高一数学-二项式定理(说课稿) 精品
二项式定理说课稿0920

项式定理人教社普通高级中学教科书(选修2--3)第一章第3节《二项式定理》(第1课时)《二项式定理》这一节内容,大致分成3个课时,我主要针对第1课时的教学,谈谈我的理解与设计,敬请各位专家斧正.、教材分析二项式定理是选修2—3第一章第3节的内容。
它是解决高次多项式问题的有力工具。
在函数、数列、不等式证明等问题中时常会碰到高次多项式的问题,二项式就是解决该类问题的重要工具之一。
二、目标分析本节课的教学目标是要实现对学生知识、能力、情感三维的培养目标1知识目标:(1)理解二项式定理的形成过程,尤其是如何用计数原理分析(a + b)4的展开式,并进一步得到二项式定理。
(2)掌握二项式定理、二项式系数、通项等概念。
并能够解决简单的各种项及各种系数的问题。
2、能力目标:通过对定理、例题、练习的探究及解答过程,培养学生观察、归纳、猜想、证明的能力;培养学生从特殊到一般再到特殊的知识整合与应用能力。
3、情感目标:让学生获得知识的同时掌握发现问题和解决问题的科学的方法。
当n=1,2,3……二项式定理更是达到了高度的统一与和谐,所以它向人们展示了高度的统一与和谐之美。
教学过程中要善于抓住这样的点滴,给学生以美的熏陶和哲理的启示。
三、重点、难点分析重点:掌握二项式定理、二项式系数、通项等概念。
并能够解决简单的各种项及各种系数的问题。
难点:二项式定理的形成过程,以及二项式定理与计数原理的关系。
四、教法分析皮亚杰的认知结构学认为:所有的认知结构,结构再构建,构成复杂的结构,不断发展。
”所以教学活动不应该是知识单方面的迁移。
教法上采用引导--启发一总结”三维立体的探究式教学方法。
在学习方法上,指导学生:积极的展开互评一反思一总结”三维立体的自主+互补的学习方法。
五、过程分析设计理念:遵循特殊到一般的认知规律,结合可接受性和可操作性原则,把教学目标和重点难点的落实融入到教学过程之中,通过演绎公式的形成,发展和应用过程,帮助学生主动建构概念.1、引导激趣设计意图:创设情景,激发学生兴趣,让学生迫不及待想一试身手。
二项式定理说课稿

二项式定理说课稿一、引言二项式定理是高中数学中的重要内容,在代数学中起到了重要的作用。
它是数学家杨辉在《详解九章算术》中首次提出的,后来被数学家牛顿推广和证明。
二项式定理在数学中有着广泛的应用,特别在组合数学与概率论中起到了重要的作用。
本说课稿将介绍二项式定理的定义、证明方法、拓展应用以及相关习题练习。
二、体系结构本说课稿将按照以下顺序介绍二项式定理的内容:1.定义和表述2.证明方法3.拓展应用4.相关习题练习三、正文1. 定义和表述二项式定理是指对于任意实数a和b以及非负整数n,有以下公式成立:(a+b)n=C n0a n+C n1a n−1b+C n2a n−2b2+...+C n n−1ab n−1+C n n b n其中,C n k表示从n个不同元素中取k个元素的组合数。
2. 证明方法2.1 代数证明法二项式定理的一个常见证明方法是代数证明法。
通过使用数学归纳法,可以证明对于任意的非负整数n都成立。
2.2 几何证明法二项式定理还可以通过几何证明法来证明。
通过构建一个乘方和差分式的几何图形,可以直观地理解二项式定理的成立。
3. 拓展应用3.1 组合数学中的应用二项式定理在组合数学中有着广泛的应用。
通过二项式定理,可以计算组合数,求解排列组合问题,解决概率问题等。
3.2 概率论中的应用二项式定理在概率论中也有着重要的应用。
通过二项式定理,可以计算二项分布的概率,求解二项分布的期望和方差等。
4. 相关习题练习4.1 选择题1.若(x−1)6展开后的常数项的系数为3,则x等于() A. 1 B. -1 C. 0D. -24.2 计算题2.求(3t2−2)4的展开式中t2的系数。
四、结语通过本说课稿的介绍,我们了解了二项式定理的定义、证明方法、拓展应用以及相关习题练习。
二项式定理作为代数学中的重要内容,具有广泛的应用。
希望同学们通过学习和练习,能够熟练掌握二项式定理的运用。
最后,祝同学们在数学学习中取得不断进步!。
苏教版选修2《二项式定理》说课稿

苏教版选修2《二项式定理》说课稿一、引言首先,让我们来了解什么是二项式定理。
在高中数学中,二项式定理是一个非常重要且实用的定理,它用于展开任意次数的二项式的幂。
本节课我们将讨论二项式定理的基本概念、公式和应用。
通过本节课的学习,同学们将能够灵活使用二项式定理解决实际问题。
二、二项式定理的基本概念1.二项式的定义:二项式是由两个代数式相加(或相减)而得的代数式。
2.二项式系数:二项式展开式中,每个项前面的系数称为二项式系数。
例如在展开式(a+b)^n中,二项式系数是(a+b)的系数。
三、二项式定理的公式表达二项式定理的公式表达如下: (a+b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + … + C(n, r) * a^(n-r) * b^r + … + C(n, n) * a^0 * b^n在上述公式中,C(n, r)表示从n个不同元素中取r个元素的组合数。
四、二项式定理的证明二项式定理的证明过程较为复杂,在这里我们只进行简略的叙述。
1.使用数学归纳法证明二项式定理对于n=1的情况成立。
2.假设当n=k时,二项式定理成立,即(a+b)^k = C(k,0) * a^k * b^0 + C(k, 1) * a^(k-1) * b^1 + … + C(k,r) * a^(k-r) * b^r + … + C(k, k) * a^0 * b^k。
3.在上述假设成立的情况下,使用数学归纳法证明当n=k+1时,二项式定理也成立。
4.综上所述,根据数学归纳法原理,二项式定理对于所有自然数n都成立。
五、二项式定理的应用二项式定理在实际问题中有广泛的应用,我们将介绍以下两个常见的应用场景。
1. 组合数的应用二项式定理中的组合数C(n, r)可以表示从n个元素中取r个元素的组合数,因此可以用于解决组合问题。
例如,当n个元素中只能选取r个元素时,求解C(n, r)可以得到解决方案的总数。
《二项式定理 》优质课比赛说课稿

二项式定理(一)(说课稿)一、教材分析1.教材的地位和作用:本节课的教学内容是人教版《高中数学》系列2-3第一章1.3节(大约需要2课时,本次只说第一课时).在此之前,学生已经学习了两个计数原理以及排列、组合的有关知识,将本小节内容安排在计数原理之后学习,一方面是因为二项式定理的证明用到计数原理,可以把它作为计数原理的一个应用;另一方面也为学习随机变量及其分布做准备;另外,由二项式定理导出的一些组合数恒等式,对深化组合数的认识也有好处. 总之,二项式定理是综合性较强的、具有联系不同内容作用的知识,也是高考必考内容之一.2.教学重点:用计数原理分析()2a b+的展开式,归纳得出二项+、()3a b式定理及二项展开式的通项公式.3.教学难点:用计数原理分析二项式的展开过程,发现二项展开式各项系数的规律.二、目标分析根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节教学目标如下:知识目标:使学生经历定理的发现过程,直观了解二项式定理的内容,并且在此基础上进行简单应用;能力目标:通过观察二项展开式,掌握其基本特征,培养学生观察、分析、概括的能力;情感目标;A.揭示寻求二项式定理的方法,激发学生的求知欲;B.体会“由特殊到一般”这一重要的数学思想;C.感受二项展开式各项系数的规律,发现数学中的对称美.三、学法和教法分析1. 学法分析学法要突出自主学习、研讨发现.知识是通过学生自己积极思考、主动探索获得的,学生在教师引导下,通过观察、讨论、合作探究等活动来对知识、方法和规律进行总结,在课堂活动中注重引导学生,并让学生体会从局部到整体、从特殊到一般的方法获取知识的过程,让学生体验发现的喜悦,培养学生学习的主动性.2. 教法分析素质教育理论明确要求,教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高.根据本节的教学内容、教学目标和学生的认知规律,我采用类比、引导、探索式相结合的方法,启发、引导学生积极思考本节所遇到的问题,引导学生归纳、猜想、探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现学生的主体地位.四、教学程序设计分析五、板书设计附: 达标检测题1.()8x y +的展开式中,必不存在的项为( )(A )26x y (B )35x y (C )27x y (D )44x y2.()101x -的展开式中,第6项的系数是( )(A )610C (B )610C - (C )510C (D )510C - 3.()9m n +的展开式中,54m n 项的系数为_____________.4. 用二项式定理展开4⎫-⎝.。
部编《二项式定理》说课稿课件

新课讲授— 研究各项
2
考虑到将二项式展开式与计数问题联系在一起的难度,以n=2 的情形为例,根据多项式的乘法法则,每个括号中的a或b都要相 乘,所以展开式的每一项就有两个因子。
新课讲授— 研究各项
2
然后引导学生利用已学知识,构建组合计数模型,培养学生的 直观想象和数学建模素养。
新课讲授— 研究各项
2
然后引导学生利用已学知识,构建组合计数模型,培养学生的 直观想象和数学建模素养。
新课讲授
2
教师指引学生自己模仿推导出n=3和n=4 的展开式的各项的得到 方式,让学生逐渐体会到用“联系”的观点解决问题带来的巧妙性。
新课讲授
2
从具体到一般的结论,需 要经历一个归纳、概括的过 程,这一过程在教师的引导 和学生的自主探究中完成. 体现了“教学活动是师生积 极参与、交往互动、共同发 展的过程”的课程理念.
目标定位
(1)使学生掌握二项式定理及推导方法,二项式展开式、通项公式 的特点,并能利用二项式定理计算或证明一些简单问题。
(2)在学生对二项式定理形成的参与讨论过程中,培养学生观察 、猜想、归纳的能力,以及学生的化归意识及知识迁移能力。
(3)通过二项式定理的发现过程培养学生的数学抽象素养和数学 建模素养。
问题的基础,有承上启下的作用.二项式定理与二项分布有其内在联系,本小节是学习概率统计的
准备知识;二项式系数都是一些特殊的组合数,利用二项式定理可以得到关于组合数的一些恒等式,
从而深化对组合数的认识;基于二项展开式与多项式乘法的联系,本小节的学习可对初中学习的多
项式的变形起到复习、深化的作用;运用二项式定理可以解决一些比较典型的数学问题,比如近似
新课讲授
2
二项式定理说课稿公开课一等奖课件省赛课获奖课件

的展开式中含
x32的项的系数为
30,则
a=
A. 3
B.- 3
C.6
() D.-6
[解析] (2)∵Tr+1=Cr5(x2)5-r-x23r=(-2)rCr5·x10-5r,由 10 -5r=0,得 r=2,∴T3=(-2)2C25=40.
(3)Tr+1=Cr5( x)5-r·-xar=Cr5(-a)rx5-22r,由5-22r=32,解 得 r=1.由 C15(-a)=30,得 a=-6.故选 D.
[答案] C
突破点一
突破点二
课标达标检测
二项式定理 结 束
(2)(2016·安徽安庆二模)将x+4x-43 展开后,常数项
是________.
[解析]
x+4x-43=
x-
2 6 x
展开式的通项是
Ck6
( x)6-k·- 2xk=(-2)k·Ck6( x)6-2k.
令 6-2k=0,得 k=3.
所以常数项是 C36(-2)3=-160.
[答案] (2)C (3)D
突破点一
突破点二
课标达标检测
二项式定理 结 束
(4)
x- 1 24
8 x
的展开式中的有理项共有________项.
[解析]
(4)
x- 1 8 24 x
的展开式的通项为
Tr + 1 =
Cr8·( x)8-r2-4 1xr=-12rCr8x16-4 3r(r=0,1,2,…,8),为使
突破点一
突破点二
课标达标检测
二项式定理 结 束
[方法技巧] 求解形如(a+b)n(c+d)m 的展开式问题的思路
(1)若 n,m 中一个比较小,可考虑把它展开得到多个, 如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展开分别求解.
高中数学《二项式定理》说课稿

《二项式定理》说课稿一、教材分析二项式定理一节,分四个课时.这里讲的是第一课时,重点是公式的推导,其次是二项式定理及二项展开式通项公式的简单应用,至于二项式定理及二项展开式的通项公式的灵活运用和二项式系数的性质留在第二、三、四课时.二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘法的展开式,这一小节与不少内容都有着密切联系,特别是它在本章学习中起着承上启下的作用.学习本小节的意义主要在于:(1)由于二项式定理与概率理论中的三大概率分布之一———二项分布有内在联系,本小节是学习后面的概率知识以及进一步学习概率统计的准备知识.(2)由于二项式系数都是一些特殊的组合数,利用二项式定理可得到关于组合数的一些恒等式,从而深化对组合数的认识.(3)基于二项式展开式与多项式乘法的联系,本小节的学习可对初中学习的多项式的变形起到复习、深化的作用.(4)二项式定理是解决某些整除性、近似计算问题的一种方法.二、目的分析结合重点中学学生的实际情况,确定本节课的教学目标如下:1、掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项.2、通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力.3、激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美意识.重点:二项定理的推导及运用难点:二项式定理及通项公式的运用三、教法分析:新的数学课程标准提出:掌握数学知识只是结果,而掌握知识的活动过程才是途径,通过这个途径,来挖掘人的发展潜能才是目的,结果应让位于过程.没有途径,学生无法达到目的,因此,在教学中,必须贯彻好过程性原则,既要重视学生的参与过程,又要重视知识的重现过程.也就是说,在教学过程中,充分揭示每一个阶段的思维活动过程,通过思维活动过程的暴露和数学创新活动过程的演变,使教学活动成为思维活动的教学,由此来启发、引导学生直接或间接地感受和体验知识的产生、发展和演变过程.变传统的“接受性、训练性学习”为新颖的“探究式、发现式的学习”,变教师是传授者为组织者、合作者、指导者,在学习过程中,教师想尽办法激发学生探究式、发现式学习的兴趣,并使其作为一种教学方式应用于概念、定理、公式和解题教学中,让学生在探究、发现中获取知识,发展能力.从而增强学生的主体意识,提高学生学习的效果.四、过程分析:(一)创设情境,激发兴趣设计意图:根据教学内容特点和学生的认识规律,给学生提出一些能引起思考和争论性的题目,即一些内容丰富、背景值得进一步探究的诙谐有趣的题目、给学生创造一个“愤”和“悱”的情境,利用问题设下认知障碍,激发学生的求知欲望.(二)问题初探设计意图:复习旧知识,提问设疑,逐步推进,引起学生对学习的注意,为学生学习新课内容作知识上、方法上、心理上的准备.(三)理性探究设计意图:学生通过对三个展开式的自主探讨,亲历了知识的发生、发展、形成的过程,从而发现问题,提出问题,并在老师的引导下解决问题,达到了“创造性地使用教材,培养学生的创新意识”教学目的.(四)归纳、猜想设计意图:学生在探究过程中通过观察、发现,类比从而是进行必要的归纳和合理的猜想得出结论,这是数学教学提创培养的,是一种创造性的思维活动,是掌握探求新知识的一种手段,也是进一步提高学生的归纳、推理、猜想能力的一种途径.(五)尝试应用1、回到引例设计意图:回归问题,体现了知识的实际应用价值,学生的学习热情自然达到高潮.2、例题展示例1设计意图:例1是二项式定理简单顺向应用,目的在于熟悉二项式定理.变式体现知识的多样性.例2设计意图:例2是二项式定理逆向运用,主要在于训练学生对二项展开式有几项,有哪些项进一步的探讨,然后对照本例题,考察题目中项数是否完备,若不完备应如何处理,从而深化对二项式定理的理解,体现知识的严谨性.例3设计意图:例3是用二项展开式的通项公式求指定项.变式是让学生从多方面多角度去应用二项式的通项公式,求展开式中的特定项,在教学中也可要求学生自己单独或小组合作的方式探究原题,然后增删原题中的条件或改写其结论,尽可能多演变出一些题目,并加以验证,从而培养学生的创造性思维和发散性思维能力.例4设计意图:例4是引导学生用推导二项式定理的思路去探索解法,意在启发学生不但要重视定理的结论,而且要重视定理的推导过程,推导思路和方法,并且把推导方法在不知不觉中应用于解题,由此进一步深化本节课的重点.(六)课堂练习设计意图:巩固本节课所学的知识,基本达到学以致用。
二项式定理 说课稿 教案 教学设计

二项式定理 第一课时一、复习引入: ⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵3322303122233333()33a b a a b ab b C a C a b C ab C b+=+++=+++⑶4()()()()()a b a b a b a b a b +=++++的各项都是4次式,即展开式应有下面形式的各项:4a ,3ab ,22a b ,3ab ,4b ,展开式各项的系数:上面4个括号中,每个都不取b 的情况有1种,即04C 种,4a 的系数是04C ;恰有1个取b 的情况有14C 种,3ab 的系数是14C ,恰有2个取b 的情况有24C 种,22a b 的系数是24C ,恰有3个取b 的情况有34C 种,3ab 的系数是34C ,有4都取b 的情况有44C 种,4b 的系数是44C , ∴40413*******44444()a b C a C a b C a b C a b C b +=++++.二、讲解新课: 二项式定理:01()()nn nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈⑴()na b +的展开式的各项都是n 次式,即展开式应有下面形式的各项:n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,n a 的系数是0n C ; 恰有1个取b 的情况有1n C 种,nab 的系数是1n C ,……,恰有r 个取b 的情况有r n C 种,n rr ab -的系数是r n C ,……,有n 都取b 的情况有nn C 种,nb 的系数是nn C , ∴01()()nn nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈,这个公式所表示的定理叫二项式定理,右边的多项式叫()na b +的二项展开式,⑶它有1n +项,各项的系数(0,1,)rn C r n =叫二项式系数,⑷rn r r n C ab -叫二项展开式的通项,用1r T +表示,即通项1r n r rr n T C a b -+=.⑸二项式定理中,设1,a b x ==,则1(1)1n r rnn n x C x C x x +=+++++三、讲解范例:例1.展开41(1)x+. 解一: 411233444411111(1)1()()()()C C C x x x x x+=++++23446411x x x x =++++.解二:4444413123444111(1)()(1)()1x x C x C x C x x x x⎡⎤+=+=++++⎣⎦23446411x x x x=++++.例2.展开6.解:6631(21)x x =-61524332216666631[(2)(2)(2)(2)(2)(2)1]x C x C x C x C x C x x=-+-+-+ 32236012164192240160x x x x x x =-+-+-+.第二课时例3.求12()x a +的展开式中的倒数第4项解:12()x a +的展开式中共13项,它的倒数第4项是第10项,9129933939911212220T C x a C x a x a -+===.例4.求(1)6(23)a b +,(2)6(32)b a +的展开式中的第3项. 解:(1)24242216(2)(3)2160T C a b a b +==,(2)24242216(3)(2)4860T C b a b a +==.点评:6(23)a b +,6(32)b a +的展开后结果相同,但展开式中的第r 项不相同例5.(1)求9(3x 的展开式常数项; (2)求9(3x 的展开式的中间两项 解:∵399292199()33r r r r r r r x T C C x ---+==⋅,∴(1)当390,62r r -==时展开式是常数项,即常数项为637932268T C =⋅=; (2)9(3x +的展开式共10项,它的中间两项分别是第5项、第6项,489912593423T C xx--=⋅=,15951092693T C x --=⋅=第三课时例6.(1)求7(12)x +的展开式的第4项的系数; (2)求91()x x-的展开式中3x 的系数及二项式系数解:7(12)x +的展开式的第四项是333317(2)280T C x x +==,∴7(12)x +的展开式的第四项的系数是280. (2)∵91()x x -的展开式的通项是9921991()(1)r r r r r r r T C x C x x--+=-=-, ∴923r -=,3r =,∴3x 的系数339(1)84C -=-,3x 的二项式系数3984C =.例7.求42)43(-+x x的展开式中x 的系数分析:要把上式展开,必须先把三项中的某两项结合起来,看成一项,才可以用二项式定理展开,然后再用一次二项式定理,,也可以先把三项式分解成两个二项式的积,再用二项式定理展开解:(法一)42)43(-+x x42]4)3[(-+=x x02412344(3)(3)4C x x C x x =+-+⋅22224(3)4C x x ++⋅3234444(3)44C x x C -+⋅+⋅,显然,上式中只有第四项中含x 的项, ∴展开式中含x 的项的系数是76843334-=⋅⋅-C(法二):42)43(-+x x4)]4)(1[(+-=x x 44)4()1(+-=x x)(4434224314404C x C x C x C x C +-+-=0413222334444444(4444)C x C x C x C x C +⋅+⋅+⋅+⋅∴展开式中含x 的项的系数是34C -334444C +768-=.例8.已知()()nmx x x f 4121)(+++= *(,)m n N ∈的展开式中含x 项的系数为36,求展开式中含2x 项的系数最小值分析:展开式中含2x 项的系数是关于n m ,的关系式,由展开式中含x 项的系数为36,可得3642=+n m ,从而转化为关于m 或n 的二次函数求解解:()()1214mnx x +++展开式中含x 的项为1124m n C x C x ⋅+⋅=11(24)m n C C x +∴11(24)36mn C C +=,即218m n +=,()()1214mnx x +++展开式中含2x 的项的系数为t =222224mn C C +222288m m n n =-+-, ∵218m n +=, ∴182m n =-, ∴222(182)2(182)88tn n n n =---+-216148612n n =-+23715316()44n n =-+,∴当378n =时,t 取最小值,但*n N ∈, ∴ 5n =时,t 即2x 项的系数最小,最小值为272,此时5,8n m ==.第四课时例9.已知n 的展开式中,前三项系数的绝对值依次成等差数列,(1)证明展开式中没有常数项;(2)求展开式中所有的有理项 解:由题意:1221121()22n n C C ⋅=+⋅,即0892=+-n n ,∴8(1n n ==舍去)∴818(rrrr T C-+=⋅82481()2r r r r C x x --=-⋅⋅()1638412r rr r C x -=-⋅08r r Z ≤≤⎛⎫ ⎪∈⎝⎭①若1+r T 是常数项,则04316=-r,即0316=-r , ∵r Z ∈,这不可能,∴展开式中没有常数项; ②若1+r T 是有理项,当且仅当4316r-为整数, ∴08,rr Z ≤≤∈,∴ 0,4,8r =,即 展开式中有三项有理项,分别是:41x T =,x T 8355=,292561-=x T 例10.求60.998的近似值,使误差小于0.001. 解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a 较小时(1)1na na +≈+四、课堂练习: 1.求()623a b +的展开式的第3项. 2.求()632b a +的展开式的第3项.3.写出n 33)x21x (-的展开式的第r+1项.4.求()732x x +的展开式的第4项的二项式系数,并求第4项的系数.5.用二项式定理展开: (1)5(a +;(2)5(2. 6.化简:(1)55)x 1()x 1(-++;(2)4212142121)x3x 2()x3x2(----+7.()5lg x x x +展开式中的第3项为610,求x .8.求nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项答案:1. 262242216(2)(3)2160T C a b a b -+==2. 262224216(3)(2)4860T C b a a b -+==3.2311(2rn rr n r rr r n n T C C x --+⎛⎫==- ⎪⎝⎭4.展开式的第4项的二项式系数3735C =,第4项的系数3372280C =5. (1)552(510105a a a a a b =++;(2)52315(2328x x x x =+-.6. (1)552(1(122010x x ++=++;(2)1111442222432(23)(23)192x x x x x x--+--=+7.()5lg x x x +展开式中的第3项为232lg 632lg 551010xx C xx ++=⇒=22lg 3lg 50x x ⇒+-=5lg 1,lg 2x x ⇒==-10,1000x x ⇒==8. nx x 21⎪⎭⎫ ⎝⎛-展开式的中间项为2(1)nn n C -五、小结 :二项式定理的探索思路:观察——归纳——猜想——证明;二项式定理及通项公式的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理(说课稿)
二项式定理(说课稿)
一、教材分析:
1、知识内容:二项式定理及简单应用
2、地位及重要性
二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,也是后继课程某些内容的一个铺垫。
运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等。
3、教学目标
A、知识目标:(1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的幂
次、展开式项数的规律
(2)能够应用二项式定理对所给出的二项式进行正确的展开
B、能力目标:(1)在学生对二项式定理形成过程的参与、探讨过程中,培养学生观察、猜
想、归纳的能力及分类讨论解决问题的能力。