矩阵的因子分解优秀课件

合集下载

第五章 矩阵分解64页PPT文档

第五章  矩阵分解64页PPT文档
矩阵的LU分解最常应用于求解线性方 程组 Axb,首先我们作分解 PALU ,然 后求解方程组 LUxP,b 求解过程分两步 进行:
(1)首先解线性方程组 LyPb,可得 y L1Pb .
(2) 接着计算原方程组的解x U1y,即 求解方程组 Ux y 。
例 5.1.5 例 5.1.6 例 5.1.7
定理5.2.1 设 zCn是单位列向量,则对
C n 中的任意向量x,都存在Householder矩
阵使得
Hxz,其中


x
,且
2
x H z为实
数。
例 5.2.1 例 5.2.2
5.2.2 矩阵的QR分解
下面我们探讨如何利用Householder变 换将矩阵化为上三角矩阵。我们以n=3的 情形开始讨论 .
即 xˆ a1是 Axr1的精确解,从而达到改进 解的目的。当然很可能还存在误差,得到
的是 aˆ 1 ,而不是 a 1 。此时设r 2b A x ˆ a ˆ1,
解线性方程组 Axr2,得到 aˆ 2 ,将 Axb的 解改进为 xˆaˆ1aˆ2 。
如此继续下去,可以证明,只要cond(A) 不是太大,序列 x ˆ,x ˆa ˆ1,x ˆa ˆ1a ˆ2, 最终会收 敛到 Axb 的解,通常只需迭代几步就可 以得到很精确的解。
3

2
此时
l1 v1 w1
H1A 0 v2 w2

0
v3
w3

接下来可构造H使得
H
v v
2 3



l2 0

其中
l2

v v
2 3


H2

矩阵理论课件-第二章 矩阵的分解

矩阵理论课件-第二章 矩阵的分解

故xH AH Ax=xH x= 2 xH x,因为AH A=I,所以 2 =1.
(因为xH x= x 2 0)
:由条件UHAU=diag{1, , n}共轭转秩得UHAHU=
diag{1,
, n},所以UHAAT U=diag{ 1 2 ,
,
n
2
}=I

n
所以AAT =In .
注1:设A Cnn ,则
Cmr r
,
C
Ir
D
Crn r
.
下设A的前r个列向量线性相关,只需先做列变换,变成
线性无关,
因此存在P
Cmmm,Q
Cnn n
,
满足
PAQ=
Ir 0
D 0
或A=P-1
Ir 0
D 0
Q-1
=P-1
Ir 0
I
r
=BC
D Q-1
其中B=P-1
Ir 0
Cmr r
,C
Ir
D
讨论知AH x1, , AH xp为AH A属于i 0的特征向量,只要证明
AH x1, , AH xp线性无关,就证明了AAH的p重特征值也是AH A 的p重特征值.
下证AH x1, , AH xp线性无关.
设k1AH x1
k p AH xp 0.则( AH x1,
,
AH
xp
)
k1
0
kp
H
=
1 2
11,可知|I-A|无重根,
A为单纯矩阵,但AAH AH A.
推论1:A为正规矩阵,当且仅当A有n个特征向量构成Cn的一组 标基,且A的不同特征值的特征向量正交.
推论2:设A R nn ,则

矩阵因式分解

矩阵因式分解

矩阵因式分解(LU分解)与列昂惕夫投入产出模型矩阵的因式分解是把一个矩阵A表示为两个或更多个矩阵的乘积,是将复杂的数据进行分解,其中有多种方法,例如:LU分解,秩分解,QR分解,奇异值分解,谱分解等。

这里主要介绍对LU分解的认识。

根据参考的书籍,这里的LU分解只限于一系列具有相同系数矩阵的线性方程:Ax=b1, Ax=b2, … , Ax=b p (1)当A为可逆矩阵时,可计算A-1,然后计算A-1 b1,A-1 b2,等等。

但是,真正在社会实践的运用中,又是如何计算并使用的呢?实际而言,(1)中的第一个方程是由行变换解出的,并同时得出矩阵A的LU分解。

设A为m×n阶矩阵,则A m×n可进行化简为阶梯形,此时不必行对换,那么A可写成形式A=LU,L是m×m下三角矩阵,主对角线元素全是1,U是A的一个等价的m×n阶梯形矩阵。

如下:这样的一个分解称为LU分解,矩阵L是可逆的,我们称L为单位下三角矩阵。

由上,我们可知,当A=LU时,方程Ax=b可写成L(Ux)=b,把Ux写成y,可以有解下面一对方程来求解x:Ly=bUx=y首先解Ly=b然后解Ux=y求得x,如下,每个方程都比较容易解,因和都是三角矩阵。

下面,举出一道例题;例:求下列矩阵的LU分解:因为A有4行,故L为4×4矩阵,L的计算方式为第一列是A的第一列除以它的第一行主元元素,L如下:比较A与L的第一列。

把A的第一列的后3个元素变换为零同时也为L的后三列变换,下面是A变为阶梯形U:将上述A到U的行变化结果放入L中:故得到所求出的L和U满足LU=A,利用LU分解,我们可以进行线性方程组的计算,简化这种计算。

后我又参考了网络上的最新信息,得到即使矩阵不可逆,LU仍然可能存在。

实际上,如果一个秩为k的矩阵的前k个顺序主子式不为零,那么它就可以进行LU分解,但反之则不然。

目前,在任意域上一个方块矩阵可进行LU分解的充要条件已经被发现,这些充要条件可以用某些特定子矩阵的秩表示。

数值分析用矩阵分解法解线性代数方程组PPT课件

数值分析用矩阵分解法解线性代数方程组PPT课件
1
其 中A Rnn非 奇 异,U、V Rn ,且1 V T A1U 0,
A UV T非 奇 异, V T A1U。
选 择 向 量U、V使 原 方 程 组Ax d化 为 ( A UVT )x d
其 中A为 三 对 角 矩 阵,利 用 谢 尔 曼 莫 里 森 公 式 , 此方程组的解为
第10页/共31页
function x=lupqdsv(A,b) n=length(b); [LU,p,q]=lupqd(A); y(1)=b(p(1)); for i=2:n
y(i)=b(p(i))-LU(i,1:i-1)*y(1:i-1)'; end z(n)=y(n)/LU(n,n);x(q(n))=z(n); for i=(n-1):-1:1
例:
a11
a1q
a22
a
p1
0
an,n p1
1
1
l
p1
0
ln,n p1
0
an
q1,n
ann
0 u11
u1q
u22
1 0
第18页/共n
当A为三对角阵,且 b1 c1 , bi ci ai ,(i 1, 2,
bn cn 时,A有LU分解展开式
b1 c1 a2 b2 c2
(k n 1, n 2,,1)
u11 u12 u1n x1 y1
u22
u2n
x2
y2
unn
xn
y
n
第2页/共31页
二、用列主元的三角分解PA LU求解Ax b
LY Pb
Ax
b
PAx
Pb
LUx
Pb
Ux
Y
例:用列主元三角分解求解Ax=b

矩阵分析第4章课件

矩阵分析第4章课件

矩阵满秩分解不唯一;但同一矩阵的两个满
秩分解的因式矩阵之间存在密切的关系( 见P153,定理4.1.2).
ACrmn r=rank A min{m,n} A的秩等于它的行秩、列秩或行列式秩。A的行( 列)秩是它的最大线性无关组的行(列)数;A 的行列式秩是它的非0子式的最大阶数。 A=BC rank A rank B & rank A rank C
1
初等变换与初等矩阵性质
①3类初等矩阵都是可逆的(行列式不为0). ②将A依次作初等矩阵P1,…,Pr对应的行(列)初等变
换等价于左(右)乘A以可逆矩阵Pr,…,P1(P1,…,Pr).
③可适当选第一类初等矩阵的乘积P使PA(AP)的 行(列)是A的行(列)的任意排列.可适当选第三类 初等矩阵P(i,j(k))中的k使P(i,j(k))A的(i,j) 元变为0.可适当选第二类初等矩阵P(i(k))中的k 使P(i(k))A的非零(i,i)元变为1.综合起来推出: Er 0 存在初等矩阵的乘积P和Q,使 PAQ= 0 0 m n 其中r=rank A.一般地,ACr 都 Er 0 存在m,n阶可逆阵P和Q使 PAQ=
a11 a1n AB ann
b11 b1n a11b11 * bnn annbnn
a11 a1n 1/ a11 * 1 1 A , aii 0 det A 0 A det A a 1/ a nn nn
1 C11 1 2 C21 1 C22 2 n Cn1 1 Cn 2 2 ... Cnn n

矩阵的因子分解PPT课件

矩阵的因子分解PPT课件

1 2 1 1 0 0
0 5
3
3 1 0
0 0 12 / 5 2 / 5 1 / 5 1
从而得 L1 A U , 这里
第16页/共101页
1 0 0 1 2 1
L1
3
1 0 ,U 0 5
3
2 / 5 1 / 5 1 0 0 12 / 5
因为 所以
1 0 0
L
L11
3
1 0
1 1 / 5 1
2
|
3 3
|
(0,0,1)T
第34页/共101页
所以A的QR分解为:A=QR
1
2
Q
( 1 , 2 , 3 )
1
2 0
2 0
R
QT
A
0
2
0
0
1
0
2
1 2
0
0
1
1
2
1
2 2
第35页/共101页
二、Householder 变换法 步骤:
1. 取A的列向量1, 2 ,… n,对1,由Householder矩阵性
交规范矩阵Q1和rn行满秩矩阵R,使得
A=Q1R,
Q1H Q1 I
➢列正交规范矩阵指的是mr矩阵Q1满足

矩阵Q1是列正交规范矩阵的充要条件是Q1的列向量组是 标准正交向量组
第31页/共101页
矩阵的QR分解方法
一、Schmidt 方法
步骤:1.将矩阵A的列向量1, 2 ,… n施以Schmidt标 准正交化,得到1, 2 ,… n 标准正交组:
的充要条件是A的所有顺序主子式均非零,即
1...k k A1...k 0,k 1,2,...n 1

因子分析因子分析PPT课件

因子分析因子分析PPT课件
1/ 5 2 / 5
1/ 5 2 / 5
1
21
第21页/共96页
特征根为: 1 1.55 2 0.85 3 0.6
0.475 0.883 0
U
0.629
0.331 0.707
0.629 0.331 0.707
0.475 1.55 0.883 0.85
A 0.629 1.55 0.331 0.85
因子分析:潜在的假想变量和随机影响变量 的线性组合表示原始变量。
因子分析(探索)与结构方程模型(验证)
3
第3页/共96页
第二节 因子分析的数学模型
一、数学模型 1.R型因子分析数学模型(按列)
设 X i (i 1,2,, p) p 个变量,如果表示为
X i ai1F1 aimFm i (m p)
X1 11 12

X
2
21
22
X
p
p1
p2
1m F1 1
2m
F2
2
pm
Fm
p
或X AF
4
第4页/共96页
称为 F1, F2,, Fm公共因子,是不可观测的变量,
他们的系数称为因子载荷。i 是特殊因子,是不能被
前m个公共因子包含的部分。并且满足:
3、公共因子Fj方差贡献的统计意义
因子载荷矩阵中各列元素的平方和
Sj
a p i 1
2 ij
p
r
i 1
2
(
xi
,
Fj
)
称为Fj ( j 1,, m) 对 X i 的方差贡献和。衡量Fj的相对重
要性。
12
第12页/共96页
(三)因子分析模型的性质

《矩阵的分解》课件

《矩阵的分解》课件
矩阵分解的算法实 现
高斯消元法
基本思想:通过行变换将矩阵 化为上三角矩阵或对角矩阵
步骤:选择主元素、消元、回 代
应用:求解线性方程组、求逆 矩阵、求特征值和特征向量
优点:计算量小,易于实现, 适用于稀疏矩阵和带状矩阵
迭代法
迭代法的基本思想:通过不断迭代, 逐步逼近目标解
迭代法的应用:在矩阵分解、数值 优化、图像处理等领域有广泛应用
U:上三角矩阵,对角线以上元素为0
LDU分解的应用:求解线性方程组、计算矩阵的逆矩阵等
平方根分解
平方根分解的定义:将矩阵分解为 两个矩阵的乘积,其中一个矩阵是 单位矩阵,另一个矩阵是矩阵的平 方根。
平方根分解的应用:平方根分解在 数值计算、线性代数、优化等领域 有着广泛的应用。
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
迭代法的步骤:设定初始值,计算 迭代函数,更新迭代值,直到满足 停止条件
迭代法的优缺点:优点是简单易实 现,缺点是收敛速度慢,容易陷入 局部最优解
共轭梯度法
共轭梯度法是一种求解线性方程组的迭代方法 共轭梯度法的基本思想是利用共轭梯度方向进行迭代 共轭梯度法的优点是收敛速度快,稳定性好 共轭梯度法的缺点是计算量大,需要存储大量的中间结果
a. 选取一组向量 b. 计算向量组的内积 c. 计算向量组的正交化向量 d. 重复步骤b和c,直到所有向量都正交
优点: a. 简单易行 b. 适用于任意维数的向量组
a. 简单易行 b. 适用于任意维数的向量组
应用: a. 矩阵的正交分解 b. 线性代数的其他领域
a. 矩阵的正交分解 b. 线性代数的其他领域
添加标题
添加标题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
LU
3
1
0 0 5
1 1 / 5 1 0 0
1
3
12 / 5
说明
1. 即使矩阵A非奇异,如果A不满足前n-1个顺序主子式 非零,未必能做LU分解,
2.适当改变非奇异矩阵的行的次序,可使改变后的矩阵 做LU分解,引入排列阵的概念
定义1 设e1, e2,…, en是n阶单位矩阵I的n个列向量,矩阵 P=(ei1, ei2, ,…, ein )称为一个n阶排列阵,其中i1, i2,…, in是
Image lk
i
akj ajj
,ki
1,...n,
则LiA在(i+1,j),(i+2,j)…(n,j)的位置上为0
(4)
1
0
1
No Li L j
li1i
Image 0
0
1
l j1 j
l ni
l nj 0 1
定理1 ( LU分解定理 ) 设A是n阶非奇异矩阵,则存在唯一的单位下三角矩阵L
(主对角线上元素全为1的下三角矩阵)与唯一的上三角 矩阵U ,使得
ALU 的充要条件是A的所有顺序主子式均非零,即
1..k. kA1..k.0,k1,2,.n ..1
矩阵的LU分解也称为Doolitte分解 若L为下三角矩阵,U为单位上三角矩阵,称为Crout分解。
定理2 ( LDU分解定理 ) 设A是n阶非奇异矩阵,则存在唯一的单位下三角矩阵
2.取L= L11:因为L1是一系列初等下三角矩阵乘积(对应
初等行变换),所以L是单位下三角矩阵。
例 1 求下列矩阵的LU分解:
1 2 1
A
3
1
0
1 1 2
解:
1 2 1 1 0 0
( A,
I)
3
1
0 0 1 0
1 1 2 0 0 1
1 2 1 1 0 0 0 5 3 3 1 0 0 1 3 1 0 1
2 0
0 1
1 1
1 2
1 1
C
26 2
同样,我们也可以选取
1
B 1 2 4
0
1 1
C 42 2
2
1 C 0
2 0
1 1
0 1
1 2
2 1
C 26 2
由上述例子可以看出矩阵的满秩分解形式并不唯一。
但是不同的分解形式之间有如下联系:
注:如果 A BC B1C1 均为矩阵A 的满秩分解,那么存在
1 2 1 1 0 0
0 5
3
3 1 0
0 0 12 / 5 2 / 5 1 / 5 1
从而得 L1 A U , 这里
1 0 0 1 2 1
L1
3
1 0 ,U 0 5
3
2 / 5 1 / 5 1 0 0 12 / 5
因为 所以
1 0 0
L
L11
3
1 0
1 1 / 5 1
1 0 0 1 2
例1 求下面矩阵的满秩分解
1 2 1 0 1 2
1
2
2
1
3
3
2 4 3 1 4 5
4 8 6 2 8 10
解 思路:对矩阵A实施初等行变换得简化阶梯形矩阵H (阶梯型的非零行的第一个非零元为1,其所在的列其它元 素为0),取A的r个使H阵满秩的列为B,将H全为零的行去 掉后即可构成行满秩矩阵C。
矩阵的因子分解
数据集中可能包含大量特征,维灾难使得数据分析很 困难,
1.维归约(降维):利用旧属性的线性组合得到新属性, 使得新属性相互正交,捕获到数据的最大变差(PCA:主 成分分析(principle components analysis)和SVD)
2.选择特征子集:嵌入(决策树分类其),过滤和包装 (搜索,特征加权等)
1 2 1 0 1 2 1 2 0 1 1 1
1
22
13
3
0
0
1
1
2 1
2 4 3 1 4 5 0 0 0 0 0 0
4 8 6 2 8 10 0 0 0 0 0 0
由此可知rank(A)=2,且该矩阵第一列、第三列是线性无关
的。选取
1
B 1 2 4
1
2 3
C 42 2
6
1 C 0
1,2…n的一个排列.
➢ P是排列阵的充要条件是P为一系列形如P(i,j)的初等交换
矩阵的乘积.
排列阵的性质:
1. P是排列阵,则PT和P-1也是排列阵,且PT=P-1
2. P1 ,P2是排列阵,则P1P2是排列阵
3.
P
( e i1
,ein
),
A
A1
An
(a1,an ),
Ai1

初等下三角矩阵性质
(1)det(Li)=1,
No 1
1
0
Image L1 i
l 1 i 1 i
0
0
l ni
1
(2)用初等下三角矩阵左乘矩阵A,等于将A的第i行依次乘
以-li+1i,…,-lni 分别加到第i+1行到第n行上去。
No (3)设A=(aij) nn,且a jj 0,并且取
L,对角矩阵D=diag(d1,d2,…dn)和单位上三角矩阵U ,使 得
A=LDU 的充要条件是A的所有顺序主子式均非零,即
1...k k A1...k0,k1,2,..
k k1
,k
2,...n,
矩阵的LU分解方法
矩阵的LU分解方法有很多种,这里主要介绍初等行变换 消元法 步骤: 1. 通过初等行变换将A化为上三角矩阵U: (A,I)(U,L1)
PT
A
Ain
,
AP
(ai1 , ain
)
即:用排列阵左乘矩阵A相当于将A的行按照排列阵的次序重 排,右乘对A的列按排列阵的次序重排。
引理1 设A是n阶非奇异矩阵,则存在排列阵P,使得PA的 所有顺序主子式要条件均非零。 定理3 设A是n阶非奇异矩阵,则存在排列阵P,使得

矩阵的各种分解在矩阵计算中也扮演相当重要的角色。 由于变换即矩阵,所以各种分解从根本上看是各种变换, 其目的是将矩阵变换成特殊的矩阵。
§4.2 矩阵的满秩分解
满秩分解定理:设 ACrmn为任意矩阵,则存在 B C rm r,C C rrn 使得 A=BC,
其中B为列满秩矩阵,C为行满秩矩阵.
➢任一非(行或列)满秩的非零矩阵可表示为一列满秩矩 阵和一行满秩矩阵的积; ➢B的列可取为A的列的任一极大线性无关组; ➢C可取为其行为A的行所生成的空间的基, 然后用定理确 定矩阵B。 ➢应用于极小最小二乘解和极小范数最小二乘解的算法 中。
矩阵 GCnnn满足
B B1G , C G 1C 1
§4.3 矩阵的三角分解
定义1 如果方阵A可以分解成一个单位下三角矩阵L与一个上 三角矩阵U的乘积
A LU
则称其为A的 LU 分解或三角分解。
初等下三角矩阵
1
0
No
Li
1 li1i 1
Image
0
0
l ni
1
相关文档
最新文档