扫描隧道显微镜(STM)

合集下载

扫描隧道显微镜STM

扫描隧道显微镜STM
5)可在真空、大气、常温等不同环境下工作,样品甚 至可浸在水和其他溶液中 不需要特别的制样技术并且 探测过程对样品无损伤.这些特点特别适用于研究生 物样品和在不同实验条件下对样品表面的评价,例如 对于多相催化机理、超一身地创、电化学反应过程中 电极表面变化的监测等。
液体中观察原子图象 下图所示的是在电解液中得到的硫酸根离子吸附在铜单晶(111)表面的
2) 可实时得到实空间中样品表面的三维图像,可用 于具有周期性或不具备周期性的表面结构的研究,这 种可实时观察的性能可用于表面扩散等动态过程的研 究.
3) 可以观察单个原子层的局部表面结构,而不是对 体相或整个表面的平均性质,因而可直接观察到表面 缺陷。表面重构、表面吸附体的形态和位置,以及由 吸附体引起的表面重构等.
式中,I表示隧道电流,Ф表示有效局部功函数,d表示样品 与针尖间的距离,m为电子质量,h为普朗克常数。 在典型条件下,Ф近似为4eV,k=10 nm-1 如果d减小0.1 nm,隧道电流I将增加一个数量级
隧穿电流和金属间距成指数关系,由此在距离比较 远的时候,几乎不存在隧穿电流,而距离靠近时,电流 增长极快 ,隧道电流强度对针尖与样品表面之间距 非常敏感。
我们把三个分别代表X,Y,Z方向的压电陶瓷块组成三 角架的形状。通过控制X,Y方向伸缩达到驱动探针在样品 表面扫描的目的;通过控制 Z 方向压电陶瓷的伸缩达到控 制探针与样品之间距离的目的。
常用的压电材料是钛酸锆酸铅[Pb(Ti,Zr)O3](简称PZT), 它是一种多晶陶瓷材料。由于掺杂含量的改变,将得到不同 性质的PZT材料。可以使1mV~1000V的电压信号转换成十 几分之一纳米到几微米的位移。
隧道探针一般采用直径小于1mm的细金属丝, 如钨丝、铂-铱丝等,被观测样品应具有一定的导电 性才可以产生隧道电流。

扫描隧道显微镜STM

扫描隧道显微镜STM
单分子化学反应已经成为现实
单原子、单分子操纵在化学上一个极具诱惑力的潜在应用是可能实现 “选键化学”──对分子内的化学键进行选择性的加工。虽然这是一个 极具挑战性的目标,但现在已有一些激动人心的演示性的结果。在康奈 尔大学Lee和Ho的实验中,STM被用来控制单个的CO分子与Ag(110)表 面的单个Fe原子在13K的温度下成键,形成FeCO和Fe(CO)2分子。同 时,他们还通过利用STM研究C-O键的伸缩振动特性等方法来确认和研 究产物分子。他们发现CO以一定的倾角与Fe-Ag(110)系统成键(即CO分 子倾斜地立在Fe原子上),这被看成是Fe原子局域电子性质的体现。
5
2.STM的原理
图是STM的基本原理 图,其主要构成有:顶部 直径约为50—100nm的极 细金属针尖(通常是金属钨 制的针尖),用于三维扫描 的三个相互垂直的压电陶 瓷(Px,Py,Pz),以及用 于扫描和电流反馈的控制 器(Controller)等。
6
2.STM的原理
扫描隧道显微镜的基本 原理是将原子线度的极细 探针和被研究物质的表面 作为两个电极,当样品与 针尖的距离非常接近 (通常 小于1nm) 时,在外加电场 的作用下,电子会穿过两 个电极之间的势垒流向另 一电极。
16
溶液中固/液界面的原子和分子化学反应示意图
4.STM的工作环境
溶液条件
17
图是有机分子苯在Rh(111)—3x3(铑)表面 上的单层吸附结果。实验时,在0.01M(摩 尔)的HF(氢氟酸)溶液里含有0.25mM (毫 摩尔)浓度的有机分子苯。
图是另一种有机分子卟啉在I-Au(111)(碘-金) 表面上的单层吸附结果。实验时,在0.1M 的HClO4(高氯酸)溶液里含有0.57uM(微摩 尔)浓度的有机分子卟啉。

扫描隧道显微镜实验报告

扫描隧道显微镜实验报告

扫描隧道显微镜实验报告扫描隧道显微镜实验报告引言:扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种重要的纳米尺度观测仪器,它通过利用量子隧穿效应来实现对表面原子的成像。

本实验旨在通过使用STM来观察和研究不同样品表面的原子结构和性质,以及探索STM在纳米科学和纳米技术领域的应用前景。

实验方法:1. 样品制备:选择不同材料的样品,如金属、半导体或绝缘体,并进行表面处理,如抛光或清洗,以确保表面平整和干净。

2. STM装置设置:将STM装置连接至计算机,并进行相关设置,如校准扫描范围和调整扫描速度等参数。

3. 样品安装:将样品固定在样品台上,并确保其与STM探针的接触良好。

4. 扫描图像获取:通过控制STM探针的运动,以及调整扫描电压和电流等参数,获取样品表面的原子级分辨率图像。

5. 数据分析:利用专业的STM图像处理软件对所获得的图像进行分析和处理,以提取样品表面的结构和性质信息。

实验结果与讨论:通过对不同样品进行STM观察,我们可以得到高分辨率的原子图像。

以金属样品为例,我们观察到了其表面的原子排列规律,如金属晶体的晶格结构。

通过测量原子之间的间距,我们可以获得样品的晶格常数,并进一步研究其晶体结构和晶体缺陷等特性。

在半导体样品的观察中,我们可以发现其表面的原子排列存在一定的有序性,但与金属样品相比,半导体样品的表面结构更为复杂。

通过对半导体晶体表面的原子分布进行分析,我们可以了解其晶体生长过程中的缺陷形成机制,并为半导体器件的制备和性能优化提供重要参考。

此外,我们还观察到了绝缘体样品的表面结构。

与金属和半导体样品不同,绝缘体样品的表面原子排列更为松散和无序。

通过对绝缘体样品表面的原子间隙进行测量,我们可以得到绝缘体材料的晶格参数和晶体结构信息,为其性质研究和应用提供基础。

扫描隧道显微镜不仅可以提供原子级分辨率的表面图像,还可以通过在不同扫描位置测量电流变化来研究样品的电子态密度分布。

扫描隧道显微镜 原理

扫描隧道显微镜 原理

扫描隧道显微镜原理
扫描隧道显微镜(STM)的工作原理是基于量子力学的隧穿效应,利用一根金属针尖作为探针,与样品表面形成两个电极。

当针尖与样品表面的距离非常接近(通常小于1nm)时,电子云重叠,并在它们之间施加电压,此时电子会穿过两个电极之间的势垒流向另一电极,形成隧道电流。

隧道电流的大小与针尖到样品表面的距离呈指数关系,因此当针尖沿物质表面扫描时,由于表面原子凹凸不平,使探针与物质表面间的距离不断改变,从而导致隧道电流不断变化。

这种电流变化反映了样品表面的原子级凹凸形态,将电流的这种变化图像化即可显示出原子水平的凹凸形态。

扫描隧道显微镜具有超高的分辨率,横向分辨率达0.1nm,纵向分辨率达0.01nm,使人类第一次在实空间观测到样品表面的原子排布状态。

它对表面科学、纳米科学、生物医学等科学技术的研究和发展具有里程碑式的意义,被公认为上世纪八十年代世界十大科技成就之一。

扫描隧道显微镜的工作原理与应用

扫描隧道显微镜的工作原理与应用

扫描隧道显微镜的工作原理与应用扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种利用量子隧穿效应的高分辨率显微镜。

它采用的是一根极细的金属探头和样品之间的隧穿电流来获取样品表面的信息。

STM具有非常高的分辨率,能够在原子尺度下的样品表面进行观测和操纵,因此在材料科学、表面物理、纳米技术等领域有着广泛的应用。

一、工作原理STM的工作基于量子力学中的隧穿效应。

隧穿效应是一种粒子从一个区域超越到另一个区域的现象。

在STM中,金属探头和样品之间形成一个电势差,并使用一个反馈电路来保持电流恒定。

隧穿电流是通过探头和样品之间的隧穿效应产生的。

探头与样品之间的距离非常小,约为几个纳米,隧穿电流的大小取决于两者之间的距离。

当探头在样品表面上移动时,由于样品表面具有不同的高度和电性特征,因此隧穿电流的大小也会发生变化。

这种变化通过反馈电路测量并转换为高度和电性的信息,然后通过计算机处理并呈现出来。

样品表面的信息在计算机中显示为一个图像。

二、应用A.材料科学STM被广泛应用于材料科学领域,如表征材料表面和分析材料电子结构等。

在纳米材料研究中,STM可以检测材料中的特定原子和分子,并且可以通过组装单个原子或分子来设计新的材料。

B.表面物理STM是表面物理学中非常有用的工具。

它可以研究各种表面效应,例如表面扭转、重排和易于惯性传输的晶格振动模式。

此外,STM还可以用于表面缺陷和缺失等杂质的检测和定位。

C.纳米技术STM在纳米技术领域具有广泛应用。

纳米材料、纳米结构的制备和表征在纳米技术领域是非常重要的。

通过STM可以定量地观察单个原子和分子,这对于设计和制备纳米材料和纳米器件非常有帮助。

D.生物学STM可以在原子和分子的尺度上进行生物学实验。

在生物领域,STM可用于研究DNA分子的结构和功能,以及在膜结构中的蛋白质微区域中检测生物分子等。

E.电子学STM还可以用作电子学中的电极,例如调制电流分布、表征器件中的界面和自旋极化等方法。

扫描隧道显微镜原理

扫描隧道显微镜原理

扫描隧道显微镜原理扫描隧道显微镜(STM)是一种利用量子隧穿效应进行成像的显微镜,它是由德国物理学家格尔德·宝尔和海因里希·罗尔夫·霍尔斯特于1981年发明的。

STM是一种非常重要的显微镜,它可以在原子尺度上观察表面的原子结构,被广泛应用于物理、化学、材料科学等领域。

本文将介绍扫描隧道显微镜的原理及其工作过程。

扫描隧道显微镜的原理是基于量子力学的隧穿效应。

当一个尖端探针靠近样品表面时,尖端探针和样品表面之间会存在一个微小的隧穿电流。

这个电流的大小和探针与样品之间的距离有关,当探针移动时,电流的大小也会发生变化。

通过测量这个隧穿电流的变化,可以得到样品表面的拓扑结构信息。

在STM中,尖端探针被放置在一个能够微小移动的臂上,可以在样品表面来回扫描。

当探针靠近样品表面时,由于隧穿效应,会产生隧穿电流。

探针和样品之间的距离非常小,通常在纳米尺度,这使得STM能够观察到原子尺度的表面结构。

通过控制探针的位置和测量隧穿电流的大小,可以得到样品表面的原子结构信息。

扫描隧道显微镜的工作过程可以简单描述为,首先,将尖端探针放置在样品表面附近,然后通过控制尖端探针的位置,使其在样品表面上来回扫描。

在扫描的过程中,测量隧穿电流的大小,并将这些数据转换成图像,就可以得到样品表面的拓扑结构信息。

通过对这些图像的分析,可以得到样品表面的原子结构、晶格结构等重要信息。

扫描隧道显微镜具有高分辨率、原子尺度的观测能力,可以在原子尺度上观察样品表面的结构。

它在材料科学、物理、化学等领域有着广泛的应用,可以帮助科学家们更深入地理解物质的性质和行为。

同时,随着技术的不断进步,STM的分辨率和稳定性也在不断提高,为科学研究提供了强大的工具。

总之,扫描隧道显微镜是一种基于量子力学的显微镜,利用隧穿效应可以在原子尺度上观察样品表面的结构。

它具有高分辨率、原子尺度的观测能力,被广泛应用于物理、化学、材料科学等领域。

扫描隧道显微镜(STM)PPT课件

扫描隧道显微镜(STM)PPT课件
扫描隧道显微镜 (STM)
Scanning Tunneling Microscope
一、简介 二、基本原理 三、STM的结构及关键技术 四、应用
1.表面形貌测量及分辨率 2.逸出功的测量 3. 扫描隧道谱 (STS)
1
五、原子力显微镜(AFM)
1.特点 2.工作原理 3.结构及关键技术
Δ 力传感器 Δ 微悬臂位移检测法 4.应用例举
如s↗ → I↘→ Pz上的电压↗→ Pz伸长 → s↘。 VPz(VPx,VPy)曲线为样品表面三维轮廓线。
9
△ XYZ位移器(样品位置细调〕 微小距离移动的精确控制
△ 样品粗调 使针尖与表面的距离,从光学可觉察的距离 (10- 100μm) 调整到100 Å 量级 - Louse 结构 - 精细螺旋机构
△ 防震系统分析 - 使由振动引起的隧道距离变化 0.001 nm (振动:针对重复性、连续的,通常频率在 1-100Hz)
10
四、扫描隧道显微镜的应用
1.表面形貌测量及其分辨率 假设样品表面存在陡变台阶,由于针尖半径R有 一定尺寸,针尖的轨迹将有一过渡区δ。δ与 R、 s 和 ko 有如下近似关系:
ΔI/Δs = 2Iko 若I保持不变 则:dI/ds ∝ ko∝φ1/2 工作方式: 扫描中保持I不变,使s有一交流调制, dI/ds 随x,y变化。dI/ds(x,y)平方后即为逸出功象。
3.扫描隧道谱(STS)
在表面的某个位置作I-V 或dI/dV-V,得有特征峰
的STS。在特征峰电压处,保持平均电流不变,使
例: 微杠杆由25μm金箔作成,重量10-10kg fd = 2kHz k = 2×10-2 N/m
因 STM 测的Δz可小至10-3-10-5 nm 则有:F = kΔz

STM扫描隧道显微镜

STM扫描隧道显微镜

STM扫描隧道显微镜几十年来,人类研制成功了许多用于表面结构分析的现代仪器.例如光学显微镜、电子显微镜、离子显微镜、电子探针、衍射仪、能谱仪等等。

这些物理技术在表面科学研究领域都起着重要的作用;但它们的物理原理不同,作用范围、精度、环境条件等都不尽相同。

也就是说,每一种技术对表面微观结构观察与分析都有它自己的特长与意义,但每一种技术都必然受着自身原理的条件限制,只能在一定的领域内开展工作。

例如光学显微镜受其分辩率的影响无法分辩出表面的原子;高分辩率的透射电子显微镜(TEM)主要用于薄层样品的体相和界面研究。

X射线的光电子能谱等只能提供空间平均电子的电子结构信息;有的技术只能获得间接结果,还需要用试差模型来拟合等等。

虽然人们早就知道物质是由分子和原子组成的,但这大多是通过实验间接验证的。

1982年,国际商业机器公司苏黎世实验室的Binning和Rohrer博士研制成世界上第一台扫描隧道显微镜(STM)。

它的出现,使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关物理、化学性质。

而且在其测量过程中不会对样品形成任何损伤。

其惊人的原子分辩能力已被广泛地应用于材料科学、微电子科学、纳米加工技术等领域。

[实验原理]扫描隧道显微镜(STM)的工作原理是基于量子力学中的隧道效应。

见图1:图1当一粒子的动能E低于前方势垒的高度V0时,根据经典力学理论,粒子不可能穿过此势垒,即透射系数等于零。

但按照量子力学原理,粒子越过势垒区而出现在另一边的几率不为零,这个现象称为隧道效应。

实验中,将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm)见图2:在外加电场作用下,电子会穿过两个电极之间的势垒流向另一电极。

隧道电流I是电子波函数重叠的量度。

与针尖和样品之间距离S 和平均功函数Φ有关: )21exp(S A b V I Φ−∝(1) b V 是加在针尖和样品之间的偏置电压,平均功函数),21(21Φ+Φ⋅≈Φ1Φ和2Φ分别为针尖和样品表面的功函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
图9-4
返回
图9-5
返回
二、原子力显微镜的微悬臂及其变形的检测 方法
(一)微悬臂(力传感器) (二)微悬臂变形的检测方法
返回
(一)微悬臂(力传感器)
原子力显微镜所研究的力其数值很小。要实现力的高灵敏度测量,首 先要求力的感知件——微悬臂对微小力的变化具有足够高的灵敏度。
(1)弹性系数k值应在10 -2~10 2 N/m范围。极低的弹性系数 可满足极其灵敏地检测出零点几个nN
品表面之间的作用力,一般针尖曲率半径为30 nm
下一页 返回
(二)微悬臂变形的检测方法
原子力显微镜的图像是通过扫描时测量微悬臂受力后弯曲形变的程度 获得的,并利用Hooke定律来确定操作时的样品与针尖的作用力。
1 2 3 4
上一页 返回
三、原子力显微镜的成像模式
(一)接触成像模式 (二)非接触成像模式 (三)轻敲成像模式
返回
一、扫描隧道显微镜的基本原理
与光学显微镜和电子显微镜不同,STM不采用任何光学或电子透镜 成像,而是当尖锐金属探针在样品表面扫描时,利用针尖〖CD*2〗 样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈指数关系, 获得原子级样品表面形貌特征图像,其基本原理如图9-1所示。
顶部有一直径约50~100 nm的极细金属探针(通常是金属钨制作 的针尖),功能是在其与样品互相作用时,可根据样品性质的不同 (如表面原子的几何结构和电子结构)产生变化的隧道电流。在扫描 隧道显微镜工作时,针尖与样品表面距离一般约为0.3~1.0 nm, 此时针尖和样品之间的电子云互相重叠。当在它们之间施加一偏压时, 电子就因量子隧道效应由针尖(或样品)转移到样品(或针尖);金 属探针安置在三个相互垂直的压电陶瓷〖WTBX〗(P x、P y、 P z)架上,当在压电陶瓷器件上施加一定电压时,由于压电陶瓷 器件产生变形,便可驱动针尖在样品表面实现三维扫描;控制器是用 STM
恒电流模式是扫描隧道显微镜最常用的一种工作模式。以恒电流模式 工作时,由于STM的针尖是随着样品表面的起伏而上下运动,因此 不会因表面起伏太大而碰撞到样品表面,所以恒电流模式适于观察表
面起伏较大的样品。以恒高模式工作时,由于针尖的高度恒定不变,
所以仅适用于观察表面起伏不大的样品。但在恒高模式下工作,获取 STM图像快,且能有效地减少噪音和热漂移对隧道电流的干扰,提
由式(9-1)可知,隧道电流对针尖和样品表面间距离的变化是非常 敏感的,换句话说,隧道电流I对样品表面的微观起伏特别敏感。当 距离S减小0.1 nm时,隧道电流I将会增加10倍;反之,将减小10
上一页
返回
二、扫描隧道显微镜的工作模式
STM有两种不同的工作
模式,即恒电流模式(图9-2a)和恒高模式(图9-2b
原子力显微镜是一种类似于扫描隧道显微镜的显微技术,它的仪器构 成(机械结构和控制系统)在很大程度上与扫描隧道显微镜相同。如 用三维压电扫描器,反馈控制器等。它们的主要不同点是扫描隧道显 微镜检测的是针尖和样品间的隧道电流,而原子力显微镜检测的是由 针尖和样品间的力而产生的微悬臂的形变。因此原子力显微镜具有两 个独特的部分:对微弱力敏感的悬臂和力检测器。它们的工作原理如 图9-4所示。
上一页 返回
9.2 原子力显微镜(AFM)
一、原子力显微镜的工作原理 二、原子力显微镜的微悬臂及其变形的检
测方法 三、原子力显微镜的成像模式 四、原子力显微镜的应用
返回
一、原子力显微镜的工作原理
原子力显微镜使用一个一端固定,另一端装有针尖这样一个对微弱力 敏感的悬臂。当针尖(或样品)扫描时,由于针尖和样品间的相互作 用力(可能是吸引力,也可能是排斥力)将使悬臂产生微小偏转(形 z轴方向的位置,以保证在整个扫描过程中悬臂的微小偏转值不变, 即针尖与样品间的作用力恒定。测量高度z随(x、y 就可以得到样品表面的形貌图像。目前,利用原子力显微技术已获得 了许多晶体的原子分辨率图像(见图9-5)。
第九章 其他分析方法简介
9.1 扫描隧道显微镜(STM) 9.2 原子力显微镜(AFM) 9.3 离子探针(SIM) 9.4 原子探针-场离子显微分析 9.5 穆斯堡尔谱法 9.6 核磁共振(NMR)及其应用
9.1 扫描隧道显微镜(STM)
一、扫描隧道显微镜的基本原理 二、扫描隧道显微镜的工作模式 三、扫描隧道显微镜的特点及应用
下一页 返回
一、扫描隧道显微镜的基本原理
隧道电流与针尖-样品间偏压、针尖和样品之间距离、平均功函数之 间的关系可表示为:
I∝Vbexp (-AΦ1/2·S)
(9-1
Байду номын сангаас
式中,Vb为针尖与样品间施加的偏压;A为常数,在真空条件下约 等于1;Φ为针尖与样品的平均功函数;S为针尖与样品表面间的距 离,一般为0.3~1.0 nm
利用扫描隧道显微技术,不仅可以获取样品表面形貌图像,同时还可 以得到扫描隧道谱。利用这些谱线可对样品表面显微图像作逐点分析, 以获得表面原子的电子结构(电子态)等信息。
上一页 下一页 返回
图9-2
返回
三、扫描隧道显微镜的特点及应用
与TEM、SEM (1)STM结构简单,其实验可在多种环境中进行:如大气、超高真
空或液体(包括在绝缘液体和电解液中),且工作温度范围较宽(从 绝对零度到上千摄氏度)。这是目前任何一种显微技术都不能同时做
(2)具有高分辨率,扫描隧道显微镜的水平和垂直分辨率可以分别 达到0、1 nm 0、01 nm
(3)在观测材料表面结构的同时,可得到材料表面的扫描隧道谱 (STS
应用实例: (一)材料表面结构特征研究 (二)材料表面结构变相研究 (三)液-固界面的电化学研究 (四)分子膜、吸附物及表面化学研究
(2)具有高的固有频率,以便在扫描过程中可跟随样品表面轮廓起 伏的变化。通常在一次扫描中起伏信号的频率可高达几kHz。因此, 微悬臂的固有频率必须大于10 kHz
(3)为满足力弹性系数小且固有频率高的条件,悬臂的质量必须很 (4)具有足够高的侧向刚性,以便克服由于水平方向摩擦力造成的 (5)悬臂的前端必须有一尖锐的针尖,以保证能灵敏地感知它与样
相关文档
最新文档