer and the bound protein was eluted isocratically first with HEPES (pH 7.0,50mM)and later with HEPES (pH 7.0,50mM)contain-ing ethanol (50%).The eluted protein was dialyzed against HEPES (pH 7.0,50mM)and passed through UnoQ (anion exchange).The matrix was washed with equilibration buffer and the bound pro-tein was eluted using a linear gradient of sodium chloride (1M)in equilibration buffer.The eluted protein was pooled,concentrated and used for enzyme assay.2.5.Enzyme assaysThe activity of CaLA,CaLB,TlL,CrL-1,HiC and CaLB variants T103G,M72L and W104H were carried out in HEPES buffer (pH 7.050mM)containing CaCl 2(5mM)and Triton-X-100(0.4%).The reaction was started by the addition of substrate (40mM)and enzyme (0.1mg).All the reactions were performed at 30◦C for 2h,6h,or 24h to get appropriate conversion.The reactions were stopped with 100l HCl (1M)and the reactants extracted with dichloromethane.The organic phase (20l)was diluted with diethylether and analyzed on GC fitted with chiral GC column (Var-ian CP-Chiralsil-DEX CB 10m).Two compounds,one from each substrate categories (A)sub-strates either branched/large on the alcohol part or (B)substrates either branched/large on the acid part were checked for enantiose-lective degradation of chiral isomers.The separation procedure for the two isomers on GC is outlined below.2-ethyl hexyl acetate:Oven T 1=70◦C,T 2=80◦C ( T =1◦C/min),T 3=90◦C ( T =2◦C/min),T 4=150◦C ( T =10◦C/min);Injector T =220◦C;Detector T =250◦C.Carrier N 2,flow rate =0.5ml/min.Ethyl-2-methyl butyrate:Oven T 1=40◦C for 2min,T 2=52◦C ( T =2◦C/min),T 3=150◦C ( T =20◦C/min),Injector T =220◦C;Detector T =250◦C.Carrier N 2,flow rate =1ml/min.Enantioselectivity (E )was calculated using below Equation.The activity is given as percentage conversion of the total amount sub-strate.E =ln {ee p (1−ee s )/(ee s +ee p )}ln {ee p (1+ee s )/(ee s +ee p )}3.Results and discussionLipases have been of significant interest because of their wide substrate specificity.In this study,the specificity of lipases belonging to four structural groups (Table 1)has been exploited over a range of substrates based on the substrate site bind-ing geometry.Fig.1illustrates the four structural classes in this paper.The structural geometry of the lipase is the first indication on the substrate binding possibility in the specific lipase type.Hydrogen bonding,van der Waals contacts and elec-trostatic interactions are the second important factors for the binding possibility.The X-ray structures indicate the potential main structural appearance of the enzyme under activated and inactivated conditions,respectively.In the present work the X-ray structures in the so-called “open”forms are used.For the practical measurements the structural forms may be dif-ferent and of course more dynamic,and for the lipases with lids and flaps which need activation (like TlL,RmL,FoL,CrL,etc.)the experimental conditions have special impact on the binding of substrate to the enzyme.The assay condition has thus been focused to work with both lipases that need activa-tion (CaLA)and those that need little or no activation (FsC and CaLB).In accordance with the above hypothesis,two categories of substrates i.e.fatty acid esters were selected (A)substrates either branched/large on the alcohol part or (B)substrates either branched/large on the acid part.Examples included in first category substrates—Isobutyl propionate,Styrallyl butyrate,2-ethyl-hexyl acetate and Cyclohexyl acetate.Examples included in the second category substrates—Ethyl-2-methyl butyrate,Ethyl-2-ethyl-hexanoate,Ethyl benzoate and ethyl-2-phenylpropionate.One of these substrates –ethyl-2-phenylpropionate is shown in Fig.2,which shows how the substrate –a profen core [20]–docks in a substrate binding pocket of CaLB (Fig.2).Most of the enzymes accept group “A”substrates,however,CaLA type enzymes,which are capable of accepting large alcohol groups,show highest activity.CaLB on the other hand is more strin-gent with respect to alpha carbon branching on the alcohol side as shown by its activity on styrallyl butyrate (Fig.3A).2-ethylhexyl acetate was chosen as a representative substrate for category A substrate and the enantioselectivity of all four groups of enzymes was checked this compound.Most of the enzymes except CaLB could not distinguish between the enantiomers (Fig.4).Docking studies (not shown here)showed that the different enan-tiomers bind in a similar fashion,which makes it hard for theS.Naik et al./Journal of Molecular Catalysis B:Enzymatic65 (2010) 18–2321Fig.2.(A)The acid and alcohol part of the substrate.(B)A profen core compound docked in the active site of CaLB.Fig.3.Enzyme activity on“branched”/“large”substrates on alcohol part(A)and acid part(B).The activity is given in conversion percentage of total amount substrate.Two conditions were chosen:Triton0,1%or Acetone5%,Buffer:50mM Tris-buffer,pH7,Amount of enzyme:0,5mg,Substrate volume:50l,All the reactions were performed in 30◦C and24h.The reactions were stopped with100l1M HCl and the reactants are extracted with dichloromethane.20l of the organic phase was diluted with diethylether and put on the GC.22S.Naik et al./Journal of Molecular Catalysis B:Enzymatic65 (2010) 18–23Fig.3.(Continued ).enzyme to experience any difference.This is probably due to the negligible size differences of the substituents in the branch-ing.CaLB showed very high enantioselectivity on 2-ethyl hexyl acetate.Therefore,it was decided to check the enantioselectivity of CaLB variants T103G,M72L and W104H [19]on the same sub-strate.The CaLB variant T103G which introduced the consensus mutation G-X-S-X-G in CaLB,thereby increasing thermostabil-ity,has shown reduced enantioselectivity towards 2-ethyl hexyl acetate (Fig.4).The CaLB variant W104H in which more space is introduced into the active site has shown 6.7-fold increase in enantioselectivity (Fig.4).The CaLB variant M72L having higher oxidation stability has also shown decrease in the enantioselectiv-ity (Fig.4).In group B substrates,ethyl-2-methyl butyrate was easily hydrolyzed by most of the enzymes (Fig.3B).The analysis based on molecular docking of CrL and TlL with this substrate showed that the R-enantiomer docked in an active fashion while the S docked with the oxygen orientated in the wrong direc-tion.This has also been shown by the results in which CaLA is showing better enantioselectivity than all the other groups (Fig.4).The hydrolysis of all other substrates was enzyme specific.RmL was the only enzyme which was capable of hydrolyzing Ethyl 2-ethylhexanoate (larger branch on acid part)(Fig.3B).This is prob-ably due to the large hydrophobic area of the active site of the RmL.Ethyl benzoate which had benzene ring on acid part was hydrolyzed only by CrL,TlL and CaLB (Fig.3B)whereas phenyl propionic acid ethyl ester having profen core structure was hydrolyzed only by enzymes in the CaLB group (Fig.3B).In conclusion,lipases are found to be more active on the alcohol branched substrates than acid-branched substrates.As depicted in the figures,for alcohol side large substrates,CaLA and RmL type enzymes give the highest extent of hydrolysis,while for large acid substrates the highest conversion was shown by CaLB.It is note-S.Naik et al./Journal of Molecular Catalysis B:Enzymatic65 (2010) 18–2323Fig.4.Enantioselective ratio of CaLA,CaLB,CaLB(T103G),CaLB(M72L)and CaLB (W104H),HiC,TlL and CrL-1on2-ethyl hexyl acetate and Ethyl-2-methyl butyrate.worthy that the large acid substrates which had aromatic side chains were hydrolyzed only by CaLB type of enzymes.4.ConclusionsStructural space for acceptance of substrates of different shapes in lipases from the groups of RmL,CaLA,CaLB and Cutinase has been explored.The RmL group allows large alcohol part substrate,but more limited/narrow acyl binding cleft on the acid part.CaLA group exhibits strong restriction on the acid part having a narrow tunnel to accommodate the acyl group from the acid part of the substrate and a much wider space on the alcohol part allowing highly branched and large groups on the alcohol part.The CaLB group shows more space on the acid part and less on the alcohol part and with restriction on the branching at CA carbon.Cutinase group has a reasonable open space on both the alcohol and the acid part of the substrate.This structural understanding was tested with the8substrates giving an overall result pointing in the same direction as the structural understanding.References[1]K.E.Jaeger,T.Eggert,Curr.Opin.Biotechnol.13(2002)390–397.[2]M.T.Reetz,Curr.Opin.Chem.Biol.6(2002)145–150.[3]S.T.Chen,J.M.Fang,.Chem.62(1997)4349–4357.[4]T.Shibatani,K.Omori,H.Akatsuka,E.Kawai,H.Matsumae,J.Mol.Catal.B.Enzym.10(2000)141–149.[5]H.Bernsmann,M.Gruner,P.Metz,Tetrahedron Lett.41(2000)7629–7633.[6]U.Ader,P.Andersch,M.Berger,U.Goergens,R.Seemayer,M.Schneider,PureAppl.Chem.64(1992)1165–1170.[7]V.Gotor-Fernandez,R.Brieva,V.Gotor,J.Mol.Catal.B Enzym.40(2006)111–120.[8]G.Beck,Synlett(2002)837–850.[9]O.Kirk,T.V.Borchert,C.C.Fuglsang,Curr.Opin.Biotechnol.13(2002)345–351.[10]P.B.Juhl,P.Trodler,S.Tyagi,J.Pleiss,BMC Struct.Biol.9(2009).[11]D.E.Robertson,B.A.Steer,Curr.Opin.Chem.Biol.8(2004)141–149.[12]P.A.Romero,F.H.Arnold,Nat.Rev.Mol.Cell Biol.10(2009)866–876.[13]M.J.Dougherty,F.H.Arnold,Curr.Opin.Biotechnol.20(2009)486–491.[14]J.D.Bloom, F.H.Arnold,A106(Suppl.1)(2009)9995–10000.[15]A.G.Sandstrom,K.Engstrom,J.Nyhlen,A.Kasrayan,J.E.Backvall,Protein Eng.Des.Sel.22(2009)413–420.[16]O.May,P.T.Nguyen,F.H.Arnold,Nat.Biotechnol.18(2000)317–320.[17]D.Zha,S.Wilensek,M.Hermes,E.J.Karl,M.T.Reetz,mun.(2001)2664–2665.[18]J.Pleiss,M.Fischer,R.D.Schmid,Chem.Phys.Lipids93(1998)67–80.[19]S.Patkar,J.Vind,E.Kelstrup,M.W.Christensen,A.Svendsen,K.Borch,O.Kirk,Chem.Phys.Lipids93(1998)95–101.[20]E.Henke,S.Schuster,H.Yang,U.T.Bornscheuer,Monatshefte fur Chemie131(2000)633–638.。
(完整版)《科技英语阅读教程》陈勇版课文翻译

核电与核辐射1986年4月26日,切尔诺贝利核电站的一个反应堆发生爆炸,将相当于400颗广岛原子弹的放射性尘降物散布到整个北半球。
在此之前,科学家对辐射对植物和野生动物的影响几乎一无所知。
这场灾难创造了一个活生生的实验室,尤其是在这个被称为禁区的1100平方英里的区域。
1994年,德州理工大学生物学教授罗纳德·切瑟和罗伯特·贝克是首批获准完全进入该区域的美国科学家之一。
“我们抓了一群田鼠,它们看起来和野草一样健康。
我们对此非常着迷。
”贝克回忆说。
当Baker和Chesser对田鼠的DNA进行测序时,他们没有发现异常的突变率。
他们还注意到狼、猞猁和其他曾经稀有的物种在这片区域游荡,仿佛这里是原子野生动物保护区。
2003年由一组联合国机构建立的切尔诺贝利论坛发表了声明一份关于灾难20周年的报告证实了这一观点,称“环境条件对该地区的生物群落产生了积极影响”,将其转变为“一个独特的生物多样性保护区”。
五年前,贝克和切塞尔在这片区域搜寻田鼠。
Mousseau到切尔诺贝利去数鸟,发现了与之相矛盾的证据。
穆萨乌是南卡罗莱纳大学的生物学教授,他的合作者安德斯·佩普·穆勒现在是巴黎南方大学生态、系统学和进化实验室的研究主任。
他们发现该地区家燕的数量要少得多,而那些存活下来的家燕则遭受着寿命缩短、(雄性)生育能力下降、大脑变小、肿瘤、部分白化病(一种基因突变)以及白内障发病率更高的痛苦。
在过去13年发表的60多篇论文中,Mousseau和Moller指出,暴露在低水平辐射下对该区域的整个生物圈产生了负面影响,从微生物到哺乳动物,从昆虫到鸟类。
包括贝克在内的批评人士对穆萨和穆勒持批评态度。
贝克在2006年与切塞尔合著的《美国科学家》(American Scientist)文章中指出,该区域“实际上已成为一个保护区”,穆萨和穆勒的“令人难以置信的结论只得到了间接证据的支持”。
我们所知道的关于电离辐射对健康影响的几乎所有信息都来自于一项正在进行的对原子弹幸存者的研究,该研究被称为寿命研究,简称LSS。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物催化工程的第三次浪潮过去的十年里,由于科技的进步,无论是实验室还是工业规模都已确定用具实用性并且环保的生物催化来代替化学合成中的传统的金属催化和有机催化。
DNA测序以及基因合成的关键进展是基于剪切生物催化剂通过蛋白质工程和设计,及将酶整合入新的生物合成途径的能力取得的巨大进步。
为了突出这些成就,在此我们讨论了以酶催化作为关键步骤,将蛋白质-动力学生物催化剂应用于从通用化学品到先进医药中间体的范围。
生物催化是对合成化学中微生物和酶的应用,作为自然界的催化用于新的目的:酶的应用还未涉及到[1-5]。
通过几次技术研究创新的浪潮,目前生物催化领域已达到其企业成熟水平。
图1酶发现的进程及用于确定所需催化剂的蛋白质工程策略理性设计(b)基于蛋白结构(a)或是同源模建识别不同的突变位点,而随机突变(c)与筛选或是选择结合是定向进化实验的基础。
结合这些方法使构建更小型但更智能的数据库(d)成为可能。
现在通过富集培养(e)对酶进行传统筛选已被关键的主题数据库检索(f)代替以指导新型酶或是他们具备的所需特性的确定。
在其初期仍是酶的设计(g)的从头计算(从头合成de novo)。
内部结构指的是通过生物催化不同的浪潮可得到的进行化学物质。
(R)-苯乙醇腈(左)在100年前的植物提取物中已经获得;(1S,3S)-3-氨基环己醇(中)由Novartis公司利用一种固定化酯酶制成;6-氯-2,4,6-3脱氧-D-赤型六吡喃环(右)由DSM用一个设计的醛缩酶耐受高浓度乙醛并且获得高选择性的过程制的。
生物催化的第一次浪潮(图1),始于一个多世纪以前,科学家认识到活细胞的组成成分可以应用于有效地生物转化(相对于几千年已经司空见惯的发酵过程)。
例如,Rosenthaler利用一种植物提取物从苯甲醛和氰化氢合成的(R)-苯乙醇腈[6];发生在微生物细胞内的类固醇的羟化[7]也已知。
较新的例子即洗衣粉中蛋白酶的利用[8]。
葡萄糖异构酶将葡萄糖转化为更甜味的果糖[9],青霉素G酰基转移酶制备半合成抗体[10]。
这些应用关键挑战在于生物催化剂稳定性的限制及诸如此类的缺点主要通过酶的固定化来克服,这也有利于酶的重复利用。
生物催化的第二次浪潮,在20世纪80到90年代,最初的蛋白质动力学技术,代表性的即基于结构的技术,扩大了酶的底物范围以允许异常的合成中间产物的合成。
这一变化将生物催化扩展到医药中间体和精细化学品的制备。
实例包括脂肪酶催化水解手性前体用于合成地尔硫卓(一种治疗血压药物),醇腈酶催化合成醇类对映异构体应用于降胆固醇抑制素药物,脂肪酶催化合成蜡酯类物质例如肉豆蔻醇肉豆蔻酸酯或是十六烷基蓖麻醇酸酯用于化妆品工业,以及腈类水合酶催化水合丙烯腈形成丙烯酰胺用于高分子材料(这类腈类水合酶已在紫红红球菌全细胞中获得)。
除固定化之外,目前的挑战包括优化用于非天然底物的催化剂。
现阶段,生物催化的第三大浪潮开始于20世纪九十年代中后期Pim Stemmer 和Frances Arnold的工作。
他们首创了分子生物学方法,通过达尔文进化论体外实验快速大量地修饰催化剂。
尽管这一术语于1972年的全细胞实验中曾被用过,现在这一方法通常称为定向进化,这一技术的最初方法涉及到在一个蛋白质中氨基酸的随机突变的迭代循环法,随后从酶稳定性提高,底物特异性以及对应选择性的突变体形成的库中筛选法。
讨论到此,今后的发展已经集中于提高定向进化的效率以产生“更智能地”数据库。
工业生物催化主要集中于水解酶,一些酮还原酶(KREDs),以及辅因子再生和在有机溶剂中蛋白质的稳定性研究。
在某些情况下,优化代谢途径;例如,融合不同的自然界菌株的基因于一个新的宿主细胞以产生1,3-丙二醇(形成多聚体的单体),使得将甘油转变为更易被利用的原料葡萄糖成为可能。
由于现在的生物催化浪潮取得的进展,将酶设计成引人瞩目的新功能,例如接受之前的惰性基质(孟鲁司特的KRED或是西他列汀的转氨酶),或是改变形成产物的性质(萜环化酶突变体可作用于不同的萜烯或是氨基酸代谢物使醇类作为生物燃料)。
如今需要新型酶将生物量转换为第二或第三代生物燃料,材料和化学品。
第三大浪潮的主要发展是先进的酶工程(包括定向进化),基因合成,序列分析,生物信息工具和计算机模拟,并且酶改进的理论进展可能比原来预期的要更显著。
工程酶可以在含有60uC的有机溶剂的溶液中保持稳定,可以接受新的底物以及催化新的非天然反应。
目前这一工程可能需要几个月,这样大大扩展潜在的应用。
过去,设计酶化的过程受到酶的限制;目前,酶设计逐渐适应工艺规范。
大约十年前,《Nature》和《Science》的文献综述了第一次和第二次生物催化浪潮,提出了可能带来的第三次浪潮的提示。
现今及时评估第三次浪潮的影响及推测未来十年可能的带来什么进展(框1)。
尽管生物催化涉及到代谢工程和合成生物学,但这些综述重点是针对酶法和全细胞反应。
框1 生物催化应用要求及实例传统的生物催化,天然产物采用自然反应和途径转变成其他天然产物。
技术要求:尽可能控制自然生物转化;实例:面包和奶酪制作,皮革加工,啤酒和酒发酵,及天然抗生素生成。
宽底物范围生物催化,化学中间体(非天然产物)通过自然反应和途径转变成其他化学中间体。
技术要求:特定酶的使用(没有干扰活性存在);概念要求:许多酶具有宽的底物范围;实例:采用酯酶和羰基还原酶(乙醇脱氢酶)生产医药适应酶工程的制造工艺为了最大限度降低成本,化工业需要在希望的工艺条件下产生稳定的,选择性的及高产的催化剂。
这样的加工的酶设计先要确定设计目标,例如增加稳定性,可选择性,底物范围,或是通常这些性质的结合。
2000年,第三大浪潮前,只有很少的策略可以满足这些目标。
酶的固定化可以增加蛋白的稳定性,但是稳定性的增加幅度较温和而且往往不能满足大多数化学转化。
定向进化也有可能满足这些目标,但仍然缓慢,因为它需要对大型数据库进行建立和筛选,而且这些数据库中大部分突变体是活性降低甚至没有活性的。
大幅改进的例子很少与产业相关。
低速意味着进化的蛋白仅包含一些变化,因此,酶性质仅稍微得到改变。
尽管几百年来酶法工艺已经应用于工业,但大部分设计的酶和全细胞从遗传学上已被最低限度的改变了。
生产过程中的高活性稳定性增加热稳定性的最高温度增肌对有机溶剂稳定底物缺失和/或产物抑制储存和运输热稳定性增加选择性提高(对应选择性、位置选择性、化学选择性)作用新底物催化新反应……未折叠酶不稳定折叠酶稳定增加底物结合阻止多余底物重塑底物结合位点添加主要力学过程……△G构建空间位阻添加氢键和离子对通过形成环降低或增加柔性(熵)疏水相互作用……通过随机突变,定点突变,定点饱和突变,转基因等得到突变体接近反应条件的条件下进行检测采用生物信息学工具如ProSAR优化确定提高适应性的突变体或是氨基酸替换提高目的基因转录效率(超表达,高保真)增加mRNA稳定性提高mRNA翻译效率调整启动子长度改进核糖体结合序列增加适合有机体酶生成的密码子的使用当需要合适的折叠时增加密码子使用以加速或降低翻译敲除催化底物或产物副反应的酶的密码子或是讲解目的酶图2通过蛋白质工程策略结合自由能(△G)设计目标所需的结构改变这一推理需要利用更集中的数据库。
如果设计目标并非在于开始酶的作用,那么大变化的自由能是必要的。
对蛋白质伸展及反应机理的力学和动力学的理解确定达到设计目标的设计策略。
最终,结构分析(从定性的检测到大量的计算机模拟的差异)可以确定必须改变的区域和氨基酸。
需要高的自由能变化的目标将同样需要结构上更广泛的变化。
过去的十年里,我们对蛋白质和有效地定向进化策略属相的理解都加深,可能酶学性质发生巨大改变。
总的来说,酶工程仍将是通过运用各种解决目前问题可能的方法,对研究成果进行收集,而不是例如用在那些土木,电器,软件或是化学工程的学科的定量的方法。
这些实验研究转化为动力学原理将需要运用自由能与设计目标产物结合成需要的结构变化(图2)。
性质的巨大转变需要自由能的较大转变。
例如,稳定性的明显改变将需要折叠-伸展平衡时更多的自由能变化。
(甚至蛋白质不可逆的伸展起始于一个可逆的部分伸展。
)对蛋白质分子生物学的理解暗示着策略可得到改善。
例如,表面残基促进折叠-伸展平衡,并且在环区增加一个脯氨酸会降低伸展形式的熵。
这些策略代替了随机突变(大部分具有更差的性质)巨大的数据库,而是包含高比例具有活性且潜在的改进的突变体组成的更小的,更集中的蛋白质数据库(图1)。
最后,通过估算各种反应(表面离子对或是增加脯氨酸对熵变的贡献)的强度,研究者可以估算出达到目标所需的变化。
目前很少有研究人员明确的应用基于自由能的方法来计算蛋白质自由能策略,但是将实验研究转变入动力学原理需要一种定量的方法。
新的改进的方法过去的十年里,DNA技术和生物信息学主要进展已经为生物催化领域提供了关键性的支持。
这些工具已经促进了自然资源中新型酶的发现,并且大体上加速了目前生物催化剂的重新设计。
先进的DNA技术新一代的DNA测序技术已可以大规模且相当低成本地进行平行序列的分析。
然而,2002年人类基因组序列分析的成本估计为70,000,000美元,2012年成本已大大降低了1,000倍,低于10,000美元(参考34),Life Technologies 公司,Illumina 公司和Oxford Nanopore Technologies公司已宣布能够在几个小时内对人类全基因组完成测序的测序设备的设计经在2012年晚些推出,这将使每一个基因组的成本降低至少于1,000美元。
不同环境的有机体的全基因组序列,或是环境中的不可培养的有机体(宏基因组)的DNA样本,都已建立了丰富的资源,以供在其中搜索新型生物催化剂[35],而且会继续进行。
运用Illumina 技术进行大规模的高通量测序(10,000,000序列读取)也促进了对蛋白质序列-功能关系的探索和了解[36]。
低成本DNA合成已代替基因组DNA的分离成为蛋白质工程的开端。
全基因DNA合成可以进一步为宿主生物体优化密码子,将分子总体结构例如启动子,终止子,增强子,限制性位点等引入到合适的位点。
DNA合成应用传统的亚磷酰胺化学法,但是优化的反应条件已经提高了配对效率,这样增加了聚合物整体质量和数量使得序列可以甚至达到200-250个核苷酸长度。
并行DNA合成应用光刻和喷墨印刷技术进一步降低成本并实现快速合成[37]。
DNA合成也已被用于染色体DNA的整个部分甚至用于代谢途径工程的全基因组的合成[38]。
全基因合成也可被用于合成高质量DNA数据库,范围从小型,集中,饱和位点数据库到大型,综合性的基因库。
自定义的基因甚至基因库正成为类似如今研究实验室使用的试剂和溶剂的商业化化学品。