七年级数学上册151乘方时新版新人教版
151有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

有理数的乘方(第二课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第二课时),内容包括:有理数加、减、乘、除、乘方混合运算.2.内容解析有理数的混合运算是在学生学习并掌握了有理数的加、减、乘、除、乘方运算的基础上提出的,它涵盖了有理数一章的主要内容,是对前面所学的运算的小结.教材在前面学习有理数加、减、乘、除法运算时,就已经适时介绍过加减法混合、乘除法混合和加减乘除混合运算的内容在此加入乘方与前面四种运算的混合,构成了三级混合运算(加减法是第一级运算;乘除法是第二级运算;乘方以及以后将学习的开方是第三级运算)以期进一步培养学生的运算能力进行有理数的混合运算的关键是熟练地掌握有理数的加、减、乘、除、乘方的运算法则、运算律和运算顺序.基于以上分析,确定本节课的教学重点为:有理数的混合运算顺序、运算法则和运算律的应用.二、目标和目标解析1.目标(1)知道有理数加、减、乘、除、乘方混合运算的运算顺序.(2)会进行有理数的混合运算.(运算能力)2.目标解析在有理数的加、减、乘、除和乘方混合运算中,加减法叫做第一级运算;乘除法叫做第二级运算;乘方和开方(以后再学)叫做第三级运算.一个式子里如果含有几级运算,应先算高级运算,再算低一级运算,即先乘方,再乘除,后加减;同一级运算按从左到右的顺序进行;如果有括号,先算小括号,再算中括号,最后算大括号里的运算;如果有绝对值,就先算绝对值.进行有理数的混合运算,首先要看清算式的层次如括号、运算层级等,确定运算顺序,再根据各种运算法则,先确定每一种运算结果的符号,再计算其结果的绝对值.能够使用加法与乘法运算律的,应使用运算律来提高运算的速度与准确率.三、教学问题诊断分析在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识.由于七年级的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、纳等数学活动,总结发现理数的加、减、乘、除和乘方混合运算规律.基于以上学情分析,确定本节课的教学难点为:应用有理数的混合运算解决规律探究和实际应用问题.四、教学过程设计(一)复习回顾乘方的定义这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.乘方的符号法则:(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(二)自学导航问题:我们学习了有理数的哪些运算?加法,减法,乘法,除法,乘方.一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.思考:有理数的混合运算顺序是什么?思考下列问题:(1)2÷(2×3)与2÷2×3有什么不同?(2)2÷(12-2)与2÷12-2有什么不同? (3)6÷(-3)2与6÷(-32)有什么不同?思考:下面的算式含有哪几种运算?先算什么,后算什么?【运算顺序】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(三)考点解析例1.计算:(1)(-1)3-32÷(-4)×13; (2)(-3)2×(1-3)-(3-32); (3)(-4)×[(-3)2+2]-(-3)3÷(-2). 解:(1)原式=-1+32×14×13=-1+18=-78(2)原式=×(-2)-(3-9)=-18-(-6)=-18+6=-12;(3)原式=(-4)×(9+2)-(-27)÷(-2)=(-4)×11-13.5=-44-13.5=-57.5.【迁移应用】计算:(1)-14-(-12)÷3×|-2|; (2)-23÷49×(-23)2; (3)9+5×(-3)-(-2)2÷4; (4)(-4)3-22-|-12|×(-8)2; (5)-32+[1-(-1)3]×2÷12; (6)-53+[(-4)2-(1-62)×3]. 解:(1)原式=-1-(-12)×13×2=-1+13=-23;(2)原式=-8÷49×49=-8×94×49=-8;(3)原式=9+(-15)-4÷4=9-15-1=-7;(4)原式=-64-4-12×64=-64-4-32=-100; (5)原式=-9+(1+1)×2×2=-9+2×2×2=-9+8=-1 ;(6)原式=-125+[16-(1-36)×3]=-125+16+105=-4.例2.计算:(1)-43÷916×(-34)2-(1-32)×2; (2)-14-(2-112)×13×[5+(-2)3];(3)-24÷[1-(-3)2]+(23-35)×(-15); (4)-32-|(-5)3|×(-25)2-18+|-(-3)2|. 解:(1)原式=-64×169×+8×2=-64+16=-48; (2)原式=-1-12×13×(5-8)=-1-12×13×(-3)=-1+12=-12;(3)原式=-16+(1-9)+(-23×15+35×15) =-16÷(-8)+(-10+9)=2-1=1;(4)原式=-9-125×425-18÷9=-9-20-2=-31.【迁移应用】计算:(1)-(-2)2+22-(-1)9×(13-12)+16-8; (2)112×[3×(-23)2-1]-14÷(-4)2;(3)(58-23)×24+14÷(-12)3+|-22|; (4)|-57|×(45-13)÷(-23)2-(12)2; (5)-23÷[214×(-113)2]×(-0.25)2; (6)|-1+89|÷(59-34+112)-32×(-34)3.解:(1)原式=-4+4+1×(-16)-8=-8;(2)原式=32×(3×49-1)-14÷16=32×13-164=3164; (3)原式=58×24-23×24+14×(-8)+22=15-16-2+22=19; (4)原式=57×715÷49-14=13×94-14=12; (5)原式=-8÷(94×169)×116=-8×14×116=-18;(6)原式=19÷(−19)-32×(-2764)=-1+272=1212. 例3.观察下面三行数:-2, 4, -8, 16, -32, 64,…;①0, 6, -6, 18, -30, 66,…; ①-1, 2, -4, 8, -16, 32,…. ①(1)第①行数按什么规律排列?分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,…(2)第①①行数与第①行数分别有什么关系?(2)第①行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…第①行数是第①行相应的数除以2,即-2÷2,(-2)2÷2,(-2)3÷2,(-2)4÷2,…(3)取每行数的第10个数,计算这三个数的和.(3)每行数中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×0.5=1024+(1024+2)+1024×0.5=1024+024+512=2562.【迁移应用】(1)计算:①2-1=___;①22-2-1=___; ①23-22-2-1=___; ①24-23-22-2-1 =___; ①25-24-23-22-2-1=___.(2)根据上面的计算结果猜想:22020-22019-22018-…-22-2-1的值为____;2n-2n-l-2n-2-.….-22-2-1的值为____.(3)根据上面猜想的结论,求213-212-211-210-29-28-27-26的值.解:由猜想的结论得:213-212-211-210-29-28-27-26-25-24-23-22-2-1=1所以,213-212-211-210-29-28-27-26=1+1+2+22+23+24+25=1+2+4+8+16+32=64例4.小王在电脑上设计了一个有理数的运算程序:输入数a,按“*”键,再输入数b,得到运算:a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b).(1)求(-2)*12;解:(1)(-2)*12=(-2)2-(12)2-{2×[(-2)3-1]-1÷12}÷(-2-12)=-174.(2)小王在运算a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b)中出现无法操作的情况,可能是因为除数或分母中有0的存在.1÷b中如果b=0,那么无意义,无法操作;或者a-b作为除数,如果a-b=0,即a=b,那么无意义,也无法操作.所以有两种可能:输入了b=0或输入了b=a,才使得程序无法操作.【迁移应用】1.如图是计算机程序的计算流程图,若开始输入x=-2,则最后输出的结果是_______.2.如图是一个数值运算程序,当输出的值为-5时,输入的x的值为_______.五、教学反思。
部编数学七年级上册【人教版】七上册:1.5.1《乘方》课时练习(含答案)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1.5 有理数的乘方1.5.1 乘方能力提升1.(-1)2 016的值是( )A.1B.-1C.2 016D.-2 0162.下列各式中,一定成立的是( )A.(-3)2=32B.(-3)3=33C.-32=|-32|D.(-3)3=|(-3)3|3.28 cm接近于( )A.珠穆朗玛峰的高度B.三层住宅楼的高度C.一层住宅楼的高度D.一张纸的厚度4.现规定一种新的运算“*”,a*b=a b-1,如3*2=32-1=8,则*3等于( )A.-B.-1C.-2D.-5.把写成乘方的形式为 ,其底数是 .6. 的平方是, 的立方是-.7.若x,y互为倒数,则(xy)2 015= ;若x,y互为相反数,则(x+y)2 016= .★8.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出 根细面条;(2)到第 次捏合后可拉出32根细面条.9.计算:(1)-52+2×(-3)2-7÷;(2)(-5)2×+32÷(-2)3×.创新应用★10.为了求1+2+22+23+…+22 015的值,可令S=1+2+22+23+…+22 015,则2S=2+22+23+…+22 016,因此2S-S=22 016-1,所以1+2+22+23+…+22 015=22 016-1.仿照以上推理计算出1+9+92+93+…+92 016的值是( )A.92 016-1B.92 017-1C.D.★11.观察下列各组数:①-1,2,-4,8,-16,32,…;②0,3,-3,9,-15,33,…;③-2,4,-8,16,-32,64,…. (1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)取每组数的第8个数,计算这三个数的和.参考答案能力提升1.A2.A (-3)2为正,32也为正,即(-3)2=32,所以A一定成立;(-3)3为负,33为正,所以B不成立;-32为负,|-32|为正,所以C不成立;(-3)3为负,|(-3)3|为正,所以D不成立.3.C 28cm=256cm=2.56m,所以接近于一层住宅楼的高度.4.B *3=-1=--1=--1=-1.5.6.± -7.1 0 若x,y互为倒数,则xy=1,所以(xy)2015=12015=1;若x,y互为相反数,则x+y=0,所以(x+y)2016=02016=0.8.(1)8 (2)5 经过分析,设捏合次数为n,则可拉出的细面条根数为2n.9.解:(1)-70;(2)-10.创新应用10.D 令S=1+9+92+93+…+92016,则9S=9+92+93+…+92017,所以9S-S=92017-1,即S=.11.解:(1)后面一个数与前面一个数的比值为-2.(2)对比①②③三组中对应位置的数,第②组数比第①组数大1,第③组数是第①组数的2倍.(3)128+129+256=513.。
人教版七年级数学上册1.5.1乘方(教案)

1.理论介绍:首先,我们要了解乘方的基本概念。乘方是求相同因数的积,它是指数表示的运算方式。乘方在数学中具有重要地位,广泛应用于科学计算和实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过计算3个2相乘和4个2相乘,引出乘方的表示方法(2^3和2^4),并解释其简化运算的优越性。
另外,我也意识到在讲解乘方性质时,可能过于注重运算的简化,而忽视了性质背后的逻辑推理。在今后的教学中,我需要更加注重培养学生的逻辑推理能力,让他们不仅会计算,还明白为什么要这样计算。
人教版七年级数学上册1.5.1乘方(教案)
一、教学内容
本节课选自人教版七年级数学上册1.5.1乘方,主要包括以下内容:
1.乘方的定义:理解乘方的概念,即求相同因数的积。
2.乘方的表示方法:学习如何用幂的形式表示乘方,例如a^n表示n个a相乘。
3.乘方的性质:
a)同底数幂相乘,底数不变,指数相加;
b)同底数幂相除,底数不变,指数相减;
c)幂的乘方,底数不变,指数相乘。
4.乘方的计算方法:掌握乘方的计算法则,能正确进行乘方运算。
二、核心素养目标
1.培养学生逻辑推理能力:通过乘方定义和性质的学习,让学生掌握数学推理方法,能运用逻辑思维进行乘方运算。
2.提高学生数学运算能力:使学生熟练掌握乘方的计算方法,提高数学运算速度和准确性。
3.培养学生数学抽象能力:引导学生从具体的乘法运算中抽象出乘方的概念,理解幂的意义,提高数学抽象思维能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。
教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。
本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。
二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。
但乘方作为一个新的概念,需要学生从新的角度去理解。
学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。
三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.乘方的意义和运算规则。
2.乘方在实际问题中的应用。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。
六. 教学准备1.教学PPT。
2.实例和练习题。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。
2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。
例如,2的3次方表示2乘以自己3次,即2×2×2=8。
3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。
可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。
4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。
例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。
人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,本节课主要让学生了解乘方的概念,掌握有理数的乘方规则,并能够运用乘方解决一些实际问题。
教材通过引入“幂”的概念,让学生理解乘方的意义,并通过大量的例子让学生掌握有理数的乘方规则。
二. 学情分析七年级的学生已经掌握了有理数的乘法,对数的概念有一定的了解,这为学习乘方打下了基础。
但学生在学习乘方时,可能会对乘方的概念和乘方的规则感到困惑,因此需要通过大量的例子让学生理解和掌握。
三. 教学目标1.了解乘方的概念,理解乘方的意义。
2.掌握有理数的乘方规则,能够运用乘方解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.乘方的概念。
2.有理数的乘方规则。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,通过引导学生思考、讨论、实践,让学生主动探究乘方的意义和规则。
六. 教学准备1.PPT课件。
2.教学案例和习题。
3.小组合作学习的小组划分和任务分配。
七. 教学过程1.导入(5分钟)通过PPT展示一个实际问题:某商品打八折后的价格是120元,问原价是多少?让学生思考如何解决这个问题,从而引出乘方的概念。
2.呈现(15分钟)PPT展示乘方的定义和有理数的乘方规则,通过讲解和示例让学生理解乘方的意义和掌握乘方的规则。
3.操练(15分钟)让学生进行一些乘方的练习,巩固乘方的概念和规则。
教师可以通过PPT展示练习题,让学生在课堂上完成,并对学生的答案进行讲解和指导。
4.巩固(10分钟)通过PPT展示一些巩固乘方知识的习题,让学生独立完成,教师对学生的答案进行讲解和指导。
5.拓展(10分钟)让学生运用乘方解决一些实际问题,如计算利息、折扣等。
教师可以通过PPT 展示实际问题,让学生在课堂上解决,并对学生的答案进行讲解和指导。
6.小结(5分钟)让学生总结本节课所学的内容,教师对学生的总结进行点评和补充。
人教版七年级数学上册:1.5.1《乘方》教案

人教版七年级数学上册:1.5.1《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册的一个重要内容,主要介绍了乘方的概念、性质和运算法则。
通过学习乘方,学生能够理解和掌握乘方的基本概念,了解乘方的意义和作用,以及运用乘方解决实际问题。
二. 学情分析学生在学习乘方之前,已经掌握了有理数的乘法、除法和加减法等基础知识,具备了一定的数学思维能力。
但部分学生可能对乘方的概念和性质理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.理解乘方的概念,掌握乘方的性质和运算法则。
2.能够运用乘方解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力和逻辑推理能力。
四. 教学重难点1.乘方的概念和性质。
2.乘方的运算法则。
3.运用乘方解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究乘方的概念和性质。
2.运用实例和练习,让学生通过实际操作来理解和掌握乘方的运算法则。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学PPT或黑板。
2.教学素材和练习题。
3.学生分组名单。
七. 教学过程1.导入(5分钟)利用PPT或黑板,展示一些生活中的实际问题,如温度、速度等,让学生感受到乘方的意义和作用。
引导学生思考:这些问题能否用乘法来解决?如何用乘法来解决?2.呈现(10分钟)介绍乘方的概念,讲解乘方的意义和作用。
通过实例和练习,让学生理解和掌握乘方的运算法则。
如:2^3 = 2 × 2 × 2 = 83.操练(10分钟)让学生进行乘方运算练习,巩固所学知识。
可以设置一些难度不同的练习题,让学生根据自己的实际情况选择适合自己的题目。
4.巩固(10分钟)通过小组合作学习,让学生运用乘方解决实际问题。
可以设置一些开放性问题,让学生分组讨论和解答。
5.拓展(10分钟)引导学生思考:乘方在实际生活中有哪些应用?如何运用乘方解决更复杂的问题?可以让学生举例说明,并进行讲解。
七年级数学上册151时乘方习题新版新人教版

16.平方后等于196的数是___±__34___,立方后等于-125 的数是_-__5_____.
17.一个数的平方等于它本身,则这个数是________1.或0
18.(白银中考)观察下列各等式:13+23=32,13+23+33=62,13+23 + 33 + 43 = 102 , … , 根 据 这 些 等 式 的 规 律 , 第 五 个 等 式 是 _1_3_+__2_3_+__3__3_+__4_3_+__5_3_+__6__3_=__2_1_2_________________3 (1)- 3 ;
8 -3 (3)234(用计算器计算);
1 (2)(-12)4;
81 16
279 841
(4)(-2.5)3(用计算器计算0.1毫米,若拿两张重叠在一起,将它对 折一次后,厚度为22×0.1毫米.求: (1)对折2次后,兰州中考)为了求1+2+22+23+…+2100的值.可令S =1+2+22+23+…+2100,则2S=2+22+23+24+…+2101 ,因此2S-S=2101-1,所以S=2101-1,即1+2+22+23 +…+2100=2101-1,仿照以上推理计算1+3+32+33+…+ 32 014的值是_3_2__01_5_-__1.
23×0.1=8×0.1=0.8(毫米). (2)对折6次后,厚度为多少毫米?
27×0.1=128×1.一根 1 米长的绳子,第一次剪去2,第二次剪去剩下的2,
如此剪下去,第六次后剩下的绳子有多长?
1
1
1
1
1
1
1×(1-2)×(1-2)×(1-2)×(1-2)×(1-2)×(1-2)
1
数学人教新版七年级上册同步训练:(1.5.1乘方)【含答案】

数学人教新版七年级上册实用资料1.5 有理数的乘方1.5.1 乘方5分钟训练(预习类训练,可用于课前) 1.填空题(1)求几个相同因数的积的运算,叫做_______,即nn a a a a •⋅⋅⋅•=1442443个=a n在a n中,a 叫做_______,n 叫做______,a n叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________; (3)乘方(-2)5的意义是____________________,结果为________;(4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______. 思路解析:按照乘方定义及幂的结构解题. 答案:(1)乘方 底数 指数 幂 (2)正数 负数 正数 (3)5个-2的积 -32(4)5个2的积的相反数 -32(5)底数 指数 负二的四次幂 负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么? (1)(-113)(-113)(-113)(-113); (2)(-0.1)×(-0.1)×(-0.1).思路解析:根据幂的意义写出. 答案:(1)(-113)4,底数是-113,指数是4; (2)(-0.1)3,底数是-0.1,指数是3.10分钟训练(强化类训练,可用于课中)1.把下列各式写成幂的形式,并指出底数、指数各是什么? (1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2); (2)12×12×12×12×12×12;(3)2n b b b b ••⋅⋅⋅64748个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案: (1) (-1.2)5,其中底数是-1.2,指数是5; (2) (12)6,其中底数是12,指数是6;(3)222nn nb b b b b b••⋅⋅⋅==6447448个,底数是b,指数是2n.2.判断题:(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2 001+(-1)2 002=0;()(4)2×(-3)2=(-6)2=36; ()(5)22 3 =49. ()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1 296; (2)-1 296; (3)1681; (4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1; (2)-1; (3)-0.008; (4)8125; (5)116; (6)0.000 4.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n 为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18; (2)-1.快乐时光成功的秘诀一位演员巡回演出回来,他对朋友说:“我获得了极大的成功,我在露天广场上演出时,观众的掌声经久不息.”“你真走运,”他的朋友说,“下个星期再演出时就要困难一些了.”“为什么?”演员问.“天气预报说下周要降温,这样蚊子会少多了.”那人回答. 30分钟训练(巩固类训练,可用于课后)1.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x<0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2 002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________. 答案:(1)-7 (2)-2 -1 -8 (3)7 0 03.计算:(1)(-5)4; (2)-54; (3)-(-27)3;(4)[-(-27)]3; (5)-245; (6)(-45)2.思路解析:本题意在考查对(-a)n与-a n的意义的理解,要注意二者的区别与联系. 解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:本题是乘、除、乘方混合运算运算时一要注意运算顺序:先乘方、后乘除,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b-4)2≥0.又因为(a+12)2+(2b-4)2=0,得a+12=0,a=-12,2b -4=0,b=2,把a=-12, b=2代入a 2+b 2,得334. 6.若n 为自然数,求(-1)2n-(-1)2n+1+(-2)3的值.思路解析:因为n 为自然数,所以2n 为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知: (-1)2n =1,(-1)2n+1=-1. 答案:-6. 7.x 2=64,x 是几?x 3=64,x 是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x 2=64;x=4时,x 3=64. 8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值.思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法. 答案:1120. 9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长? 思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:答案:128米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是a的n 次方的结果时, 也可读作 _a_的__n_次__幂_____. 2、负数的奇次幂是负数,负数 的偶次幂是正数.
正数 的任何次幂都是正数, 0的任何正整4)3
(2)(2)4
(3)(
2 3
)
3
解:⑴(-4) =(-4)×(-4)×(-4) 3 = _-6_4_
⑵ (2)4=( -2 )×( -2 )×( -2 )×( -2 )
=_1_6__
⑶ ( 2)3 ( 2) ( 2) ( 2) 8
练一练 用计算器计算:
(1) 11 6 =_1_7__7_1561
(3) 8.4 3=_5__9_2_.704
(2) 167 =_2__6_8_435456
(4) 5.6 3 =_积 的运算,叫做乘方.乘方的结果
学习和研究好比爬梯子,要一步一步地往
上爬,企图一脚跨上四五步,平地登天,那
就必须会摔跤_1__,_0__, 立方等于本身的数是__1_,-_1_,0__.
2、计算
(1) 33 (2) 24 (3)1.72
(4) 4 3
3
(5) 23 (6) 22 32
解: (1)原式=-27 (2)原式=16 (3)原式=2.89
(4)原式=
64 27
(5)原式=-(-8)=8
3
3 3 3 27
思考
从以上计算,你能发现负数的幂的正负有什么
规律的幂是__负___数. ②当指数是偶数时,负数的幂是__偶___数.
归纳 根据有理数乘法法则可以得出: 负数的奇次幂是 负数 ,负数的偶次幂是 正数的任何次幂都是 正数 , 0的任何正整在 9 4 中,底数是 9 ,指数是 4 ,
读作__9_的__4_次__幂_____或__9_的__4_次_方___.
它表示 4 个9相乘得 9 4
2、5就是5 1 .底数是__5___,指数是 ___1__.
3、 78中的底数是___-7__,指数是 8
(5) 0.13
解: (1)原式=1 (2)原式=-1
(3)原式=512
(5)原式=0.001
1
(6)原式= 16 (7)原式= 104
(4)原式=ww- 牛牛(文8库)文档原分 式= 105 享
例2 用计算器计算 85 和 36
解:按键求得
85= -__3_2_7_6_8; 36= __70 8中-10叫做__底__数,8叫做__指__数,
108 是__正__数____(填正数或负数).
2、计算:
(1) 1 10
(6)
1
4
2
(2) 1 7 (3) 8 3 (4) 53
(7) 10 4 (8)105
(6)原式=4×9=36 牛牛文档分 享3、用计算器计算
(1)128(2)1034 (3)7.123 (4) 45.73
解:(1)原式=429981696 (2)原式=112550881 (3)原式=360.944128 (4)原形的面积是 __2__×__2__=4(cm²). 2、棱长为2cm的正方体的体积是 __2__×__2__××2×2,它们都是 _几__个__相_同__ 因数的乘法.
2、为了简便,我们将2×2记作__2_2 __,
记作___(__52_)_5 _,读作______24 是两个意义和结果
都不一样的幂.想想为什么?
这两个幂的底数不相同 牛牛文档分 享一般地,几个相同因数相乘,即 a a a
a 记作 a的n次,方读作__________. n
n个
求
n个相同因数乘积 的运算,叫做乘方.
乘方的结果叫做 幂 .
在 an中a叫做 底,数n叫做______. 指数 看作a是n
a的n 次方的结果时,
也可读作____a_的___n_次__幂_.
温馨提示:
一个数可以看作这个数本身的一次方. 指数1时通常省略不写.
读作_2_的__平__方___(或_2_的__二__次__方___); 将(或2_×__22_×的_2_3记_次_作方______2_)3.__,读作__2_的_立__方__ 3、同样,(-2)×(-2)×(-2)×(-2) 记作_(__2_)_4 ,读作_-_2_的__4_次__方__.
2 2 2 2 2 5 5 5 5 5