负载均衡器部署方式和工作原理

合集下载

服务器负载均衡的原理和实现方式

服务器负载均衡的原理和实现方式

服务器负载均衡的原理和实现方式服务器负载均衡是指在网络服务器集群中,通过某种策略将客户端的请求分发到多台服务器上,以达到均衡服务器负载、提高系统性能和可靠性的目的。

本文将介绍服务器负载均衡的原理和实现方式。

一、负载均衡的原理1.1 负载均衡的作用在网络服务器集群中,随着用户数量和访问量的增加,单台服务器可能无法满足所有用户的请求,容易导致服务器负载过高、性能下降甚至宕机。

负载均衡的作用就是通过将用户请求分发到多台服务器上,使得每台服务器的负载相对均衡,提高系统的整体性能和可靠性。

1.2 负载均衡的原理负载均衡的原理主要包括以下几个方面:(1)请求分发:负载均衡设备接收到用户的请求后,根据预先设定的负载均衡算法,将请求分发到服务器集群中的某一台服务器上处理。

(2)健康检测:负载均衡设备会对服务器集群中的每台服务器进行健康检测,监测服务器的负载情况、性能状态等,以确保只有正常工作的服务器参与请求处理。

(3)负载均衡算法:常见的负载均衡算法包括轮询算法、加权轮询算法、最小连接数算法、最小响应时间算法等,不同的算法适用于不同的场景,可以根据实际需求选择合适的算法。

1.3 负载均衡的优势负载均衡技术能够提供以下几方面的优势:(1)提高系统性能:通过将请求分发到多台服务器上,有效减轻单台服务器的负载压力,提高系统的整体性能。

(2)提高系统可靠性:当某台服务器发生故障时,负载均衡设备可以自动将请求转发到其他正常工作的服务器上,保证系统的可靠性。

(3)扩展系统规模:通过增加服务器数量,可以灵活扩展系统的规模,应对不断增长的用户请求。

二、负载均衡的实现方式2.1 硬件负载均衡硬件负载均衡是通过专门的负载均衡设备(如F5、CISCO等)来实现的,这些设备具有强大的处理能力和丰富的负载均衡算法,能够有效地分发用户请求并监控服务器状态。

硬件负载均衡通常适用于大型网络环境,能够提供高性能和高可靠性的负载均衡服务。

2.2 软件负载均衡软件负载均衡是通过在普通服务器上安装负载均衡软件来实现的,常见的软件负载均衡方案包括Nginx、HAProxy、LVS等。

局域网组建使用网络负载均衡器进行流量分配

局域网组建使用网络负载均衡器进行流量分配

局域网组建使用网络负载均衡器进行流量分配在现代企业和组织的网络环境中,局域网(Local Area Network,LAN)扮演着重要的角色。

随着网络规模的扩大和流量的增加,如何有效地管理和分配流量成为一个迫切的问题。

为了解决这一问题,网络负载均衡器应运而生。

本文将讨论局域网组建使用网络负载均衡器进行流量分配的相关内容。

一、网络负载均衡器的工作原理网络负载均衡器是一种能够将传入的网络流量分发到多台服务器上的设备。

它基于一系列算法,如轮询、加权轮询、最小连接等,将流量均衡地分配给不同的服务器,以实现负载均衡。

网络负载均衡器通常位于服务器和外部网络之间,充当了一个中间人的角色。

它拦截并分析传入的流量,并根据预设的分发策略将流量转发到不同的服务器。

通过这种方式,网络负载均衡器可以提高服务器的整体性能和可靠性,同时还能提供灵活的扩展能力。

二、局域网组建网络负载均衡器的必要性在多台服务器组成的局域网环境中,可能存在一些服务器负载过高、网络带宽利用不平衡的问题。

这些问题会导致某些服务器负荷过大,而其他服务器却处于闲置状态。

为了充分利用服务器资源,提高服务的可靠性和性能,使用网络负载均衡器进行流量分配是非常必要的。

网络负载均衡器能够智能地将流量分发到不同的服务器上,避免单一服务器过载。

同时,它还可以根据服务器的健康状态进行流量调整,确保所有服务器的负载均衡。

通过使用网络负载均衡器,局域网中的服务器能够充分发挥作用,提高整个系统的性能和可靠性。

三、网络负载均衡器的部署和配置要在局域网中使用网络负载均衡器进行流量分配,需要进行一系列的部署和配置工作。

首先,需要选择适合的网络负载均衡器设备。

市面上有许多商业化的网络负载均衡器产品可供选择,也有一些开源的解决方案。

根据具体需求和预算,选择一个合适的负载均衡器设备。

其次,需要将负载均衡器设备与局域网中的服务器进行连接。

通常情况下,负载均衡器设备会有多个网络接口,用于连接到内部服务器和外部网络。

负载均衡器部署方式和工作原理

负载均衡器部署方式和工作原理

负载均衡器部署方式和工作原理2011/12/16 小柯信息安全在现阶段企业网中,只要部署WEB应用防火墙,一般能够遇到负载均衡设备,较常见是f5、redware的负载均衡,在负载均衡方面f5、redware的确做得很不错,但是对于我们安全厂家来说,有时候带来了一些小麻烦。

昨日的一次割接中,就遇到了国内厂家华夏创新的负载均衡设备,导致昨日割接失败。

在本篇博客中,主要对负载均衡设备做一个介绍,针对其部署方式和工作原理进行总结。

概述负载均衡(Load Balance)由于目前现有网络的各个核心部分随着业务量的提高,访问量和数据流量的快速增长,其处理能力和计算强度也相应地增大,使得单一的服务器设备根本无法承担。

在此情况下,如果扔掉现有设备去做大量的硬件升级,这样将造成现有资源的浪费,而且如果再面临下一次业务量的提升时,这又将导致再一次硬件升级的高额成本投入,甚至性能再卓越的设备也不能满足当前业务量增长的需求。

负载均衡实现方式分类1:软件负载均衡技术该技术适用于一些中小型网站系统,可以满足一般的均衡负载需求。

软件负载均衡技术是在一个或多个交互的网络系统中的多台服务器上安装一个或多个相应的负载均衡软件来实现的一种均衡负载技术。

软件可以很方便的安装在服务器上,并且实现一定的均衡负载功能。

软件负载均衡技术配置简单、操作也方便,最重要的是成本很低。

2:硬件负载均衡技术由于硬件负载均衡技术需要额外的增加负载均衡器,成本比较高,所以适用于流量高的大型网站系统。

不过在现在较有规模的企业网、政府网站,一般来说都会部署有硬件负载均衡设备(原因1.硬件设备更稳定,2.也是合规性达标的目的)硬件负载均衡技术是在多台服务器间安装相应的负载均衡设备,也就是负载均衡器来完成均衡负载技术,与软件负载均衡技术相比,能达到更好的负载均衡效果。

3:本地负载均衡技术本地负载均衡技术是对本地服务器群进行负载均衡处理。

该技术通过对服务器进行性能优化,使流量能够平均分配在服务器群中的各个服务器上,本地负载均衡技术不需要购买昂贵的服务器或优化现有的网络结构。

阿里云clb负载均衡工作原理

阿里云clb负载均衡工作原理

阿里云clb负载均衡工作原理
阿里云CLB(Cloud Load Balancer)是阿里云提供的一种负载均衡服务,它旨在提高应用程序的可用性和性能,通过分发网络流量到多个后端服务器来防止单点故障。

阿里云CLB的工作原理可以概括为以下几个主要步骤:
1. **流量接收**:当用户请求到达CLB时,CLB会接收这个请求。

2. **健康检查**:CLB会定期对后端服务器进行健康检查,以确保只有健康的服务器接收流量。

不健康的服务器将被从负载均衡中移除,直到它们恢复健康。

3. **流量分发**:CLB根据预定义的负载均衡策略(如轮询、加权轮询、加权最小连接数等)将请求分发到不同的后端服务器。

这样可以确保负载均衡器根据服务器的当前负载和健康状况智能地分配流量。

4. **会话保持**:对于需要保持会话状态的应用程序,CLB可以实现会话保持,确保来自同一客户端的请求在同一个会话中被分发到同一台服务器,从而保持用户状态的一致性。

5. **服务响应**:后端服务器处理请求后,将响应返回给CLB。

CLB 再将响应返回给用户。

6. **自动伸缩**:阿里云CLB支持自动伸缩,可以根据实时的负载情况自动增加或减少后端服务器的数量,以应对流量的高峰和低谷。

7. **安全性**:CLB还提供了DDoS防护功能,可以抵御各种网络攻击,保护应用程序的安全。

阿里云CLB旨在简化部署和管理,用户可以通过阿里云控制台或API 来配置和管理负载均衡器,以适应不同业务需求和流量模式。

通过这种方式,企业可以确保他们的应用程序具有高可用性、高性能和良好的用户体验。

负载均衡的工作原理

负载均衡的工作原理

负载均衡的工作原理一、引言在现代互联网应用中,随着用户数量和访问量的不断增加,单台服务器往往难以承受巨大的访问压力。

为了提高系统的性能和可用性,负载均衡技术应运而生。

本文将详细介绍负载均衡的工作原理。

二、什么是负载均衡负载均衡(Load Balancing)是一种将工作负载均匀分布到多个服务器上的技术。

通过将请求分发到不同的服务器,实现提高系统性能、增加系统可用性、降低单点故障风险的目的。

三、负载均衡的工作原理1. 客户端请求当客户端发起请求时,请求首先到达负载均衡设备。

负载均衡设备可以是硬件设备(如F5 BIG-IP)或软件设备(如Nginx、HAProxy)。

2. 转发策略负载均衡设备根据预设的转发策略,选择一台服务器作为目标服务器。

常见的转发策略有轮询、最小连接数、最少响应时间等。

3. 转发请求负载均衡设备将客户端的请求转发到选定的目标服务器上。

转发可以采用两种方式:一是直接将请求转发给目标服务器,二是通过修改DNS记录,将请求的域名解析到目标服务器的IP地址。

4. 服务器处理目标服务器接收到请求后,根据业务逻辑进行处理,并将处理结果返回给负载均衡设备。

5. 返回响应负载均衡设备将服务器返回的响应转发给客户端,完成整个请求-响应过程。

四、负载均衡的实现方式1. 硬件负载均衡硬件负载均衡器通常是一种专门设计的硬件设备,具有高性能和高可用性。

它们通常使用定制的操作系统和硬件加速技术,能够处理海量的并发请求。

2. 软件负载均衡软件负载均衡器是一种运行在普通服务器上的软件程序,通过软件实现负载均衡功能。

常见的软件负载均衡器有Nginx、HAProxy等。

相对于硬件负载均衡器,软件负载均衡器更加灵活,可以在普通服务器上部署,成本更低。

五、负载均衡的优势1. 提高系统性能:负载均衡可以将请求均匀分发到多台服务器上,避免某台服务器过载,从而提高系统的吞吐量和响应速度。

2. 增加系统可用性:通过将请求分发到多台服务器上,当某台服务器出现故障时,其他服务器仍然可以继续提供服务,保证系统的可用性。

F5链路负载均衡解决方案LC

F5链路负载均衡解决方案LC

F5链路负载均衡解决方案LCF5是一家全球领先的应用交付与安全解决方案提供商,提供了多种链路负载均衡解决方案。

其中,F5的链路负载均衡解决方案LC以其高可用性、灵活性和可扩展性而备受青睐。

本文将详细介绍F5链路负载均衡解决方案LC的特点、工作原理、部署方式和优势。

1.高可用性:F5LC采用活动-备份的部署方式,当主链路故障时,备份链路会立即接管,以保证业务的连续性和可用性。

2.负载均衡:F5LC可以根据不同的负载均衡算法,将流量均匀地分配到多个链路上,避免其中一条链路被过载,提高整体性能。

3.智能流量管理:F5LC可以根据网络状况、链路质量和带宽利用率等因素来智能调整流量分配,以提供最佳的用户体验。

4.安全性:F5LC提供了多种安全特性,如DDoS防护、SSL加密解密、WAF等,以保护网络和应用不受攻击。

5.可扩展性:F5LC支持水平扩展,可以随着业务的增长而添加更多的链路,并自动进行流量分配和故障切换。

F5LC通过在链路前端部署负载均衡设备,将流量均匀地分配到多个链路上,以提高系统的吞吐量和响应速度。

其工作原理如下:1.客户端向F5负载均衡设备发送请求。

2.F5负载均衡设备根据配置的负载均衡算法,选择一条健康的链路,并将请求转发给该链路上的服务器。

3.服务器接收到请求后,处理并返回响应给F5负载均衡设备。

4.F5负载均衡设备将响应返回给客户端。

F5LC可以以硬件形式部署在数据中心的网络架构中,也可以以虚拟化形式部署在云环境中。

具体的部署方式包括以下几种:1.单一数据中心:将负载均衡设备直接部署在数据中心内,用于分发流量到多个服务器。

2.多数据中心:在多个数据中心分别部署负载均衡设备,并通过跨数据中心的链路进行流量分发和故障切换。

3.云环境:将负载均衡设备以虚拟化的形式部署在云平台上,与云服务提供商的负载均衡服务相结合,提供更加可靠的负载均衡能力。

1.高性能:F5LC采用硬件加速和专用芯片技术,能够处理大量的并发请求,满足高负载的需求。

f5负载均衡部署方案

f5负载均衡部署方案

f5负载均衡部署方案负载均衡是一种常见的网络部署策略,旨在分配网络流量,确保服务器资源的高效利用和提高系统的可用性和可伸缩性。

而F5负载均衡设备是目前业界较为常用的一种解决方案,具有强大的性能和灵活的配置能力。

本文将介绍F5负载均衡的部署方案,并探讨其优势和适用场景。

一、F5负载均衡的基本原理F5负载均衡设备采用Layer 4和Layer 7的负载均衡算法,能够根据源IP地址、目标IP地址、协议类型、传输层端口等多种因素进行智能调度,将用户请求合理地分发给后端服务器。

基于Layer 7的调度算法还可以根据应用层协议特性进行高级匹配和调度,进一步提高负载均衡的效果。

二、F5负载均衡的部署方案1. 单臂模式部署单臂模式是一种基本的F5负载均衡部署方式,通过将负载均衡设备插入到服务器和网络之间,实现数据包的转发和调度。

在单臂模式下,负载均衡设备需要配置虚拟IP地址,将客户端请求转发给后端的多个服务器。

单臂模式适用于小型网络环境,配置简单,但同时可能存在单点故障的风险。

2. 双臂模式部署双臂模式是一种更为灵活和可靠的F5负载均衡部署方式。

在双臂模式下,负载均衡设备不仅插入到服务器和网络之间,还插入到防火墙和网络之间,实现更全面的流量管理和安全策略控制。

通过与防火墙的联动,双臂模式可以对入侵和攻击进行有效的防范和阻挡。

3. 高可用部署为了提高系统的可用性,可以采用F5负载均衡设备的高可用部署方案。

高可用部署通常需要配置两台负载均衡设备,通过VRRP(虚拟路由冗余协议)或其他技术实现设备之间的状态同步和故障切换。

当一台设备发生故障时,另一台设备能够自动接管流量管理,从而保证系统的持续可用性。

4. SSL加速与安全F5负载均衡设备还可以实现SSL加速和安全策略控制。

SSL加速通过在负载均衡设备上进行SSL/TLS终结,减轻后端服务器的计算压力,提高SSL协议的处理性能。

同时,F5负载均衡设备可以通过SSL 握手检测和WAF(Web应用防火墙)等技术,保护应用程序和数据的安全。

服务器负载均衡原理与配置技巧

服务器负载均衡原理与配置技巧

服务器负载均衡原理与配置技巧随着互联网的快速发展,越来越多的网站和应用程序需要部署在服务器上,而服务器的负载也随之增加。

为了保证服务器的稳定性和性能,服务器负载均衡技术应运而生。

本文将介绍服务器负载均衡的原理和配置技巧,帮助您更好地理解和应用这一重要的技术。

一、负载均衡原理1.1 什么是负载均衡负载均衡(Load Balancing)是一种通过将网络请求分发到多个服务器上,以达到均衡服务器负载、提高网站性能和可靠性的技术。

通过负载均衡,可以有效地避免单点故障,提高系统的可用性和扩展性。

1.2 负载均衡的工作原理负载均衡器位于客户端和服务器之间,接收来自客户端的请求,然后根据一定的算法(如轮询、最小连接数、最少响应时间等)将请求分发给后端的多台服务器。

这样可以使每台服务器的负载相对均衡,提高整个系统的性能和稳定性。

1.3 负载均衡的优势- 提高系统的可用性:通过负载均衡,可以避免单点故障,当某台服务器发生故障时,负载均衡器会自动将请求转发给其他正常的服务器,保证系统的正常运行。

- 提高系统的性能:负载均衡可以根据服务器的负载情况动态调整请求的分发策略,使每台服务器的负载相对均衡,提高系统的整体性能。

- 提高系统的扩展性:通过增加服务器的数量,可以很容易地扩展系统的处理能力,应对日益增长的用户请求。

二、负载均衡的配置技巧2.1 选择合适的负载均衡算法在配置负载均衡时,需要根据实际情况选择合适的负载均衡算法。

常见的负载均衡算法包括轮询(Round Robin)、最小连接数(Least Connections)、最少响应时间(Least Response Time)等。

不同的算法适用于不同的场景,需要根据实际情况进行选择。

2.2 配置健康检查为了及时发现服务器的故障或异常,可以配置健康检查(Health Check)功能。

健康检查可以定期检测服务器的状态,当服务器出现故障时,负载均衡器会自动将其从服务器池中剔除,确保用户请求不会被发送到故障的服务器上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

负载均衡器部署方式和工作原理
2011/12/16 小柯信息安全
在现阶段企业网中,只要部署WEB应用防火墙,一般能够遇到负载均衡设备,较常见是f5、redware的负载均衡,在负载均衡方面f5、redware的确做得很不错,但是对于我们安全厂家来说,有时候带来了一些小麻烦。

昨日的一次割接中,就遇到了国内厂家华夏创新的负载均衡设备,导致昨日割接失败。

在本篇博客中,主要对负载均衡设备做一个介绍,针对其部署方式和工作原理进行总结。

概述
负载均衡(Load Balance)
由于目前现有网络的各个核心部分随着业务量的提高,访问量和数据流量的快速增长,其处理能力和计算强度也相应地增大,使得单一的服务器设备根本无法承担。

在此情况下,如果扔掉现有设备去做大量的硬件升级,这样将造成现有资源的浪费,而且如果再面临下一次业务量的提升时,这又将导致再一次硬件升级的高额成本投入,甚至性能再卓越的设备也不能满足当前业务量增长的需求。

负载均衡实现方式分类
1:软件负载均衡技术
该技术适用于一些中小型网站系统,可以满足一般的均衡负载需求。

软件负载均衡技术是在一个或多个交互的网络系统中的多台服务器上安装一个或多个相应的负载均衡软件来实现的一种均衡负载技术。

软件可以很方便的安装在服务器上,并且实现一定的均衡负载功能。

软件负载均衡技术配置简单、操作也方便,最重要的是成本很低。

2:硬件负载均衡技术
由于硬件负载均衡技术需要额外的增加负载均衡器,成本比较高,所以适用于流量高的大型网站系统。

不过在现在较有规模的企业网、政府网站,一般来说都会部署有硬件负载均衡设备(原因1.硬件设备更稳定,2.也是合规性达标的目的)硬件负载均衡技术是在多台服务器间安装相应的负载均衡设备,也就是负载均衡器来完成均衡负载技术,与软件负载均衡技术相比,能达到更好的负载均衡效果。

3:本地负载均衡技术
本地负载均衡技术是对本地服务器群进行负载均衡处理。

该技术通过对服务器进行性能优化,使流量能够平均分配在服务器群中的各个服务器上,本地负载均衡技术不需要购买昂贵的服务器或优化现有的网络结构。

(如微软NLB网络负载均衡技术,该技术通过多台服务器上起应用完成负载均衡的实现,原理是几台服务器虚拟出一个IP地址,应用会使服务器轮循响应数据,但是在一次安全网关的部署当中就遇到了问题,大家以后可以注意本次经验,问题简
单描述如下:当外部测试PC,向虚拟IP地址发了一个ping包之后,虚拟 IP回应一个数据包,另外,实主机也均回应数据包,导致安全设备认为会话不是安全的。

所以进行阻断,致使业务不正常。


4:全局负载均衡技术(也称为广域网负载均衡)
全局负载均衡技术适用于拥有多个低于的服务器集群的大型网站系统。

全局负载均衡技术是对分布在全国各个地区的多个服务器进行负载均衡处理,该技术可以通过对访问用户的IP地理位置判定,自动转向地域最近点。

很多大型网站都使用的这种技术。

5:链路集合负载均衡技术
链路集合负载均衡技术是将网络系统中的多条物理链路,当作单一的聚合逻辑链路来使用,使网站系统中的数据流量由聚合逻辑链路中所有的物理链路共同承担。

这种技术可以在不改变现有的线路结构,不增加现有带宽的基础上大大提高网络数据吞吐量,节约成本。

总结:
负载均衡至少有四种应用:
▪服务器负载均衡;
▪广域网络服务器负载均衡;
▪防火墙负载均衡;
▪透明网站加速器负载均衡。

服务器负载均衡负责将客户请求的任务分发到多台服务器,用以扩展服务能力并超出一台服务器的处理能力,并且能够使应用系统具有容错能力。

广域网络服务器负载均衡负责将客户的请求导向到不同的数据中心的服务器群中,以便为客户提供更快的响应速度和针对某一数据中心出现灾难性事故时智能的冗灾处理。

防火墙负载均衡将请求负载分发到多台防火墙,用来提高安全性能以便超出一台防火墙的处理能力。

透明网站加速器(Transparent cache)使导向流量交换到多台网站加速器中,用以卸载网站服务器的静态内容到网站加速器(Cache)中,从而提高网站服务的性能和加速cache的响应时间。

硬件负载均衡部署方式
负载均衡硬件设备的部署一般有两种:一种是串联部署、一种是旁路部署。

在部分,我们主要通过 F5负载均衡的直连和旁路配置模式解析硬件负载均衡设备的部署方式。

1、直连模式结构
负载均衡
结构说明:图中Bigip为F5负载均衡设备,bigip上面使用公开的ip地址,bigip下面同负载均衡的服务器使用不公开的ip地址。

但对外提供服务则使用公开的ip。

负载均衡旁路部署
结构说明:图中Bigip为F5负载均衡设备,bigip和下面同交换机连接的服务器都使用公开的ip地址。

第二,看一下两种模式的流量走向直连下的正常流量走向,如图
负载均衡串联部署流量走向图
如上图,bigip同客户端的流量在bigip的上联接口,bigip同服务器的流量在下面的接口。

再看旁路模式下的流量走向,如图
负载均衡旁路部署流量走向
如上图,无论同客户端还是同服务器的通讯流量均在bigip的一个接口上。

第三、两种模式的对比和思考
1、从接口流量压力上看
直连情况下,bigip同客户端的流量在bigip的上联接口,bigip同服务器的流量在下联的接口,故bigip单一接口压力较小。

在旁路模式下, bigip无论同客户端还是同服务器的通讯流量均在bigip的一个接口上,故bigip单一接口压力较大。

为解决此问题,可以在bigip和交换机之间采用链路聚合技术,即端口捆绑,以避免接口成为网络瓶颈。

2、从网络结构安全性上看
直连情况下,可以不公布内部服务器使用的真实ip地址,只需要公布提供负载均衡的虚拟地址即可,而在旁路情况下,则客户端可以得知服务器的真实地址,在此模式下,为保证服务器的安全性,服务器的网关指向bigip,可以使用bigip上的包过滤(防火墙)功能来保护服务器。

3、从管理方便性上看
直连情况下,因服务器的真实地址可以隐含,故管理起来需要在bigip上启用地址翻译(NAT)功能,相对会复杂一些。

而旁路模式则不需要地址翻译的配置。

4、从扩展性上看
直连模式不支持npath模式,旁路模式支持npath模式,启用npath模式可减少
F5设备的压力,旁路npath模式下的流量走向,如下图。

(在该种流量走向的情况下,如果网络中有安全设备,很可能会出现问题,具体的问题还要看安全设备是在负载均衡设备之上,还是负载均衡设备之下)
npath流量走向图
在旁路模式下,使用npath的流量处理方式,所有服务器回应的流量可以不通过bigip,这样可以大大减少bigip上流量的压力。

但npath的流量处理方式不能工作在直连的模式。

5、后续系统改造时,两种模式的工作复杂程度不一样
如果对一个原先没有负载均衡技术的系统进行负载均衡技术的改造,那么,在直连情况下,需要修改服务器的ip地址同时网络结构也要做调整(将服务器调到
bigip后端),同时相关联的应用也要改动,需要进行严格的测试才能上线运行;然而,在旁路模式下,仅仅需要改动一下服务器的网关,原有系统的其它部分(包括网络结构)基本不需要做改动,故前者对系统改动较大,后者则改动较小。

最后总结一下,相对于直连模式,旁挂模式在系统架构中的主要优点:
1、增加了网络的灵活性:F5采用旁挂的方式,则后端服务器的网关指向的为三层交换机的地址,而不是F5的地址,在对网络设备维护时可以方便的采用修改路由的方式使设备下线,便于维护管理。

同时,一些特殊的应用也可在核心交换机上采用策略路由的方式指向特定的网络设备。

2、提高了网络整体的可靠性:由于旁路方式的存在,如果F5设备出现问题,可在交换机上修改路由使用数据流绕过F5,而不会对整个业务系统造成影响。

3、针对某些特殊应用,提高了速度:采用旁路的方式后,一些特定的的对速度、时延敏感的应用数据在进入和离开时可以采用不同的路径,例如:在流入时可经过F5设备,对其进行检查,负载均衡。

而在该数据流离开时,则不经过F5,以提高其速度。

相关文档
最新文档