教案《数据的数字特征》

合集下载

1.1 数据的数字特征

1.1 数据的数字特征

n 2 ( n 1)u4 ( n 1) 2 3 4 ( n 1)( n 2)(n 3) s ( n 2)(n 3)
当数据的总体分布为正态分布时,峰度近似为 0;当分布较正态分布的尾部更为分散时,峰度为 正,否则峰度为负。 当峰度为正时,两侧极端数据较多;当峰度为 负时,两侧极端数据较少。
NORTH UNIVERSITY OF CHINA
《数据分析》电子教案
第一章 数据描述性分析
2015年5月16日星期六
总体的数据特征
• 设观测数据是由总体X中取出的样本,总体的分布 函数是F(x)。当X为离散分布时,总体的分布可由 概率分布列刻画:
pi PX xi ,
i 1,2,.
NORTH UNIVERSITY OF CHINA
《数据分析》电子教案
第一章 数据描述性分析
2015年5月16日星期六
例2
• 某厂的某种悬式绝缘 子机电破坏负荷试验 数据(单位:吨)分 组表示如表,计算这 批分组数据的均值、 方差、标准差、变异 系数、偏度、峰度。
组段
5.5~6.0 6.0~6.5 6.5~7.0 7.0~7.5 7.5~8.0 8.0~8.5 8.5~9.0 9.0~9.5 9.5~10.0
频 数
频 数
NORTH UNIVERSITY OF CHINA
《数据分析》电子教案
第一章 数据描述性分析
2015年5月16日星期六
均值、方差等数字特征
峰度
n( n 1) g2 ( n 1)( n 2)(n 3) s 4
2 ( n 1) ( xi x ) 4 3 ( n 2)(n 3) i 1 n
第一章 数据描述性分析

教案《数据的数字特征》

教案《数据的数字特征》

教案《数据的数字特征》第一章:数据的描述1.1 数据的概念与分类理解数据的概念掌握数据的分类:定量数据、定性数据1.2 数据的收集与整理学习数据收集的方法理解数据整理的意义掌握数据整理的基本技巧第二章:平均数2.1 平均数的定义与计算理解平均数的概念学会计算简单数据的平均数2.2 平均数的作用与局限性理解平均数在数据分析中的作用认识平均数的局限性第三章:中位数3.1 中位数的定义与计算理解中位数的概念学会计算简单数据的中位数3.2 中位数的作用与局限性理解中位数在数据分析中的作用认识中位数的局限性第四章:众数4.1 众数的定义与计算理解众数的概念学会计算简单数据的众数4.2 众数的作用与局限性理解众数在数据分析中的作用认识众数的局限性第五章:方差5.1 方差的定义与计算理解方差的概念学会计算简单数据的方差5.2 方差的作用与局限性理解方差在数据分析中的作用认识方差的局限性第六章:标准差6.1 标准差的定义与计算理解标准差的概念学会计算简单数据的标准差6.2 标准差的作用与局限性理解标准差在数据分析中的作用认识标准差的局限性第七章:离散系数7.1 离散系数的定义与计算理解离散系数的概念学会计算简单数据的离散系数7.2 离散系数的作用与局限性理解离散系数在数据分析中的作用认识离散系数的局限性第八章:数据的关系与趋势8.1 数据的关系:相关系数理解相关系数的概念学会计算简单数据的相关系数8.2 数据的趋势:趋势线理解趋势线的作用学会绘制简单数据的趋势线第九章:数据的分布9.1 数据的正态分布理解正态分布的概念学会识别正态分布的数据9.2 数据的偏态分布理解偏态分布的概念学会识别偏态分布的数据回顾本章所学的内容理解各种数字特征在数据分析中的应用10.2 数据的数字特征应用实例通过实例分析,运用所学知识解决实际问题重点和难点解析重点一:数据的分类数据的分类是理解后续数字特征的基础。

定量数据和定性数据的区别需要学生深刻理解,这将直接影响到对平均数、中位数、众数等概念的理解。

5.1.2 高中必修二数学教案《数据的数字特征》

5.1.2  高中必修二数学教案《数据的数字特征》

高中必修二数学教案《数据的数字特征》教材分析在义务教育阶段,学生已经通过实例,学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。

(由于义务教育阶段《大纲》中对统计部分的要求与《标准》的要求相差较大,若是承接现行《大纲》的话,建议先补充《标准》中第三学段相应部分的内容。

)在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地领悟它们各自的特点,在详尽的问题中依照情况有针对性地选择一些合适的数字特点。

学情分析在选择适当的数来分别表示这两组数据的离散程度时,学生会很自然地想到义务教育阶段时学习过的极差和方差。

在教学时,可以先让学生自主思考,选择适当的数来表示,学生经历分析数据、作出推断的过程,可以进一步体会统计对决策的作用。

教学目标1、通过实例,理解数据的数字特征:最值、平均数、中位数、百分位数、众数,理解不同数字特征的优势与不足。

2、会用求和符号表示平均数,掌握求和符号的性质。

3、能根据现实问题的需要选择适当的数字特征来表达数据信息,体会数字特征在分析数据时的重要作用,培养数学抽象能力、数学运算能力、数据分析素养。

教学重点平均数、中位数、中位数、众数、极差、方差、标准差的计算、意义和作用。

教学难点根据问题的需要,选择适当的数字特征来表达数据的信息。

教学方法讲授法、讨论法、练习法教学过程一、情境导学如下是某学校高一(1)班和高一(2)班某一次期中考试的语文成绩,试从不同的角度对两班成绩进行对比。

在日常生活中,当面对一组数据时,相比每一个观测值,有时我们更关心的是能反映这组数据特征的一些值。

例如,上述情境中的两个班的成绩,我们可以从最值、平均数、中位数、方差等角度进行比较。

二、学习新知1、最值一组数据的最值指的是其中的最大值与最小值,最值反映的是这组数最极端的情况。

一般地,最大值用max表示,最小值用min表示。

日常生活中,有时我们只关心数据的最值。

比如,高考部分科目实行“一年多考”,最终取的是多次考试成绩中的最大值;举重比赛中,选手有三次“试举”机会,其中成绩的最大值将计入总成绩;末位淘汰的比赛中,积分最小值对应的团体或个人将被淘汰出局;等等。

《数据的数字特征》 讲义

《数据的数字特征》 讲义

《数据的数字特征》讲义在当今这个数字化的时代,数据无处不在。

无论是科学研究、商业决策,还是日常生活中的各种活动,我们都在不断地产生和处理着大量的数据。

而要理解和分析这些数据,就需要了解数据的数字特征。

这些数字特征能够为我们提供有关数据的重要信息,帮助我们做出更明智的决策。

一、平均数平均数是最常见的数据特征之一。

它表示一组数据的平均水平。

计算平均数的方法很简单,就是将所有数据相加,然后除以数据的个数。

例如,有一组数据:10,20,30,40,50。

那么这组数据的平均数就是:(10 + 20 + 30 + 40 + 50)÷ 5 = 30平均数在很多情况下都非常有用。

比如,在评估学生的考试成绩时,我们可以计算班级的平均分数来了解整体的学习水平;在计算工人的平均工资时,可以了解员工的收入状况。

然而,平均数也有其局限性。

如果数据中存在极端值(极大值或极小值),那么平均数可能会被扭曲。

例如,一个班级里大多数学生的成绩都在 70 分到 90 分之间,但有一个学生考了 20 分,这会拉低班级的平均成绩,导致平均数不能准确反映大多数学生的真实水平。

二、中位数中位数是将一组数据按照从小到大或从大到小的顺序排列后,位于中间位置的数值。

如果数据个数是奇数,那么中位数就是中间的那个数;如果数据个数是偶数,中位数则是中间两个数的平均值。

还是以上面那组数据为例:10,20,30,40,50。

将其从小到大排列为:10,20,30,40,50。

因为数据个数是 5,为奇数,所以中位数就是 30。

如果数据变为:10,20,30,40,50,60。

那么从小到大排列为:10,20,30,40,50,60。

数据个数是 6,为偶数,中位数就是(30+ 40)÷ 2 = 35中位数的优点在于它不受极端值的影响。

在前面提到的班级成绩例子中,如果存在极端低分,中位数可能更能反映班级成绩的中等水平。

三、众数众数是一组数据中出现次数最多的数值。

高中教育数学必修第二册人教B版《5.1.2 数据的数字特征》教学课件

高中教育数学必修第二册人教B版《5.1.2 数据的数字特征》教学课件
方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程
度越小.
(2)标准差、方差的取值范围:[0,+∞).
标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,
数据没有离散性.
(3)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程
度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,
5.1.2 数据的数字特征
新知初探·自主学习
课堂探究·素养提升
【课程标准】
(1)结合实例,理解最值、平均值、众数、极差、方差、标准差的含
义.
(2)结合实例,能用样本估计百分位数,理解百分位数的统计含义.
新知初探·自主学习
教 材 要 点
知识点一 最值
一组数据的最值指的是其中的最大值与最小值.
状元随笔 最值反应的是这组数最极端的情况.一般地,最大值用
值相等的情况下,比较方差或标准差以确定稳定性.
跟踪训练3 在例3中,若甲机床所加工的6个零件的数据全都加10,
那么所得新数据的平均数及方差分别是多少?
解析:甲的数据为99+10,100+10,98+10,100+10,100+10,103+10,平均数为100+10=110,
1
7
方差仍为6[(109-110)2+(110-110)2+(108-110)2+(110-110)2+(110-110)2+(113-110)2]=3.
知识点四 极差、方差与标准差
1.一组数的极差指的是这组数的最大值减去最小值所得的差.
2.如果x1,x2,…,xn的平均数为തx,则方差可用求和符号表示为s2
1
= σ=1 − ҧ 2 .

3.方差的算术平方根称为标准差.

数据的数字特征

数据的数字特征
§4
数据的数字特征
4.1 平均数、中位数、众数、极差、方差
4.2 标准差
课前探究学习
课堂讲练互动
【课标要求】 1.掌握各种基本数字特征的概念、意义以及它们各自的 特点.
2.要重视数据的计算,体会统计思想.
【核心扫描】
1.各种数字特征的意义以及计算.(重点)
2.学习标准差的概念,通过实例理解样本标准差的意义 和作用,会由方差求标准差.(重点、难点)
课前探究学习 课堂讲练互动
1 s乙= [(99-100)2+(100-100)2+(102-100)2+(99-100)2+ 6 (100-100)2+(100-100)2]=1(cm2). (2)两台机床所加工零件的直径的平均数相同,又 s2 >s2 ,所 甲 乙 以乙机床加工零件的质量更稳定.
用标准差.
课前探究学习
课堂讲练互动
题型一
求一组数据的平均数、中位数和众数
【例1】在一次乒乓球单打比赛中,甲选手在1比3落后的情况 下连扳三局,4比3击败乙选手成功卫冕,这七局的比分 是:4∶18,8∶11,11∶5,4∶11,11∶9,11∶8,
11∶6.试分别计算这两位运动员成绩的平均数、众数和中
【题后反思】 用样本估计总体时,样本的平均数、标准 差只是总体的平均数、标准差的近似值.实际应用中,当 所得数据平均数不同时,须先分析平均水平,再计算标准 差(方差)分析稳定情况.
课前探究学习 课堂讲练互动
【训练3】甲、乙两机床同时加工直径为100 cm的零件,为了 检验质量,各从中抽取6件进行测量,分别记录数据为: 甲:99 100 98 100 100 103
1 [错解] (1)该单位员工的月工资的平均数为 ×(5×800+ 50 10×1 000+20×1 200+7×1 500+5×2 000+3×2 500)= 1 320(元),中位数为 1 200 元,众数为 1 200 元.

1.4《数据的数字特征》说课稿

1.4《数据的数字特征》说课稿

《数据的数字特征》说课稿瀛湖中学李善斌一、教材分析与学情分析教材地位与作用在义务教育阶段,学生已经通过实例,学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题。

(由于义务教育阶段《大纲》中对统计部分的要求与《标准》的要求相差较大,若是承接现行《大纲》的话,建议先补充《标准》中第三学段相应部分的内容。

)在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。

学情分析:本节课的学习者是普通班学生,他们的观察、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、紧密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

二、教学目标1.知识与技能①能结合具体情境理解不同数字特征的意义②结合实际, 能根据问题的需要选择适当的数字特征来表达数据的信息,培养学生解决问题的能力。

2.过程与方法通过实例理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力。

3.情感、态度与价值观通过对有关数据的搜集、整理、分析、判断培养学生“实事求是”的科学态度和严谨的工作作风。

三、教学重、难点教学重点:平均数、中位数、众数、极差、方差、标准差的计算、意义和作用。

教学难点:根据问题的需要选择适当的数字特征来表达数据的信息。

四、教学方法与策略本节课让学生通过熟知的一组数据的代表-众数,中位数,平均数下,并辅以计算器、多媒体手段,通过一定手脑结合的训练,在课堂结构上,我根据学生的认知水平,采取“仔细观察—分析研究---小组讨论---总结归纳”的方法,使知识的获得与知识的发生过程环环相扣,层层深入,从而顺利完成教学目标。

四、设计思路(1)、教法构想本节教学设计依据课程标准,在义务教育阶段的基础上,进一步掌握平均数、中位数、众数、极差、方差、标准差的计算、意义和作用。

通过具体的实例,让学生理解数字特征的意义,并能选择适当的数字特征来表达数据的信息。

数据的数字特征教案

数据的数字特征教案

数据的数字特征教案一、教学目标1. 让学生理解众数、中位数、平均数等基本数字特征的概念及计算方法。

2. 培养学生运用数字特征分析数据、解决问题的能力。

3. 引导学生通过合作、探究等方式,发现数据的数字特征在实际生活中的应用。

二、教学内容1. 众数:一组数据中出现次数最多的数。

2. 中位数:将一组数据按大小顺序排列,位于中间位置的数。

3. 平均数:一组数据的总和除以数据的个数。

4. 方差:衡量一组数据波动大小的量。

5. 标准差:方差的平方根,衡量一组数据离散程度的量。

三、教学重点与难点1. 重点:众数、中位数、平均数、方差、标准差的概念及计算方法。

2. 难点:方差、标准差的计算及实际应用。

四、教学方法1. 采用讲授法,讲解众数、中位数、平均数等基本数字特征的概念及计算方法。

2. 运用案例分析法,让学生通过实际数据案例,掌握数字特征的应用。

3. 采用小组合作、讨论交流等教学方法,提高学生的合作能力和解决问题的能力。

五、教学过程1. 导入:通过一组数据,引导学生发现数据的数字特征,激发学生的学习兴趣。

2. 讲解众数、中位数、平均数的概念及计算方法,并进行示例讲解。

3. 讲解方差、标准差的概念及计算方法,并进行示例讲解。

4. 布置练习题,让学生巩固所学内容。

5. 通过小组合作、讨论交流,让学生发现数据的数字特征在实际生活中的应用。

6. 总结本节课所学内容,布置课后作业。

六、教学评估1. 通过课堂练习和课后作业,评估学生对众数、中位数、平均数等基本数字特征的掌握程度。

2. 观察学生在小组合作、讨论交流中的表现,评估学生的合作能力和解决问题的能力。

3. 结合学生的课堂表现和作业完成情况,对学生的学习效果进行综合评估。

七、教学资源1. 教学PPT:包含众数、中位数、平均数、方差、标准差的概念及计算方法的讲解。

2. 数据案例:用于让学生分析、解决问题的实际数据案例。

3. 练习题:包括选择题、填空题、计算题等,用于巩固所学内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时教案4课题:数据的数字特征一、教学分析在初中阶段,学生已经学习了平均数、中位数、众数、极差、方差与标准差等概念,它们都是一些统计量,反映了数据的集中趋势与离散程度。

在这个基础上高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,在具体的问题中根据情况有针对性地选择一些合适的数字特征。

二、教学建议1、本节开始,可结合上一节茎叶图的相关内容,让学生计算初中已经学习过的统计量,让学生复习初中学习的统计量的内容,并能在这个过程中体会用不同的统计量刻画数据集中趋势的不同。

2、在选择适当的数来分别表示这两组数据的离散程度时,学生会很自然地想到义务教育阶段时学习过的极差和方差。

在教学时,可以先让学生自主思考,选择适当的数来表示,在此基础上,再鼓励他们积极交流,并认真观察、比较不同刻画方式之间的异同。

3、作为本节的结束,可安排教材的“动手实践”活动,让学生经历收集数据、整理数据、分析数据、作出推断的过程,进一步体会统计对决策的作用。

三、教学目标1、知识与技能(1)能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息。

(2)通过实例理解数据标准差的意义和作用,学会计算数据的标准差。

2、过程与方法在分析和解决具体实际问题的过程中,学会用恰当的统计量表示数据的方法,并能结合统计量对所给数据的分布情况作出合理的解释。

23、情感态度价值观通过对现实生活和其他学科中统计问题的分析和解决,体会用数学知识解决现实生活及各学科问题的方法,认识数学的重要性。

四、教学重点、难点教学重点:理解各个统计量的意义和作用,学会计算数据的标准差。

教学难点: 根据给定的数据,合理地选择统计量表示数据。

(一)课题引入数据的信息除了通过前面介绍的各种统计图表来加以整理和表达之外,还可以通过一些统计量来表述,也就是将多个数据“加工”为一个数值,使这个数值能够反映这组数据的某些重要的整体特征。

(二)探求新知请大家思考,初中时我们学习了几个统计量?它们在刻画数据时,各有什么样的优点和缺点?请大家结合下面问题的解决,对这个问题进行思考。

1、平均数、中位数、众数某公司的33名职工的月工资(单位:元)如下:(1)求该公司职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从 5500元提升到30000元,那么新的平均数、中位数、众数又是什么? (3)你认为哪个统计量更能反映这个公司员工的工资水平?为什么? (4)公司经理会选取上面哪个数据来代表该公司员工的月工资情况? 税务官呢?工会领导呢?通过这个问题的解决,我们应该认识到,各个不同的统计量适用于刻画不同的统计数据,并且有着各自的特点。

平均数:一般地,对于N 个数N x x x ,,,21 ,我们把Nx x x N+++ 21叫做这N 个数的算术平均数,简称平均数。

平均数是数据的重心,它是反映数据集中趋势的一项指标。

它的优点在于:对变量的每一个观察值都加以利用,比起众数与中位数,它会获得更多的信息;但是平均数对个别的极端值敏感,当数据有极端值时,最好不要用均值刻画数据。

众数:一组数据中出现次数最多的数据。

众数着眼于对各数据出现的次数的考察, 是一组数据中的原数据,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;注意:(1)一组数据中的众数有时不只一个,如数据2、3、-1、2、l、3中,2和3都出现了2次,它们都是这组数据的众数.(2)如果出现个数一样的数据,或者每个数据都只有一次,那么众数可以不止一个或者没有。

中位数:将一组数据从小到大排列或从大到小排列,处在中间位置上一个数据(或中间两个数据的平均数)。

中位数将观测数据分成相同数目的两部分,其中一部分都比这个数小而另一部分都比这个数据大,对于非对称的数据集,中位数更能实际地描述数据的中心。

某些数据的变动对它的中位数影响不大。

当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

注意:(1)求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以.(2)在数据个数为奇数的情况下,中位数是这组数据中的一个数据;但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等.在同一组数据中,众数、中位数和平均数也各有其特性:(1)中位数与平均数是唯一存在的,而众数是不唯一的;(2)众数、中位数和平均数在一般情况下是各不相等,但在特殊情况下也可能相等。

如,在数据6、6、6、6、6中,其众数、中位数、平均数都是6。

(3)众数和中位数可以代表数据分布的大体趋势,缺点在于并没有对数据中的其它值加以利用。

到底用什么统计量来刻画数据,需要结合数据的特点及你想要说明的问题进行选择。

不同的人立场不同,会选择不同额统计量来说明他的观点,这也就是我们要对统计结论进行批判性思维的原因。

2、极差、方差甲、乙两台机床同时生产直径是40mm的零件。

为了检验产品的质量,从两台机床生产的零件中各抽取10件进行测量,结果如下:那么,我们可以用哪些数据来刻画数据的离散情况呢?方法1、极差甲:40.2-39.8=0.4(mm ),乙:40.1-39.9=0.2(mm ); 方法2、方差甲:()1022111400.02610i i s x ==-=∑,乙:()1022211400.00610i i s x ==-=∑;方法3、甲:()()404039.84039.840100.14mm -+-++-÷=, 乙:()()4040404039.940100.06mm -+-++-÷=;方法4、甲:()()333404039.84039.840100.005mm -+-++-÷=乙:()()3334040404039.940100.0006mm -+-++-÷=那么,在刻画数据的离散程度时,这个统计量应该满足哪些原则呢?(1)应充分利用所得到的数据,以便提供更确切的信息; (2)仅用一个数值来刻画数据的离散程度;(3)对于不同的数据集,当离散程度大时,该数值也大。

极差是指一组数据内的最大值和最小值之间的差。

极差=最大值—最小值极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度。

极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,它的优点是计算简单,估算大致范围时用它.极差大的那一组不一定方差大,反过来,方差大的,极差不一定也大. 方差,是一组数据据内,每个数与平均数的差数的平方和。

方差是表现数据的离散程度的(波动情况),方差越小,数据的离散程度越小,也就越接近平均值,当要求某问题的稳定程度就用它.计算公式:设在一组数据,,12n x x ,x …中,x -是它们的平均数,则方差为:[()()()]222212n 1S x x x x x x n ---=-+-++-…3、标准差方差的单位是原始数据单位的平方,而刻画数据离散程度的一种理想度量应该具有与原始数据相同的单位,因而引入标准差,标准差更能反映数据的离散程度。

标准差(Standard Deviation ),也称均方差(mean square error ),是各数据偏离平均数的距离的平均数,在概率统计中最常使用作为统计分布程度(statistical dispersion )上的测量。

标准差定义为方差的算术平方根,反映组内个体间的离散程度。

测量到分布程度的结果,原则上具有两种性质:为非负数值, 与测量资料具有相同单位。

一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。

标准差能反映一个数据集的离散程度。

平均数相同的,标准差未必相同。

标准差的意义:标准差越高,表示实验数据越离散,也就是说越不精确;反之,标准差越低,代表实验的数据越精确。

注:以上各量都带单位。

(三)知识应用例 甲、乙两名战士在相同条件下各射击靶10次,每次命中的环数分别是: 甲:8,6,7,8,6,5,9,10,4,7; 乙:6,7,7,8,6,7,8,7,9,5. (1)分别计算以上两组数据的平均数; (2)分别求出这两组数据的方差;(3)请根据这两名射击手的成绩画出折线统计图,并估计这两名战士的 射击情况。

解:(1)7107768=++++=甲x (环),7105776=++++= 乙x (环)(2)0.3]77()76()78[(1012222=-++-+-=)s 甲(环2) 2.1])75()77()76[(1012222=-++-+-= 乙s (环2)(3)因为=甲x 乙x ,所以说明甲、乙两名战士的平均水平相当.又因为>甲2s 乙2s ,所以说明甲战士射击情况波动大.故乙战士比甲战士射击情况稳定.(四)课堂练习1、一家鞋店在一段时间里销售了某种女鞋20双,其中各种尺码的鞋的销量 如表所示:指出这组数据的众数、中位数、平均数。

解:30cm ,21cm 的鞋各出现5次,故众数为30cm ,21cm ;求中位数时应注意,在排列数据时应考虑每一个数出现的次数,本题 中共有20514352=+++++个数据,第10位数据为23,第11位 数据是25,故中位数22423+=24(cm) 。

平均数为6.2420254215233202281305=⨯+⨯+⨯+⨯+⨯+⨯(cm)2、下表是某班40名学生参加“环保知识竞赛”的得分统计表:请参照这个表解答下列问题:(1)用含x ,y 的式子表示该班参加“环保知识竞赛”的班平均分f ; (2)若该班这次竞赛的平均分为2.5分,求,x y 的值。

解:(1)355940x y f ++=;(2)依题意,有354111{x y x y +=+=解得74{x y ==3、(2007海南高考,理11)甲、乙、丙三名射箭运动员在某次测试中各 射箭20次,三人的测试成绩如下表: 甲的成绩:乙的成绩:丙的成绩:123s s s 、、分别表示甲、乙、丙三名射箭运动员这次测试成绩的标准差, 则有(C )A.123s s s >>B.312s s s >>C.213s s s >>D.231s s s >>4、课本第31页 练习 (五)课堂小结本节课我们学习了用合适的统计量来刻画数据的数字特征,平均数、中位数、众数、极差、方差、标准差都可以刻画数据的数字特征,在实际问题中要根据问题的实际情况选择合适的统计量来刻画数据的数字特征。

相关文档
最新文档