《信号与系统》期末考试试题答案

合集下载

信号与系统期末考试复习题及答案(共8套)

信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

《信号与系统》期末测验试题及答案

《信号与系统》期末测验试题及答案

5.下列信号中为周期信号的是 D

f1 (t) sin 3t sin 5t
f 2 (t) cos 2t cost
f3
(k)

sin
6
k

sin
2
k
f
4
(k
)


1 2
k

(k
)
A f1 (t) 和 f2 (t)
c f1 (t), f 2 (t) 和 f3 (k)
所以:
(+2 分)
f (k) 10 [0.5k (k 1) 0.2k (k)] 3
(+2 分)
7.已知 f1 (t) 和 f2 (t) 的波形如下图所示,画出 f (t) f1 (t) f 2 (t) 的的波形图 解: 8.已知 f (t) 的波形如下图所示。请画出 f(-2t+1)的图形

(t
1)
d r(t) dt

de(t) dt

e(t)
描述的系统是:
A

(A)线性时变系统; (B)线性时不变系统;
(C)非线性时变系统;(D)非线性时不变系统
13.如图所示周期为 8 的信号 f (t) 中,下列对其含有的谐波分量的描述中最准确的是
D。 A 只有直流、正弦项 C 只有奇次余弦项
(z 0.5)(z 2)
B。
(A)|z|<0.5 (B)|z|>2 (C)0.5<|z|<2 (D)以上答案都不对
4. 下面关于离散信号的描述正确的是 B

(A) 有限个点上有非零值,其他点为零值的信号。
(B) 仅在离散时刻上有定义的信号。 (C) 在时间 t 为整数的点上有非零值的信号。

信号与系统 期末复习试卷1

信号与系统 期末复习试卷1

, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________

信号与系统期末试题及答案(第一套)

信号与系统期末试题及答案(第一套)

信号与系统期末试题及答案(第一套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。

一、填空(共30分,每小题3分)1. 矩形脉冲波形(高度为A,宽度为b )的信号能量为_____________。

2. 序列的自相关是一个偶对称函数,它满足关系式_____________。

3. 线性时不变连续稳定的因果系统,其传输函数的极点位于_____全部位于左半开复平面 ______。

4. 某线性时不变系统的单位冲激响应若为,则系统是___五阶________系统。

(几阶系统)5. 的傅立叶反变换为_____________。

6. 已知周期信号的第三次谐波的幅度等于3,则信号的第三次谐波的幅度等于___3__________。

7. 令,,如果,试求其和__8______。

8. 卷积____________。

9. 信号,a>0的傅立叶变换为______;_____。

10. 已知,,则。

二、计算题(共50分,每小题10分)1.某理想低通滤波器,其频率响应为当基波周期为,其傅里叶级数系数为的信号输入到滤波器时,滤波器的输出为,且。

问对于什么样的值,才保证?1、解:信号的基波角频率为:。

信号通过理想低通滤波器后,输出是其本身,这意味着信号所有频率分量均在低通滤波器的通带内。

由于周期)sgn(t )(t δ)(k δ)(t ε)(k εb A E 2=()k x )(k r xx )0()(xx xx r k r ≤)(s H )()2cos()()(t t t t e t h tεε⋅⋅+=-9)5(3)(2++=ωωj j F )(t f )()3sin(5t t e tε⋅-)(t f )2(t f kk x 2)(=)3()(-=k k y δ)()()(k y k x k z ==∑)(k z =-)(*)(t e t t εε)()1(t e tε--ta en x -=)(222ω+a a111)(--=az z X a z >=)(k x )()(k a k x k ε=⎩⎨⎧>≤=100,0100,1)(ωωωj H 6π=T n a )(t f )(t y )()(t f t y =n 0=n a )(t f ==T πω2012s rad /)(t f )(t f信号含有丰富的高次谐波分量,只有当高次谐波分量的幅度非常小时,对的贡献才忽略不计。

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。

若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。

则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。

若x(t)为周期为T的信号,则y(t)也是周期为T的信号。

A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。

答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。

答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。

答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。

信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。

信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。

2. 请简要说明周期信号和非周期信号的区别。

答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。

非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。

...以上是关于信号与系统试题及答案的文档。

希望能对您的大学期末考试复习有所帮助。

祝您考试顺利!。

信号与系统期末考试-A卷-答案

信号与系统期末考试-A卷-答案

120 信号与系统期末试题答案一、填空题(4小题,每空2分,共20分)1.线性 时变 因果 稳定2. 离散性 谐波性 收敛性3.)()(0t t k t h -=δ 0)()()(ωωϕωωj j j Ke e e H -==j H4.)()(11nT t f t f n T -∑+∞-∞=或二、简答题(5小题,共 25 分)1、解:该方程的一项系数是y(t)的函数,而y(2t)将使系统随时间变化,故描述的系统是非线性时变系统。

(每个知识点1分)(4分)2、解:当脉冲持续时间τ不变,周期T 变大时,谱线间的间隔减小,同频率分量的振幅减小(2分);当脉冲持续时间τ变小,周期T 不变时,谱线间的间隔不变,同频率分量的振幅减小(3分)。

(5分)3、解:信号通过线性系统不产生失真时,)()(0t t k t h -=δ0)()()(ωωϕωωj j j Ke e e H -==j H (每个知识点2分)(4分)4、解: 由于是二阶系统,所以系统的稳定性只需要其特征多项式的各系数大于零。

则本系统稳定的条件为:K-5>0(3分)和3K+1>0(3分).解之可得K>5(2分)。

(8分)5、解:香农取样定理:为了能从抽样信号 f s(t)中恢复原信号 f (t),必须满足两个条件:(1)被抽样的信号f (t)必须是有限频带信号,其频谱在|ω|>ωm 时为零。

(1分)(2)抽样频率 ωs ≥2ωm 或抽样间隔 mm S f T ωπ=≤21(1分) 。

其最低允许抽样频率m s f f 2=或m ωω2=称为奈奎斯特频率(1分),其最大允许抽样间隔mm N f T ωπ==21 (1分)称为奈奎斯特抽样间隔。

(每个知识点1分)(4分) 三.简单计算(5小题,5分/题,共25分)1.(5分)解:cos(101)t +的基波周期为15π, sin(41)t -的基波周期为12π 二者的最小公倍数为π,故())14sin()110cos(2--+=t t t f 的基波周期为π。

信号与系统期末考试题库及答案

信号与系统期末考试题库及答案

信号与系统期末考试题库及答案信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。

B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。

C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。

D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。

3.下列说法不正确的是( D )。

A 、一般周期信号为功率信号。

B 、时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。

C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。

A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。

A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。

A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=?∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。

A 、?∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =?+∞∞-δC 、)(d )(t tεττδ=?∞- D 、?∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3) 等于 。

(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3)2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。

(A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。

(A )1-z z (B )-1-z z(C )11-z (D )11--z4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。

(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2tu(t)+)(t δ,当输入f(t)=3e —tu(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性1、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )4 8、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s()()()2323++-s se C s ()()332++-s s e D s二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________ 6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F=,求(1) ()0F (2)()⎰∞∞-dw jw F六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号与系统》
须知:符号ε(t)、ε(k)分别为单位阶跃函数和单位阶跃序列。

LTI
为加法器。

一、单项选择题(每小题4分,共32分)
D 1、序列和
33
(2)i
i i δ∞
-=-∞
-∑等于
A.3ε (k –2) B.3ε (k) C.1 D .3 D 2、积分
5
5
(1)d 2
t
t e t δ--⎰等于 A .0 B.1 C.e D.e 2 B 3、()(a )f t t δ= A.(0)f t δ() B .
1(0)()|a |f t δ C.(0)f a D.0()f t a ⎛⎫δ ⎪⎝⎭
B 4、1()f t 、2()f t 波形如题4图所示,12()()*()f t f t f t =则(2)f =
题4图
A .
12 B.1 C.3
2
D.2 B 5、已知)()()(21k f k f k f *=,)(1k f 、)(2k f 波形如题5图所示,)0(f 等于
题5图
A.1 B .2 C.3 D .4
D 6、已知()1sgn()f t t =+则其傅立叶变换的频谱函数()F j ω等于
A .12()j πδω+
ω B.2j ω C.1()j πδω+ω D .2()j 2πδω+ω
D 7、已知单边拉普拉斯变换的象函数2
2
()1
F s s =
+则原函数)(t f 等于 A .()t
e t -ε B .2()t
e t -ε C.2cos ()t t ε D.2sin ()t t ε B 8、已知)()(k k k
f ε=,其双边Z 变换的象函数)(z F 等于 A .
1-z z B.2)1(-z z C .1
--z z
D.2)1(--z z
二、填空题(每小题5分,共30分) 9、单边拉普拉斯变换定义()F S =
0()st f t e dt -

-⎰
;双边Z 变换定义式
()F Z =
()k k f k z ∞
-=-∞

10、已知()f t 的波形如题
10
图所示,则
(12)f t -波形
(1) ;
()d
f t dt
(1) (2)
11、已知象函数3()14
z z
F z z z =
-
+-且其收敛域为14z <<,则其对应的原函数()f k =(1)34,0k k k --⨯≥
12、2()2t
f t t e
-=δ()+3则其单边拉普拉斯变换的象函数()F s =32s+2
+
13、已知信号流图如题13图所示,则系统函数()H z =23
123
223z z z z z -----+++
-2
2
2
()
f t 4
t
题10图 题13图
14、已知)(t f 的傅立叶变换2()1
F j j ωω=
+,则其原函数f (t) =2()t
e t ε- 三、计算题(38分)
请你写出简明解题步骤;只有答案得0分。

非通用符号请注明含义。

15、已知()f t 为因果信号,且()*'()(1)()t
f t f t t e t -=-ε,求()f t 。

(8分)
解:对等式两边取拉普拉斯变换, 得: 2
2
[()](1)s
s F s s =
+
则 1()1
F s s =
+ 再由拉普拉斯反变换,得()()t
f t e t ε-=
16、描述某LT I系统的微分方程为(10分)
y"(t) + 5y'(t ) + 6y (t) =f (t)
已知初始状态y(0-) = 1,y'(0-)=-1,激励f (t)= e -t
ε(t ),求: (1)求系统函数)(s H ; (2)求系统的冲激响应;
(3)已知初始状态y(0-) = 1,y '(0-)=-1,激励f (t)= e -t
ε(t),求系统输出的全响应()y t 。

解:
(1) 由微分方程y "(t ) + 5y'(t ) + 6y (t) =f (t)可得系统函数
21
()56
H s s s =
++
(2) 系统函数)(s H 反拉普拉斯变换得系统的冲激响应23()t
t h t e e --=-
(3) 零状态响应为10.510.5
()(s)(s)(2)(3)(1)123
zs Y s H F s s s s s s -==
=++++++++
则23()(0.50.5)(t)t t t
zs y t e e e ε---=-+
零输入响应为2312y ()t
t zi t C e
C e --=+
代入初始条件y(0-) = 1,y'(0-)=-1得122,1C C ==- 所以23()(2)(t)t
t zi y t e
e ε--=-
全响应为23(t)()()(0.50.5)()t t t
zi zs y y t y t e e e t ε---=+=+-
17、题17图所示离散系统,求:(10分) (1)系统函数()H z ; (2)列写该系统的差分方程。

)
(z
F )
(z 1
-z
题17图
解:(1)由上图得系统函数12
112
2()1123z z H z z z z
-----=++++ ﻩ(2)由系统函数12123112123
2257()11231353z z z z z H z z z z z z z -----------++=+=++++++
可得系统的差分方程为:
()3(15(2)3(3)2(1)5(2)7(3)y k y k y k y k f k f k f k +-+-+-=-+-+-)

18、已知某LTI 因果系统,其系统函数()2j H j j -ωω=

,求当输入激励3()()t
f t e t ε-=时,
求系统输出的零状态相应()zs y t 。

(10分)
解:系统函数()2s
H s s
-=
+ 输入信号的拉普拉斯变换1()3
F s s =
+ 零状态响应的拉普拉斯变换为23
55()()(=(s+2)(s+3)23
zs s Y s H s F s s s -
-
-==+++)
则系统的零状态响应为2323()()(t)55
t t
zs y t e e ε--=-
-。

相关文档
最新文档