比和比例应用题1

合集下载

比和比例的应用题

比和比例的应用题

1、一种农药,用药液和水按照2∶500配制而成。

5千克药液能配制这种农药多少千克?(5分)2、为了预防冬季感冒,校医务室按1:200的配比配制了消毒液。

现在有2瓶105毫升的药液,需要加入多少升水?3、建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土,需要水泥、沙子、石子各多少吨?4、一种药水是用药物和水按3:400配制成的。

(1)要配制这种药水1612千克,需要药粉多少千克?(2)用水60千克,需要药粉多少千克?(3)用48千克药粉,可配制成多少千克的药水?5、某班男生人数与女生人数的比是4:3,已知女生有24人,这个班级有学生多少人?6、商店运来一批电冰箱,卖了18台,卖出的台数与剩下的台数比是3:2,求运来电冰箱多少台?7、三角形的三个角的比是2:3:4这个三角形三个角各是多少度?8、六(1)班原有学生52人,后来又调进女生4人,这时女生人数是男生人数的,六(1)班原来有女生多少人?9、一块长方形试验田的周长是120米,已知长与宽的比是2:1,这块试验 田的面积是多少平方米?10、用一根60厘米长的铁丝围一个长方形,已知长与宽的比是3:2,这块试验 田的面积是多少平方米?11、在比例尺是250000001 的中国地图上量得北京到上海的距离是4.2厘米.北京到上海的实际距离大约是多少千米?12、在比例尺是1:6000000的地图上,量得甲乙两个火车站的距离是2.4厘米。

求甲乙两个车站的实际距离是多少千米?13、在某城市的公交路线图上,2路公交车从火车站到终点站的实际距离是20千米,已知这幅图的比例尺是1:50000 ,从火车站到终点站的图上距离是多少厘米?14、在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米?15、在比例尺是15000000 的地图上,量得甲、乙两地的距离是9.6厘米。

甲、乙两地的实际距离是多少千米?16、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?17、一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少?18、在一幅比例尺是14000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷?19、在比例尺是1∶300000的地图上,量得甲、乙两地的距离是12厘米,它们之间的实际距离是多少千米?如果改用1∶500000的比例尺,甲、乙两地的距离应画多少厘米?20、一个修路队,原来计划每天修400米,15天可以完成任务.结果12天完成任务,实际每天修多少米?(5分)21、食堂里的一批煤,如果每天烧0.6吨,可以烧24天;如果每天少烧0.12吨,这批煤可以烧多少天?(两种方法解答)22、学校班车4分钟行驶了2400米,照这样的速度,从第1站到学校共行驶了30分钟,这段路程有多少千米?(解比例)23、用同样的地砖铺地,铺完36平方米的房间用了方砖180块地砖,如果再铺个48平方米的房间,还要用地砖多少砖?(用比例解)24、运一批药品,每箱装36瓶,需要40只箱子。

比和比例应用题例

比和比例应用题例

★比和比例应用题
1、甲乙两厂人数的比是7∶6。

从甲厂调360人到乙厂后,甲乙两厂人数比为2∶3,甲乙两厂原有多少人
2、一辆汽车在甲、乙两站之间匀速行驶,往返一次共用去4小时(停车时间不计算在内)。

已知汽车去时速度为每小时45千米,返回时速度为每小时30千米,甲乙两站相距多少千米?
3、A、C两站相距10千米,A、B两站相距2千米,甲车从A站,乙车从B站同时向C站开去,当甲车到达C站时,乙车距C站还有0.5千米,甲车是在离C站多远的地方追上乙车的?(如图)
4、某班在一次数学考试中,平均成绩是78分,男、女生各自的平均成绩分别是75.5分、81分。

这个班男、女生人数的比是多少
5、王师傅原定在若干小时内加工完一批零件。

他估算了一下,如果按原定速度加工120个零件后工作效率提高25%,可提前40分钟完成;如一开始工作效率就提高20%的话,就可提前1小时完成。

他原计划每小时加工多少个零件?
6、一只野兔跑出80步后,猎狗才追它。

野兔跑8步的路程,猎狗只需跑3步;猎狗跑4步的时间,野兔要跑9步。

那么猎狗至少要跑多少步才能追上野兔?
7、某团体100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多,且各组男会员与女会员人数之比是:甲:(12∶13)、乙:(5∶3)、丙:(2∶1)。

那么丙组有多少名男会员?。

比和比例应用题

比和比例应用题

比和比例应用题1.小明三天读完一本书,第一天读了全本书的一半少32页,第二天读了2、甲、乙两人去看电影,一张电影票价是甲所有钱的6/25,是乙所有钱的3/5;当他们各自买了电影票后,甲剩下的钱比乙剩下的钱多3元;问甲、乙买电影票前各有多少钱3、男生比全校学生总数的3/5还少63人,男生比女生多26人;六年级中,男生与女生的人数之比是35∶31,男生比女生多8人.问其他年级中女生有多少人,B两个盘子,放着黑子和白子.在A中有2700个棋子,其中黑子多少个5.陆地与海洋的面积之比,在北半球是2∶3,在南半球是1∶4.求地球上陆地与海洋的面积之比.6、一块地由三台拖拉机耕完;甲耕了这块地的2/5,乙耕的地比丙耕的多1/4,乙比甲少耕100亩;问这块地有多少亩7.孙悟空有仙桃,机器猫有甜饼,米老鼠有泡泡糖.他们按下面比例互换:仙桃与甜饼为3∶5,仙桃与泡泡糖为3∶8,甜饼与泡泡糖为7∶10.现在孙悟空各拿出90个仙桃与其他两位互换,机器猫共拿出甜饼269个与其他两位互换,问米老鼠拿出互换的泡泡糖有多少个8.水池的水面上立着两根木桩,露出水面部分的长度之比是10∶1.当水面下降2 0厘米后,露出水面部分的长度之比变成5∶2.求较短的一根木桩,原来露出水面部分是多少厘米9.小明有12元,小强有元,他们去买每本元的笔记本,小明比小强多买了2本,小明与小强剩下的钱数之比是5∶3.问小明买了几本笔记本10.甲、乙两人收入的钱数之比是8∶5,开支的钱数之比是4∶3,甲结余152元,乙结余69元.问甲、乙两人收入各多少元11.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.第一堆三堆棋子集中在一起,求黑子数与白子数之比.12.小明要写152页字,小强要写150页字.从暑假第一天起,小明每天写3页,小强每隔一天写4页第一天写4页,第二天不写,第三天写4页…….当小强未写的页数是小明未写的页数的2倍时,问这是第几天比和比例应用题汇总一、操作题;1、一个圆形大花坛,量得它的直径是40米,请你仔细把它画在比例尺是的图纸上;要求:先计算出图上圆的半径长度,再画出平面图;2、一块长方形菜地,长90米,宽60米;请你自己设计一个比例尺,再根据你设计的比例尺画出这块菜地的平面图;3、下图的比例尺是1:2500,量出图上各数据,求出它的实际占地面积是多少平方米量时得数保留整厘米4、下图是按1:60000的比例尺画出的一张试验田的平面图,请量出有关数据,求出试验田的面积是多少公顷;二、应用题;1一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少2在一幅的平面图上,量得一块平行四边形的菜地的底是12厘米,高是10厘米,这块菜地的实际面积是多少公顷3甲、乙两地相距240千米,画在比例尺是1∶3000000的地图上,长度是多少厘米4在一幅地图上,用3厘米的线段表示实际距离600千米;在这幅地图上,量得甲、乙两地的距离是4.5厘米,甲、乙两地的实际距离是多少千米5甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米6在一幅比例尺是1:30000 的地图上,量得东、西两村的距离是12.3厘米,东、西两村的实际距离是多少米9.6厘米;甲、乙两地的实际距离是多少千米8甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米9一幅地图,图上的4厘米,表示实际距离200千米,这幅图的比例尺是多少10在一幅比例尺是14000 的平面图上,量得一块三角形的菜地的底是12厘米,高是8厘米,这块菜地的实际面积是多少公顷11在比例尺是1∶300000的地图上,量得甲、乙两地的距离是12厘米,它们之间的实际距离是多少千米如果改用1∶500000的比例尺,甲、乙两地的距离应画多少厘米12一辆汽车2小时行驶130千米;照这样的速度,从甲地到乙地共行驶5小时;甲、乙两地相距多少千米用比例解13一辆汽车从甲地开往乙地,每小时行64千米,5小时到达;如果要4小时到达,每小时需行驶多少千米用比例解14修一条公路,原计划每天修360米,30天可以修完;如果要提前5天修完,每天要修多少米用比例解15修一条路,如果每天修120米,8天可以修完;如果每天修150米,可以提前几天可以修完用比例方法解16修一条公路,总长12千米,开工3天修了1.5千米;照这样计算,修完这条路还要多少天用比例解答17修一条路,如果每天修120米,8天可以修完;如果每天多修30米,几天可以修完用比例方法解18小明买4本同样的练习本用了元,138元可以买多少本这样的练习本用比例解答19工厂有一批煤,计划每天烧吨,42天可以烧完;实际每天节约1/8,实际可以烧多少天用比例方法解20两个底面积相等的长方体,第一个长方体与第二个长方体高的比是7:11,第二个长方体的体积是144立方分米,第一个长方体的体积是多少立方分米用比例方法解21解放军某部行军演习,4小时走了22.4千米,照这样的速度又行了6小时,一共行了多少千米用比例方法解22一对互相啮合的齿轮,主动轮有60个齿,每分转80转;从动轮有20个齿,每分转多少转用比例方法解236台榨油机每天榨油吨,现在增加了13台同样的榨油机,每天共榨油多少吨用比例方法解24一某工厂要生产一批机器零件,5天生产410个,照这样计算,要生产1066个机器零件需要多少天用比例方法解25某工地要运一堆土,每天运150车,需要24天运完,如果要提前4天完成,每天要多运多少车用比例方法解26用一边长为30厘米的方砖铺地,需200块,如果改用边长为20厘米的方砖铺地需多少块用比例方法解27种农药,药液与水重量的比是1:1000;1、20克药液要加水多少克2、在6000克水中,要加多少克药液3、现在要配制这种农药500.5千克,需要药液和水各多少千克28一种稻谷每1000千克能碾出大米720千克;照这样计算,要得到180吨大米,需要稻谷多少吨29 某工程队修一条公路,已修了1200米,这时已修的未修的比是3:2,这条公路全长是多少米30园林绿化队要栽一批树苗,第一天栽了总数的15 ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5;这批树苗一共有多少棵31一辆汽车三天共行720千米,第一天行驶5小时,第二天行驶6小时,第三天行驶7小时,如果每小时行驶的路程都相同,这三天各行多少千米32 甲、乙两地相距350千米,一列快车和一列慢车同时从两地相对开出,小时后相遇;已知快车和慢车的速度比是3:2,这两列火车的速度分别是多少33 甲、乙两堆煤原来吨数比是5:3,如果从甲堆运90吨放入乙堆,这时两堆吨数相等,甲、乙原来各有多少吨34园林绿化队要栽一批树苗,第一天栽了总数的15% ,第二天栽了136棵,这时剩下的与已栽的棵数的比是3:5;这批树苗一共有多少棵35生产一批零件,计划每天生产160个,27天可以完成,实际每天超产20个,可以提前几天完成36用边长15厘米的方砖铺一块地,需要2000块,如果改用边长为20厘米的方砖铺地,需要多少块37一堆煤用载重4吨的汽车运需20辆才能一次运完,如果改用载重5吨的汽车运,需要几辆才能运完38学生参加搬砖劳动,6人搬砖162块,照这样计算,再增加432块,需要学生多少人39一捆铅丝重520克,剪下20米,这捆铅丝少了130克,这捆铅丝还剩多少米40运来一批纸装订成练习本,每本36页,可订40本,若每本30页,可订多少本典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题;1平均数问题:平均数是等分除法的发展;解题关键:在于确定总数量和与之相对应的总份数;算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少;数量关系式:数量之和÷数量的个数=算术平均数;加权平均数:已知两个以上若干份的平均数,求总平均数是多少;数量关系式部分平均数×权数的总和÷权数的和=加权平均数;差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数;数量关系式:大数-小数÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数;例:一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地;求这辆车的平均速度;分析:求汽车的平均速度同样可以利用公式;此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为60 千米,所用的时间是,汽车共行的时间为+ = , 汽车的平均速度为2 ÷ =75 千米2 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题;根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题;根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题;一次归一问题,用一步运算就能求出“单一量”的归一问题;又称“单归一;”两次归一问题,用两步运算就能求出“单一量”的归一问题;又称“双归一;”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题;反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题;解题关键:从已知的一组对应量中用等分除法求出一份的数量单一量,然后以它为标准,根据题目的要求算出结果;数量关系式:单一量×份数=总数量正归一总数量÷单一量=份数反归一例一个织布工人,在七月份织布4774 米, 照这样计算,织布6930 米,需要多少天分析:必须先求出平均每天织布多少米,就是单一量; 693 0 ÷ 477 4 ÷ 31 =45 天3归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量或单位数量的个数,通过求总数量求得单位数量的个数或单位数量;特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通;数量关系式:单位数量×单位个数÷另一个单位数量= 另一个单位数量单位数量×单位个数÷另一个单位数量= 另一个单位数量;例修一条水渠,原计划每天修800 米, 6 天修完;实际4 天修完,每天修了多少米分析:因为要求出每天修的长度,就必须先求出水渠的长度;所以也把这类应用题叫做“归总问题”;不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量; 80 0 × 6 ÷ 4=1200 米4 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题;解题关键:是把大小两个数的和转化成两个大数的和或两个小数的和,然后再求另一个数; 解题规律:和+差÷2 = 大数大数-差=小数和-差÷2=小数和-小数= 大数例某加工厂甲班和乙班共有工人94 人,因工作需要临时从乙班调46 人到甲班工作,这时乙班比甲班人数少12 人,求原来甲班和乙班各有多少人分析:从乙班调46 人到甲班,对于总数没有变化,现在把乙数转化成2 个乙班,即9 4 -12 ,由此得到现在的乙班是9 4 -12 ÷ 2=41 人,乙班在调出46 人之前应该为41+46=87 人,甲班为9 4 -87=7 人5和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题;解题关键:找准标准数即1倍数一般说来,题中说是“谁”的几倍,把谁就确定为标准数;求出倍数和之后,再求出标准的数量是多少;根据另一个数也可能是几个数与标准数的倍数关系,再去求另一个数或几个数的数量;解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车115 辆,大货车比小货车的5 倍多7 辆,运输场有大货车和小汽车各有多少辆分析:大货车比小货车的5 倍还多7 辆,这7 辆也在总数115 辆内,为了使总数与5+1 倍对应,总车辆数应115-7 辆;列式为115-7 ÷ 5+1 =18 辆, 18 × 5+7=97 辆6差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题;解题规律:两个数的差÷倍数-1 = 标准数标准数×倍数=另一个数;例甲乙两根绳子,甲绳长63 米,乙绳长29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3 倍,甲乙两绳所剩长度各多少米各减去多少米分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3 倍,实比乙绳多3-1 倍,以乙绳的长度为标准数;列式63-29 ÷ 3-1 =17 米…乙绳剩下的长度, 17 × 3=51 米…甲绳剩下的长度, 29-17=12 米…剪去的长度;7行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题;解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答;解题关键及规律:同时同地相背而行:路程=速度和×时间;同时相向而行:相遇时间=速度和×时间同时同向而行速度慢的在前,快的在后:追及时间=路程速度差;同时同地同向而行速度慢的在后,快的在前:路程=速度差×时间;例甲在乙的后面28 千米,两人同时同向而行,甲每小时行16 千米,乙每小时行9 千米,甲几小时追上乙分析:甲每小时比乙多行16-9 千米,也就是甲每小时可以追近乙16-9 千米,这是速度差; 已知甲在乙的后面28 千米追击路程, 28 千米里包含着几个16-9 千米,也就是追击所需要的时间;列式2 8 ÷16-9 =4 小时8流水问题:一般是研究船在“流水”中航行的问题;它是行程问题中比较特殊的一种类型,它也是一种和差问题;它的特点主要是考虑水速在逆行和顺行中的不同作用;船速:船在静水中航行的速度;水速:水流动的速度;顺水速度:船顺流航行的速度;逆水速度:船逆流航行的速度;顺速=船速+水速逆速=船速-水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答; 解题时要以水流为线索;解题规律:船行速度=顺水速度+ 逆流速度÷2流水速度=顺流速度逆流速度÷2路程=顺流速度×顺流航行所需时间路程=逆流速度×逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行28 千米,到乙地后,又逆水航行,回到甲地;逆水比顺水多行2 小时,已知水速每小时4 千米;求甲乙两地相距多少千米分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间;已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程;列式为284 × 2=20 千米2 0 × 2 =40 千米40 ÷ 4 × 2 =5 小时28 × 5=140 千米;9 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题;解题关键:要弄清每一步变化与未知数的关系;解题规律:从最后结果出发,采用与原题中相反的运算逆运算方法,逐步推导出原数;根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数;解答还原问题时注意观察运算的顺序;若需要先算加减法,后算乘除法时别忘记写括号;例某小学三年级四个班共有学生168 人,如果四班调3 人到三班,三班调6 人到二班,二班调6 人到一班,一班调2 人到四班,则四个班的人数相等,四个班原有学生多少人分析:当四个班人数相等时,应为168 ÷ 4 ,以四班为例,它调给三班3 人,又从一班调入2 人,所以四班原有的人数减去3 再加上2 等于平均数;四班原有人数列式为168 ÷4-2+3=43 人一班原有人数列式为168 ÷ 4-6+2=38 人;二班原有人数列式为168 ÷ 4-6+6=42 人三班原有人数列式为168 ÷ 4-3+6=45 人;10植树问题:这类应用题是以“植树”为内容;凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题;解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算;解题规律:沿线段植树棵树=段数+1 棵树=总路程÷株距+1株距=总路程÷棵树-1 总路程=株距×棵树-1沿周长植树棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树例沿公路一旁埋电线杆301 根,每相邻的两根的间距是50 米;后来全部改装,只埋了201 根;求改装后每相邻两根的间距;分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一;列式为50 × 301-1 ÷ 201-1 =75 米11 盈亏问题:是在等分除法的基础上发展起来的; 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足或两次都有余,或两次都不足,已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题;解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差也称总差额,用前一个差去除后一个差,就得到分配者的数,进而再求得物品数;解题规律:总差额÷每人差额=人数总差额的求法可以分为以下四种情况:第一次多余,第二次不足,总差额=多余+ 不足第一次正好,第二次多余或不足,总差额=多余或不足第一次多余,第二次也多余,总差额=大多余-小多余第一次不足,第二次也不足, 总差额= 大不足-小不足例参加美术小组的同学,每个人分的相同的支数的色笔,如果小组10 人,则多25 支,如果小组有12 人,色笔多余5 支;求每人分得几支共有多少支色铅笔分析:每个同学分到的色笔相等;这个活动小组有12 人,比10 人多2 人,而色笔多出了25-5 =20 支, 2 个人多出20 支,一个人分得10 支;列式为25-5 ÷ 12-10 =10 支10 × 12+5=125 支;12年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”; 解题关键:年龄问题与和差、和倍、差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点;例父亲48 岁,儿子21 岁;问几年前父亲的年龄是儿子的4 倍分析:父子的年龄差为48-21=27 岁;由于几年前父亲年龄是儿子的4 倍,可知父子年龄的倍数差是4-1 倍;这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的4 倍;列式为:21 48-21 ÷ 4-1 =12 年13鸡兔问题:已知“鸡兔”的总头数和总腿数;求“鸡”和“兔”各多少只的一类应用题;通常称为“鸡兔问题”又称鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数;解题规律:总腿数-鸡腿数×总头数÷一只鸡兔腿数的差=兔子只数兔子只数=总腿数-2×总头数÷2如果假设全是兔子,可以有下面的式子:鸡的只数=4×总头数-总腿数÷2兔的头数=总头数-鸡的只数例鸡兔同笼共50 个头, 170 条腿;问鸡兔各有多少只兔子只数170-2 × 50 ÷ 2 =35 只鸡的只数 50-35=15 只。

比和比例应用题

比和比例应用题

1、甲、乙两包糖的重量比是4:1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比为7:5,那么甲包糖原来重多少克?2、A、B两种商品的价格比是7:3.如果它们的价格分别上涨70元,它们的比是7:4,这两种商品原来的价格各是多少元?3、光明小学五年级共有学生140人,分成三个小组进行植树活动,已知第一小组与第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5,这三小组各有多少人?4、城中小学六年级的学生共参加了三类兴趣活动,其中科技组合美术组人数的比是5:4,美术组和数学组人数的比是3:2,已知科技组人数比美术组、数学组人数的总和少15人,六年级共有多少人参加兴趣活动?5、小红看一本故事书,已看的和未看的页数的比是1:5,如果再看20页,那么已看的和未看的页数的比是3:5,这本书共有多少页?6、图书室取出一批书按照一年级得二分之一,二年级得三分之一,三年级得七分之一分配,正好是41本,各年级各得多少本?7、甲乙丙三人共做零件900个,甲做总数的30%,乙比丙多做三分之一,三人各做多少个?八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快答案:甲收8元,乙收2元。

“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。

而甲乙两人吃了的价值都是10元,所以甲还可以收回18-10=8元乙还可以收回12-10=2元刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。

比和比例应用题

比和比例应用题

一.比和比例应用题。

(1——5题用正、反比例两种方法解答)1.运一堆煤,计划每天运150吨,20天运完。

实际2天就运了400吨,照这样计算,实际几天运完?2. 修一条公路,计划每天修100米,40天修完;实际2天就修了400米,照这样计算,多少天可完成任务?3.学校买来161米塑料绳,先剪下21米,做12根绳,照这样计算,剩下的塑料绳还可以剪几根跳绳?4. 一辆汽车从甲地到乙地,计划每小时行50千米,7小时到达。

实际3小时行180千米。

照这样速度,行完全程要几小时?5. 由于技术革新,某工人加工一个零件所用的时间由原来的20分钟缩短到8分钟。

现在每天加工24个零件,现在每天比原来多加工多少个零件?6.甲乙两列火车同时从两地相对开出,3小时后两车已行路程和剩下的路程比是5:3。

已知甲每小时行48千米,乙每小时行57千米。

两地相距多少米?7. 甲、乙、丙、丁四人同走一段路,甲、乙的速度比是3:4,乙、丙的速度比是2:3,丙丁的速度比是4:9,甲、丁的速度比是多少?8. 有一杯糖水,糖和水的比是1:10,再加入2克糖,新糖水重79克,求原糖水中糖和水各是多少克?二.分数、百分数应用题。

1. 一个数减去56等于144,这个数减少了百分之几?2.某村去年植树800棵,比今年多25%,今年比去年减少了百分之几?3. 有两筐水果,甲筐水果的16 加上6斤,正好等于乙筐水果的14减去6斤,已知甲筐水果重54斤,那么乙筐水果有多少斤?4. 甲、乙两数和为50,如果甲去掉它的 14,乙去掉1后,两数正好相等,甲数原来是多少?5. 甲、乙两个书架共有图书360本,从甲书架借出 45 ,从乙书架借出34,两书架剩下的书相等。

甲、乙两个书架各有多少本书?6. 某班女生是男生的80%,最近又转来一名女生,结果女生是男生的56,现在全班有学生多少人?7. 六年级甲、乙两班共有110名学生,已知甲班的学生的 23 与乙班学生的45的和是80人。

比和比例应用题

比和比例应用题

比和比例应用题1.甲、乙两车间的平均人数是156人,两车间的人数比是5:7,甲、乙两车间各有多少人?2.水果店运进苹果、橘子和梨共435千克。

如果橘子增加15千克,这三种水果质量的比是15:7:8。

问:原来运进橘子多少千克?3.一间教室用边长0.4米正方形砖铺地,需要300块。

如果改用边长为0.5米的正方形砖铺地,需要多少块?4.把一批图书按4:5:6的比分给甲、乙、丙三个班,已知甲班比丙班少分的24本。

三个班各分得多少本?5.一艘轮船以每小时40千米的速度从甲港开往乙港,行了全程的20%后,又行驶了1小时,这时未行路程与已行路程的比是3:1。

甲、乙两港相距多少千米?6.一次演讲比赛,有50名选手,其中有26人获奖。

已知获二等奖的人数与获一等奖的人数比是4:1,获一等奖的人数是获三等奖人数的81。

获一等奖的有多少人? 7.修一条公路,已修的和未修的长度比是1:3,再修300米后,已修的和未修的长度比是1:2.这条公路长多少米?8.星星小学操场有一根高耸的旗杆,旁边有一根2.5米高的竹竿。

上午九时明明测得竹竿的影长2米,旗杆的影长6.4米。

请你用比例知识求出旗杆的高度。

9.某农具厂要生产一批农具,原计划每天生产75台,20天完成,实际每天生产的台数比原计划每天生产的多31。

实际用多少天完成任务? 10.六(2)班学生共植树150棵,第一天与第二天植树的棵数比是5:6,第二天与第三天植树的棵数比是3:2.第一、二、三天各植树多少棵?11.配制什锦糖,妈妈用进价是3.6元/千克的奶糖、2.8元/千克的水果糖和2.1元/千克的酥糖按2:3:1配制,然后按20%的利润定价。

每千克什锦糖定价多少元?12.客车和货车同时从甲、乙两地的中点向相反方向行驶,5小时后,客车到达甲地,货车离乙地还有60千米,已知货车与客车的速度比是5:7,求甲、乙两地相距多少千米?13.仓库有一批货物,运走的货物与剩下的货物的质量比是2:7,如果又运走64吨,那么剩下的货物只占仓库原有货物的53。

比和比例应用题

比和比例应用题

比和比例应用题例1 甲、乙两个仓库原有粮食吨数的比是5:4,甲仓库运走36吨后,两仓库粮食的吨数的比是3:4,甲仓库原有粮食多少吨?练习1 甲、乙两个仓库存放的货物重量比是4:3,把甲仓库货物的1/3运到乙仓库,这时乙仓库的货物重量比甲仓库多100吨,甲仓库原有货物多少吨?练习2 甲乙两人各加工100个零件,甲比乙迟1 1/2小时开工,结果同时完成,甲乙两人的工作效率比是5:2。

甲每小时加工多少个零件练习3 两个相同的瓶子装满酒精溶液,一个瓶中酒精和水的体积之比是3:1,而另一个瓶中酒精与水的比是4:1,若把两瓶酒精溶液混合,混合液中酒精和水的体积比是多少?例2 甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1,乙瓶中酒精与水的体积比是4:1,现在把两瓶溶液倒入大瓶中混合,这时酒精与水的体积比是多少?练习1 某班在一次考试中,平均成绩是78分,男、女生各自的平均成绩是75.5分和81分,这个班男、女生人数的比是多少?练习3 一个长方形和一个正方形的周长比为6:5,长方形的长是宽的521倍,求这个长方形与正方形的面积之比。

例3甲和乙同时从A、B两地相向走来,甲每小时走7.5千米,两人相遇后,再走22.5千米到米到A地,甲再走2小时到B地,乙每小时走多少千米?练习1 甲、乙两人步行的速度比是7:5,甲、乙分别由A、B两地同时出发,如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?练习2 一批货物已经运走的65%,还剩下280吨,这批货物运走了多少吨?练习3 甲、乙两人进行百米赛跑,当甲到达终点时,乙距终点还有6米。

如果甲在起跑线后面6米,与乙同时跑,谁先到达终点?这时另一个距终点还有几米?例4化肥厂经过改革日产量比原来的20吨提高了25%,原来30天的产量,现在需要多少天能完成?练习1 有一项搬运砖的任务,25个人去搬需6小时可以完成。

如果相同工效的人数增加到30人,运完这批砖能减少几小时?练习2 甲、乙两辆汽车同时从A、B两个城市相对开出,经过12小时相遇后,甲车继续向前开到B城还要6小时,已知甲车每小时比乙车块25千米,求A、B两个城市间的公路长多少千米练习3 师徒两人加工一批零件,徒弟共加工3小时,师傅再参加工作,完成时,徒弟加工了这批零件的83,已知师徒工效比为2:5,师徒单独加工各要几小时例5 在一群学生中,如果走了15名学生,那么剩下的男女人数比为2:1。

比和比例应用题1

比和比例应用题1

比与比例应用题(一)1.有一个长方体,长与宽的比是2:1,宽与高的比是3:2,求长与高的比。

2.六年级三个班参加植树活动,一班和二班的人数比是5:4,二班和三班的人数比是3:4,一班、二班和三班的人数连比是多少?3.直角三角形三条边长度的比是3:4:5。

已知这个三角形的周长是48厘米,求斜边上的高。

4.甲、乙两个仓库原有粮食吨数的比是5:4,甲仓库运走36吨后,两个仓库粮食吨数的比是3:4,乙仓库原有粮食多少吨?5.甲、乙、丙三个工程队合修一条长70千米的公路,甲、乙两个工程修路的长度比为2:3,乙、丙两个工程队修路的长度比为4:5,这三个工程队各修了多少千米?6.买甲、乙两种铅笔共210支,甲种铅笔每支6角,乙种铅笔每支8角,买两种铅笔用去的钱相同。

问甲种铅笔买了几支?7.妈妈买了一些水果,其中苹果与荔枝的重量之比是5:7,而单价之比是3:8,那么苹果与荔枝的总价之比是多少?8.小明和小芳各走一段路,小明走的路程比小芳多18,小芳用的时间比小明多15,小明和小芳的速度之比是多少?9.一批零件按5:3分给师、徒两人加工,结果师傅加工了1440个,超额完成20%,徒弟只完成了80%,徒弟加工了多少只?10.长方体棱长的和是216厘米,长、宽、高的比是4:3:2,长方体的体积是多少?11.六年级一班和二班的人数比是8:7,如果把一班的8名同学调到二班去,则一班和二班的人数比变为4:5,原来一班、二班各有多少人?12.学校图书馆原有文艺书和科技书共5400本,其中科技书比文艺书少15,最近又买来一批科技书,这时科技书和文艺书本书的比是9:10。

图书馆买来多少本科技书?13.1352[15(1 1.75)] 1.375 2477-⨯+⨯÷14.31 (20.25120.148.134%)158 +⨯-⨯÷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题1
甲、乙两列火车同时从两地相向开出。

已知甲列车每小时行驶120 千米,乙列车每小时行驶90 千米
(1)甲、乙两车的速度比是()
2)甲、乙两车相遇时所行的路程比是()
3)甲、乙两车各自行完全程所用的时间比是()
练习 1
(1)一段路,甲要12 分钟走完,乙要15 分钟走完,甲、乙二人速度的最简整数比是多少?
2)制造一个零件,甲需 6 分,乙需 5 分,丙需 4.5分,现在有1590 个零件的任务,分配给他们三人,且要求在相同时间内完成,每人应该分配到多
少零件的任务?
3)师徒两人在同一时间内共做100 个零件,师傅每 6 分做一个,徒弟每9 分做一个。

当他们完成任务时,各做了多少个零件?
研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题2
甲、乙加工一批零件,甲先加工1.5小时,乙再加入,完成任务时,甲完成
这批零件的-,已知甲、乙工效比是3:2。

甲单独加工要几小时?
8
练习2
(1)有两组工人,效率的比为7:8,人数的比是5:6,工作时间的比为12:11。


两组所完成的工作量的比。

(2)甲、乙两辆汽车从相距190千米的A、B两地相向开出,在途中相遇,已知
甲、乙两车的速度比为4:3,相遇时所用时间的比为5:6,求相遇时甲、乙两辆汽车各行了多少千米?
(3)有两组工人要做790个零件,效率比是7:8,人数比是5:6,工作时间比是
12:11。

求两组工人各做多少个零件?
研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题3
甲、乙两个仓库原有粮食吨数的比是5:4,甲仓库运走36吨后,两仓库粮食吨数的比是3:4,甲仓库原有粮食多少吨?
练习3
1
(1)甲、乙两个仓库存放的货物重量比是4:3,把甲仓库货物的-运到乙仓库,
3 这时乙仓库的货物重量比甲仓库多100吨,甲仓库原有货物多少吨?
1
(2)甲、乙两人各加工100个零件,甲比乙迟2-小时开工,结果同时完成,
2
甲乙两人的工作效率比是5:2。

甲每小时加工多少个零件?
(3)两个相同的瓶子装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,而另一个瓶中酒精与水的比是4:1,若把两瓶酒精溶液混合,混合液中酒精和
水的体积之比是多少?
比和比例应用题(一)
研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题4 某车间有140 名职工,分成三个生产作业组,已知第一组和第二组人数的比是2:3,第二组和第三组人数的比是4:5,这三个生产组各有多少人?
练习 4
(1)一个长方形,长与宽的比是2:1,宽与高的比是3:2,求长与高的比
2)一个长方形,长与宽的比是2:1,宽与高的比是3:2,如果长方形的全部棱长之和是220 厘米,求长方形的体积。

3)有甲、乙、丙三家零售商店,已知某天甲店与乙店销售额的比是3:4,乙店与丙店销售额的比为 2.5:3,如果这天乙店的销售额比甲、丙两店的销售总额少931 元,求这天三家商店的销售额各是多少元?
比和比例应用题(一)
研究目标:
比和比例是进一步学习更多数学知识的重要基础,比和除法、分数都有实质性的
联系。

有了“比”,处理分数、百分数及有关倍的问题,就将更加灵活方便。

例题5
甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1, 乙瓶中酒精与水的体积的比是4:1,现在把两瓶溶液倒入一个大瓶中混合,这时酒精与水的体积比是多少?
练习5
(1)某班在一次数学考试中,平均成绩是
78分,男、女生各自的平均成绩是
75.5分和81分,这个班男、女生人数的比是多少?
(2)甲走的路程比乙多-,乙用的时间却比甲多-,求甲、乙的速度比
3 4
(3)—个长方形与一个正方形的周长比为6:5,长方形的长是宽的1-倍,求
5 这个长
方形与正方形的面积之比。

研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题1
一辆汽车从甲地开往乙地,每小时行40千米,返回时每小时行50 千米,结果返
回时比去时的时间少48 分钟,求甲、乙两地之间的路程。

练习 1
(1)一辆汽车从甲地开往乙地,去时每小时行48 千米,返回时,每小时行56 千米,返回比去时少用 1 小时,求甲、乙两地的路程。

2)某人从A 城步行到 B 城办事,每小时走 5 千米,回来时骑自行车,每小时行15 千米,往返共用 6 小时,求A、B 两成之间的路程。

3)一辆汽车从甲地去乙地,每小时行45 千米,返回时每小时多行20%。

往返共用去11 小时。

甲地到乙地共有多少千米?
研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题2
甲和乙同时从A、B 两地相向走来,甲每小时走7.5 千米,两人相遇后,乙再走22.5千米到A地,甲再走2小时到B地,乙每小时走多少千米?
练习 2
(1)甲、乙两人步行的速度比是7:5,甲、乙分别由A、B 两地同时出发,如果相向而行,0.5 小时后相遇,如果他们同向而行,那么甲追上乙需要多少
小时?
2)一批货物已经运走了65%,还剩下280 吨,这批货物运走了多少吨?
3)甲、乙两人进行百米赛跑,当甲到达终点时,乙距终点还有6米。

如果甲在起跑线后面 6 米,与乙同时跑,谁先到达终点?这时另一个距终点还有几米?
比和比例应用题(二)
研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题3
化肥厂经过改革日产量比原来的20吨提高了25%,原来30天的产量,现在需要多少天能完成?
练习3
(1)有一项搬运砖的任务,25个人去搬需6小时可以完成。

如果相同工效的人数增
加到30人,运完这批砖能减少几小时?
(2)甲、乙两辆汽车同时从A B两个城市相对开出,经过12小时相遇后,甲车
继续向前开到B城还要6小时,已知甲车每小时比乙车快25千米, 求A、B
两个城市间的公路长多少千米?
(3)师、徒两人加工一批零件,徒弟共加工3小时,师傅再参加工作,完成时,
徒弟加工了这批零件的3,已知师徒工效比是2:5,师徒单独加工各要几
8
小时?
研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题4
在一群学生中,如果走了15 名女生,那么剩下的男女人数比为2:1。

在这之后,
如果再走45 名男生,那么剩下的男女人数比为1:5,原先有多少名女生?
练习 4
(1)大、小两瓶油共重 2.7千克,大瓶的油用去0.2 千克后,剩下的油与小瓶内油的重量比是3:2,求大、小瓶里原来各装多少千克油?
2)甲、乙两厂原有人数的比是7:6,从甲厂调走36 人后,甲乙两厂人数的比是2:3 ,甲、乙两厂原来各有多少人?
3)甲、乙两厂原有人数的比是7:6,从甲厂调36 人到乙厂后,甲、乙两厂人数的比是2:3,甲、乙两厂原来各有多少人?
研究目标:
正确理解并灵活运用比和比例这些基本知识,可以使一些较复杂的数量关系简化,便于我们分析和理解有关的问题。

例题5
甲、乙两个长方形容器,底面积的比是4:3,甲中水深5 厘米,乙中水深 2 厘米。

再往两个容器中注入同样多的水,这时水深恰好相等,甲容器中水面上升几厘米?
练习 5
(1)甲、乙两个圆柱容器,底面积的比是5:4,甲中水深8 厘米,乙中水深 5 厘米,向两容器中注入同样多的水,使两容器中水深相等,乙容器中水深几
厘米?
2)甲乙两个长方形容器,甲底面长 6 分米,宽 4 分米,乙容器底面长8 分米,宽 2 分米,甲中水深8 分米,乙中水深 6 分米,向两容器注入同样
多的水后,水深恰好相等。

两容器中现在水深多少分米?
(3)AB两圆柱容器,底面积的比是2:3, A中水深4厘米,B中水深6厘米, 向两容器中注入同样多的水,水深恰好相等。

两容器现在水深是多少厘米?。

相关文档
最新文档