机器人学-第5章 机器人控制算法(4)
机器人学导论第5章1

i 5度/ 秒2 f 5度/ 秒2
将初始和末端条件代入
(t)c0 c1tc2t2 c3t3 c4t4 c5t5 (t)c12c2t 3c3t2 4c4t3 5c5t4 (t)2c2 6c3t 12c4t2 20c5t3
中,得出:
c 0 30
c1 0
c2 2.5
c3 1 .6
c4 0.58 c5 0.0464
从上例可以看出,若我们已知开始和终止时刻
的角度以及角速度,那么就可以求得 c i ,进而求
得关节的运动方程。
尽管每一个关节都是分别计算的,但是在实际 控制中,所有关节自始至终都是同步运动;
如果机器人初始和末端速度不为零,可以通过 给定数据得到未知数值;
如果要求机器末端人依次通过两个以上的点, 则每一段求解出的边界速度和位置均可作为下一段 的初始条件,其余相同;
解:
t
C
0
C 1t
C
2t 2
C
t3
3
t
C1
2C
2t
3C
t2
3
( t ) 2 C 2 6 C 3 t
其中
ti 0 tf 3 可以求得
i 75 f 105
i 0 f 0
(t) 7510t2 2.222t3 (t) 20t 6.666t2 (t) 2013.332t
进而可以画出以下曲线
c 0 30 c1 0 c 2 5 .4 c 3 0 . 72
由此得到位置,速度和加速度的多项式方程如下:
t305.4t2 0.72t3 t10.8t 2.16t2 t 10.8 4.32t
(1 ) 34 . 68 ( 2 ) 45 . 84 ( 3 ) 59 . 16 ( 4 ) 70 . 32
(完整word版)机器人学导论复习题及参考答案(word文档良心出品)

西安高学考试复习题及参考答案机器人学导论一、名词解释题:1.自由度:2.机器人工作载荷:3.柔性手:4.制动器失效抱闸:5.机器人运动学:6.机器人动力学:7.虚功原理:8.PWM驱动:9.电机无自转:10.直流伺服电机的调节特性:11.直流伺服电机的调速精度:12.PID控制:13.压电元件:14.图像锐化:15.隶属函数:16.BP网络:17.脱机编程:18.AUV:二、简答题:1.机器人学主要包含哪些研究内容?2.机器人常用的机身和臂部的配置型式有哪些?3.拉格朗日运动方程式的一般表示形式与各变量含义?4.机器人控制系统的基本单元有哪些?5.直流电机的额定值有哪些?6.常见的机器人外部传感器有哪些?7.简述脉冲回波式超声波传感器的工作原理。
8.机器人视觉的硬件系统由哪些部分组成?9.为什么要做图像的预处理?机器视觉常用的预处理步骤有哪些?10.请简述模糊控制器的组成及各组成部分的用途。
11.从描述操作命令的角度看,机器人编程语言可分为哪几类?12.仿人机器人的关键技术有哪些?三、论述题:1.试论述机器人技术的发展趋势。
2.试论述精度、重复精度与分辨率之间的关系。
3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。
4.试论述机器人静力学、动力学、运动学的关系。
5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的?6.试论述工业机器人的应用准则。
四、计算题:(需写出计算步骤,无计算步骤不能得分):1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕y轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。
求u, v, w, t各点的齐次坐标。
xyzOuvwt2.如图所示为具有三个旋转关节的3R 机械手,求末端机械手在基坐标系{x 0,y 0}下的运动学方程。
机器人学导论第4版课后答案第五章

机器人学导论第4版课后答案第五章在机械传动的系统中,摩擦是必不可少的。
利用这种摩擦进行制动器运动和驱动传动,可使机械传动系统中的齿轮保持不变。
此外,通过磨擦还可产生机械震动和压力。
如果使驱动元件和传动件在轴上接触而摩擦时产生了热量,则会引起零部件上的油质过氧化,同时因摩擦带来的热量也会被传递到空气中去,这就是所谓的油氧化反应。
油氧化反应发生时产生各种化学作用和物理效应,如:油脂氧化、氧自由基分解以及其他一些化学反应。
为了降低能源消耗,人们就利用电磁铁等辅助设备进行电机和直流电弧的电磁场传播及热能的传递。
同时使用电动机带动机械装置实现制动与转动(用滚动轴承代替齿轮驱动机械装置)、滑动变速等过程。
(1)润滑在机械传动系统中的作用润滑是机械传动系统得以正常运行和保证精度的重要保证,也是重要的节能措施。
在机械传动系统中,一般可分为两种类型:①摩擦式:利用轴承上的油脂润滑滚动轴承运转的方法;②滑动式:利用滑动轴承外圈与滚珠之间的摩擦力来驱动运转。
摩擦式与滑动轴承摩擦力大,但传动精度高。
滑动式以滑动轴承为轴心轴向进行传动,由于摩擦产生的热量可传递到空气中去。
滑动式利用液体润滑元件代替了滚动轴承;滑动式同时也由润滑元件代替了滑动轴承和滚珠轴承。
(2)根据润滑与传热的关系,将滑动变速法分为()。
A.摩擦-传热:利用润滑系统中摩擦材料不产生热量,仅在零件表面形成均匀温润的油膜以增加润滑强度。
B.电弧摩擦:利用电弧来能量传递。
C.电磁力摩擦:利用电磁力来改变电动机的转速使其不停转动(转)。
D.机械滑动变速法:利用机械滑动来改变电动机和负载之间的转速。
【答案】 B 【解析】根据润滑与传热关系,将滑动变速法分为摩擦-传热-滚动-制动-滑动变速法)。
故本题选 B.。
本题中轴承润滑与传热均起到传热传质等作用,因此不属于滑动变速法。
(3)下面我们来具体介绍一下摩擦原理中的摩擦现象是怎样发展来的:早在18世纪,英国天文学家便发现了太阳系的中心——日心在东偏南方向上移动得很快的现象,这被认为是太阳系诞生时一个重要的物理现象。
机器人学机器人控制算法课件

THANKS
感谢观看
传感器类型与原理
传感器类型
传感器是机器人感知系统的重要组成部分,根据不同的应用 需求,有多种类型的传感器,如超声波传感器、红外传感器 、激光雷达等。
传感器工作原理
不同类型的传感器有不同的工作原理,如超声波传感器通过 发送超声波信号并接收回波信号来测量距离,红外传感器通 过检测物体发射的红外线来识别物体等。
02
机器人控制算法基础
运动学控制算法
总结词
描述机器人运动学控制算法的基本原理和应用。
详细描述
运动学控制算法是机器人控制算法中的基础,主要研究机器人的运动轨迹和姿态的控制。通过给定目 标位置和姿态,运动学控制算法可以计算出机器人各关节需要执行的位移和速度,以实现精确的运动 控制。
动力学控制算法
总结词
面临的挑战与问题
安全问题
随着机器人技术的不断发展,安全问题也日益突出,如何保证机器 人的安全运行和防止黑客攻击是一个重要挑战。
伦理问题
随着机器人承担越来越多的任务,如何确保机器人的行为符合伦理 标准,避免对人类造成伤害也是一个重要问题。
技术瓶颈
目前机器人在某些领域的应用还面临技术瓶颈,如人机交互、情感识 别等方面还有待突破。
化。
06
未来机器人控制技术的发 展趋势与挑战
新兴技术的影响与应用
1 2
人工智能技术
人工智能算法在机器人控制中的应用,如深度学 习、强化学习等,提高了机器人的自主性和适应 性。
物联网技术
物联网技术使得机器人能够与周围环境和其他设 备进行信息交互,拓展了机器人的应用领域。
3
5G通信技术
5G通信技术为机器人提供了高速、低延迟的数 据传输,使得机器人能够实时地与远程控制器进 行通信。
智慧树答案机器人学基础知到课后答案章节测试2022年

第一章1.为什么要发展机器人技术()。
答案:精神需求;生产需求;生活需求;探索需求2.下列哪个不是国内的机器人公司()。
答案:柯马3.沃康松发明的机械鸭,能够做扇动翅膀,吃谷物和排便的动作。
()答案:对4.按照机器人的几何结构来分,可分为:()答案:球面坐标;笛卡尔坐标;关节球面坐标;柱面坐标5.按照机器人的控制方式来分,可分为:()答案:非伺服机器人;伺服机器人6.机器人系统中的计算机就相当于人体的什么?()答案:大脑7.机器人的传感器分为内部传感器和外部传感器。
()答案:对8.机器人的精度是指机械零件抵抗变形的能力。
()答案:错9.机器人的控制系统包括()答案:作业控制器;驱动控制器;运动控制器10.搬运机器人属于下列那类机器人()答案:工业机器人第二章1.刚体的位姿表示刚体的位置和姿态,位置用p矩阵表示,姿态用R矩阵表示。
()答案:对2.刚体的位姿一般用什么样的矩阵来表示()。
答案:3×43.以下哪个矩阵表示坐标轴x轴()。
答案:[1 0 0 0]4.旋转变换与变换次序有关。
()答案:对5.以下哪个坐标系表示机器人的基坐标系()。
答案:{B}6.先沿着基坐标系的x轴平移r,再绕基坐标系的z轴旋转α,最后延基坐标系的z轴平移z,形成球面坐标。
()答案:错7.RPY角是绕着当前轴旋转的序列。
()答案:错8.如果已知一个任意的旋转矩阵,可以直接通过公式求得这个旋转变换的等效转角和等效转轴。
()答案:对9.旋转矩阵不是正交矩阵。
()答案:错10.欧拉角是绕着固定轴旋转的序列。
()答案:错第三章1.一个六自由度工业机器人,决定了其末端姿态()。
答案:手腕部分的后三个自由度2.沿着关节的运动轴方向,能确定连杆坐标系的()。
答案:z轴3.D-H参数中ai-1表示()。
答案:zi-1沿着xi-1到zi的距离4.一旦机器人的结构确定了,那么机器人的连杆参数就不变了,只有关节参数会发生变化。
()答案:对5.机器人运动学方程的求解步骤包括()。
机器人学第5章 机器人控制算法4

7.2
机器人控制器和控制结构
机器人的控制就是要使机器人的各关节或末端执行器的位置能够以 理想的动态品质跟踪给定的轨迹或稳定在给定的位姿上。
机器人控制特点:冗余的、多变量、本质非线性、耦合的 1.控制器分类 结构形式:伺服、非伺服、位置反馈、速度反馈、力 矩控制、 控制方式:非线性控制、分解加速度控制、最优控制、 自适应控制、滑模变结构控制、模糊控制,神经网络控制 等 控制器选择:依工作任务,可选PLC控制、普通计算机 控制,智能计算机控制等。 简单分类:单关节控制器:主要考虑稳态误差补偿; 多关节控制器:主要考虑耦合惯量补偿。
7.1 引言(Introduction) 前几章,我们借助齐次变换阐述了对于包括械手 在内的任何物体的位置和姿态的描述方法。研究了机械手
的运动学,建立了机械手关节坐标和与直角坐标的位置和
速度之间的关系,推导了机械手的动力学方程。 本章,我们要根据动力学方程来考虑机械手的控制
问题,由于任何机械手的实际控制都是通过对各个关节的
2、主要控制变量 任务轴R0:描述工件位置的坐标系 X(t):末端执行器状态; θ(t):关节变量; C(t):关节力矩矢量; T(t):电机力矩矢量; V(t):电机电压矢量 本质是对下列双向方程的控制
V(t ) T(t ) C(t ) (t ) X(t )
3、主要控制层次 分三个层次:人工智能级、控制模式级、伺服系统级 1)人工智能级 完成从机器人工作任务的语言描述 生成X(t); 仍处于研究阶段。 2)控制模式级 建立X(t) T(t)之间的双向关系。
θbi 光电 码盘 Xd θdi ·· · - θei 关节位控制 PID 机器人 操作手 X
3、《人工智能通识教程》(第2版)教学大纲20240710

《人工智能通识教程》(第2版)教学大纲一、课程基本信息• 课程名称:人工智能导论/ 人工智能概论• 课程代码:• 课程英文名称:AI-Introduction• 学时与学分:理论学时32,课外实践学时16,总学分2• 课程性质:必修课(选修课)• 适用专业:人工智能、大数据、计算机等工科专业(其他各专业)• 先修课程:略• 后续课程:机器学习、深度学习、智能机器人等二、课程目标学习本课程,通常旨在为学生奠定坚实的人工智能基础知识,培养其在人工智能领域的基本技能和理解能力。
以下是主要学习目标,可能会根据不同课程设置有所差异:1. 理解人工智能基础:掌握人工智能的基本概念、发展历程、主要分支领域(如机器学习、深度学习、自然语言处理、计算机视觉等)及其在现代社会中的应用。
2. 理论与技术基础:学习和理解支撑人工智能的核心算法和理论,包括搜索算法、知识表示、推理方法、决策制定、学习理论等。
3. 实践技能培养:通过编程实践和项目作业,掌握至少一种编程语言(如Python)在人工智能领域的应用,以及如何使用常见的AI框架和库((如TensorFlow、PyTorch)。
4. 问题解决能力:培养分析和解决人工智能问题的能力,包括如何定义问题、选择合适的技术路线、设计并实施解决方案。
5. 伦理与社会责任:讨论人工智能技术的伦理和社会影响,理解隐私保护、数据安全、算法偏见等议题,培养负责任的AI开发与应用意识。
6. 创新与批判性思维:鼓励学生批判性地评估现有的AI技术,激发创新思维,探索AI在新领域的应用可能。
7. 沟通与团队合作:通过团队项目,提升与他人合作解决复杂问题的能力,以及有效沟通研究成果和想法的能力。
8. 持续学习能力:鉴于AI领域的快速变化,课程应培养学生自主学习的习惯,跟踪技术进展,适应未来可能出现的新技术、新理论。
这些目标旨在为学生构建一个全面的人工智能知识框架,不仅关注技术细节,也重视理论与实践的结合,以及技术的社会影响和伦理考量,为学生将来在AI 领域的深入研究或职业发展打下坚实的基础。
第四章(机器人学动力学)

第四章 机器人静力学和动力学
静力学和动力学分析,是机器人操作机设计和动态性能分 析的基础。特别是动力学分析,它还是机器人控制器设计、 动态仿真的基础。 机器人静力学研究机器人静止或缓慢运动式,作用在机器 人上的力和力矩问题。特别是当手端与环境接触时,各关节 力(矩)与接触力的关系。 机器人动力学研究机器人运动与关节驱动力(矩)间的动 态关系。描述这种动态关系的微分方程称为动力学模型。由 于机器人结构的复杂性,其动力学模型也常常很复杂,因此 很难实现基于机器人动力学模型的实时控制。然而高质量的 控制应当基于被控对象的动态特性,因此,如何合理简化机 器人动力学模型,使其适合于实时控制的要求,一直是机器 人动力学研究者追求的目标。 2
3
按静力学方法,把这些力、力矩简化到 Li 的固联坐标系 oi xi yi zi ,可得: Fi Fi 1 G i M i M i 1 r i F i 1 r Ci G i i 1 或 i i i 0
4.1 机器人静力学
一、杆件之间的静力传递 在操作机中,任取两连杆 Li, i 1 。设在杆 Li 1上的 Oi 1 点 L 作用有力矩 M i 1和力 F i 1;在杆 Li 上作用有自重力 G i 〔过质 r 心 Ci );i 和 rCi 分别为由 Oi 到 Oi 1 和 Ci 的向径。 M i 1 F i 1
18
4.4.4 牛顿——欧拉法基本运动方程
刚体的运动可分解为随质心的移动和绕质心的转动。借助于 杆件运动学知识,我们把达朗贝尔原理用于每个杆件,描述机 器人各杆件的运动。达朗贝尔原理可应用于任意瞬时,它实质 上是牛顿第二运动定律的一种变型,可表示为: d mi vi ( Fi ) Fi mi vi 牛顿定理 : dt d I ii Ni I ii i ( I ii ) 欧拉方程 : ( Ni ) dt 式中:mi — 杆i 质量; Fi — 杆i上所有外力合力; N i — 杆i上所有外力对质心的合力矩;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人的位置控制主要有直角坐标和关节坐标两种控制方式。
直角坐标位置控制:是对机器人末端执行器坐标在参考坐标中的位置和姿态 的控制。通常其空间位置主要由腰关节、肩关节和肘关节确定,而姿态(方 向)由腕关节的两个或三个自由度确定。通过解逆运动方程,求出对应直角 坐标位姿的各关节位移量,然后驱动伺服结构使末端执行器到达指定的目标 位置和姿态。
2、主要控制变量 任务轴R0:描述工件位置的坐标系 X(t):末端执行器状态; θ(t):关节变量; C(t):关节力矩矢量; T(t):电机力矩矢量; V(t):电机电压矢量 本质是对下列双向方程的控制
V(t ) T(t ) C(t ) (t ) X(t )
3、主要控制层次 分三个层次:人工智能级、控制模式级、伺服系统级 1)人工智能级 完成从机器人工作任务的语言描述 生成X(t); 仍处于研究阶段。 2)控制模式级 建立X(t) T(t)之间的双向关系。
θbi 光电 码盘 Xd θdi · · · - θei 关节位控制 PID 机器人 操作手 X
解逆运动程 Xd →θd
+
•
由图可知,通用机器人是一个半闭环控制机构,即关节坐标采用闭环控制方 式,由光电码盘提供各关节角位移实际值的反馈信号 θbi。直角坐标采用开环 控制方式,由直角坐标期望值Xd解逆运动方程,获得各关节位移的期望值 θdi, 作为各关节控制器的参考输入,它与光电码盘检测的关节角位移 θbi比较后获 得关节角位移的偏差θei,由偏差控制机器人操作手各关节伺服机构(通常采 用PID方式),使机械手末端执行器到达预定的位置和姿态。
7.1 引言(Introduction) 前几章,我们借助齐次变换阐述了对于包括机械手 在内的任何物体的位置和姿态的描述方法。研究了机械手
的运动学,建立了机械手关节坐标和与直角坐标的位置和
速度之间的关系,推导了机械手的动力学方程。 本章,我们要根据动力学方程来考虑机械手的控制
问题,由于任何机械手的实际控制都是通过对各个关节的
7.3 机器人的位置控制
位置控制是在预先指定的坐标系上, 对机器人末端执行器(end effector)的 位置和姿态(方向)的控制。如图所示 ,末端执行器的位置和姿态是在三维空 间描述的,包括三个平移分量和三个旋 转分量,它们分别表示末端执行器坐标 在参考坐标中的空间位置和方向(姿态 )。因此,必须给它指定一个参考坐标 ,原则上这个参考坐标可以任意设置, 但为了规范化和简化计算,通常以
下位机进行运动插补及关节伺服控
制。它由6块6503CPU为核心的单 板机组成,它与B接口板、手臂信 号板插在J-Bus总线上。 C接口板、高压控制板和6块功率 放大器板插在Power amp bus上。 上位机软件为系统编程软件——软 件系统的各种系统定义、命令、语 言及其编译系统。针对各种运动形 式的轨迹规划和坐标变换,以 28ms的时间间隔完成轨迹插补点 的计算、与下位机信息交换、执行 VAL程序、示教盒信息处理、机 器人标定、故障检测等。 下位机软件为伺服软件——驻留在 下位机6503微处理器的EPROM中。 每隔28ms接受上位机轨迹设定点 信息,将计算的关节误差以 0.875ms的周期伺服控制各关节的 运动。
协调控制来实现的,因此,必须对每一个关节进行有效的 控制。
7.2
机器人控制器和控制结构
机器人的控制就是要使机器人的各关节或末端执行器的位置能够以 理想的动态品质跟踪给定的轨迹或稳定在给定的位姿上。
机器人控制特点:冗余的、多变量、本质非线性、耦合的 1.控制器分类 结构形式:伺服、非伺服、位置反馈、速度反馈、力 矩控制、 控制方式:非线性控制、分解加速度控制、最优控制、 自适应控制、滑模变结构控制、模糊控制,神经网络控制 等 控制器选择:依工作任务,可选PLC控制、普通计算机 控制,智能计算机控制等。 简单分类:单关节控制器:主要考虑稳态误差补偿; 多关节控制器:主要考虑耦合惯量补偿。
Y Z
end effector
O Y Z X
X
图 机器人操作手
机器人的基坐标作为参考坐标。机器人的基坐标的设置也不尽相同,如日 本的Movemaster-Ex系列机器人,它们的基坐标都设置在腰关节上,而美 国的Stanford机器人和Unimation公司出产的PUM系列机器人则是以肩关节坐 标作为机器人的基坐标的。
第七章 控制 Control
7.1 7.2 引言 机器人控制器和控制结构
7.3 7.4 7.5 7.6 7.7 7.8
机器人位置控制 二阶线性系统控制规律的分解 单关节机器人的建模与控制 柔顺控制 位置和力的混合控制 其他控制方法
第5章 机器人的控制系统
5.3 控制理论与算法
• 在机器人的运动学中,已知机器人末端欲到达的位姿,通过运 动方程的求解可求出各关节需转过的角度。所以运动过程中各 个关节的运动并不是相互独立的,而是各轴相互关联、协调地 运动。 • 机器人运动的控制实际上是通过各轴伺服系统分别控制来实现 的。所以机器人末端执行器的运动必须分解到各个轴的分运动, 即执行器运动的速度、加速度和力或力矩必须分解为各个轴的 速度、加速度和力或力矩,由各轴伺服系统的独立控制来完成。 • 然而,各轴伺服系统的控制往往在关节坐标系下进行,而用户 通常采用笛卡儿坐标来表示末端执行器的位姿,所以有必要进 行各种运动参数包括速度、加速度和力(或力矩)的分解运动控 制。分解运动控制能很大程度上化简为完成某个任务而对运动 顺序提出的要求。本节将讨论分解运动的求解问题。
X(t ) (t ) C(t ) T(t )T(tLeabharlann )C(t ) (t )
X(t )
机器人模型
电机模型 传动模型 关节动力学模型 3)伺服系统级 解决关节伺服控制问题 即 VT
PUMA机器人的伺服控制结构
计算机分级控制结构,VAL
编程语言。 采用独立关节的PID伺服控 制,伺服系统的反馈系数是 确定的。由于机器人惯性力、 关节间耦合、重力与机器人 位姿和速度有关,所以难于 保证在高速、变速和变载情 况下的精度。 上位机配有64kB RAM内存, 采用Q-Bus作为系统总线, 经过A、B接口板与下位机 交换数据。上位机作运动规 划,并将手部运动转化为各 关节的运动,按控制周期传 给下位机。 A接口板插在上位机的Q-Bus 总线上,B接口板插在下位 机的J-Bus总线上。B板有一 个A /D转换器,用于采样电 位器反馈的位置信息。