水力学例题 (1)要点

合集下载

(完整版)水力学试题带答案

(完整版)水力学试题带答案

水力学模拟试题及答案1、选择题:(每小题2分)(1)在水力学中,单位质量力是指()a、单位面积液体受到的质量力;b、单位体积液体受到的质量力;c、单位质量液体受到的质量力;d、单位重量液体受到的质量力。

答案:c(2)在平衡液体中,质量力与等压面()a、重合;b、平行c、相交;d、正交。

答案:d(3)液体中某点的绝对压强为100kN/m2,则该点的相对压强为a、1 kN/m2b、2 kN/m2c、5 kN/m2d、10 kN/m2答案:b(4)水力学中的一维流动是指()a、恒定流动;b、均匀流动;c、层流运动;d、运动要素只与一个坐标有关的流动。

答案:d(5)有压管道的管径d与管流水力半径的比值d /R=()a、8;b、4;c、2;d、1。

答案:b(6)已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于a、层流区;b、紊流光滑区;c、紊流过渡粗糙区;d、紊流粗糙区答案:c(7)突然完全关闭管道末端的阀门,产生直接水击。

已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为a、1.54m b 、2.0m c 、2.45m d、3.22m答案:c(8)在明渠中不可以发生的流动是()a、恒定均匀流;b、恒定非均匀流;c、非恒定均匀流;d、非恒定非均匀流。

答案:c(9)在缓坡明渠中不可以发生的流动是()。

a、均匀缓流;b、均匀急流;c、非均匀缓流;d、非均匀急流。

答案:b(10)底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为a、缓流;b、急流;c、临界流;答案:b(11)闸孔出流的流量Q与闸前水头的H()成正比。

a、1次方b、2次方c、3/2次方d、1/2次方答案:d(12)渗流研究的对象是()的运动规律。

a、重力水;b、毛细水;c、气态水;d、薄膜水。

答案:a(13)测量水槽中某点水流流速的仪器有a、文丘里计b、毕托管c、测压管d、薄壁堰答案:b(14)按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为a、1米,λQ =1000;b、10米,λQ =100;c、1米,λQ =100000;d、10米,λQ=100000。

水力学例题

水力学例题

例题1:如下图所示,一圆锥体绕自身轴线等速旋转,锥体与固定壁面间的距离为K ,空隙全部被动力粘滞系数为μ的牛顿流体所充满。

当旋转角速度为ω,锥体底部半径为R ,高为H ,求作用于圆锥的阻力矩。

解:M=⎰⎰⎰⎰====Kdhr KdA rKdAr Ku dAr322cos 2πμωαπμωωμμτ=HK Rαπμωcos23而22cos RHH+=α;故:M=2232RHKR+⨯πμω例题2:涵洞进口处,装有与水平线成600倾角而边长为1m 的正方形平板闸门(AB=1m ),求闸门所受静水总压力的大小及作用点。

解:坐标只能建在水面上。

A kp p 807.91807.9=⨯=aB kp p 300.18)231(807.9=+⨯=KNp p P BA 050.14112=⨯⨯+=h h Ay I y y C C C C C D 6.160sin 433.112160sin 433.1160sin 121160sin 03=+=⨯⨯+=+=0=D x矩形和圆形的C y 和C I 值矩形:2hy C =123bhI C =圆形:r y C =44rI C π=例题3:一直立矩形闸门,用三根工字梁支撑,门高及上游水深H 均为3m,把此闸门所受静水压强分布图分为三等份,每根工字梁分别设在这三等份的重心,求三个工字梁的位置?解:设静水压力分布图的面积为A ,则每一等份为A/3mh H A h 3,21313211221=∴⨯==γγ mh H A h 45.2,213232212222=∴⨯==γγm h h h h m h h c 091.22718.0121212=-+==-m Ah J h y c xc c 11.2718.0091.212)718.0(091.2322=⨯+=+=mh H h h m h H c 725.2255.02232=-+==-mAh J h y c xc c 73.2725.212)55.0(725.22333=+=+=mh h h h h h h y m h y 11.22)(31,15.1322121121211=++-+===。

水力学简单题库及答案

水力学简单题库及答案

水力学简单题库及答案1. 什么是水力学?水力学是研究液体运动规律的科学,主要研究液体在静止和流动状态下的行为。

2. 水力学中的连续性方程是什么?连续性方程是描述液体质量守恒的方程,表达式为:\[ Q_1 = Q_2 \] 其中 \( Q \) 表示流量,即单位时间内流过某一截面的液体体积。

3. 伯努利方程是什么?伯努利方程是描述理想流体在流动过程中能量守恒的方程,表达式为:\[ P + \frac{1}{2}\rho v^2 + \rho gh = \text{常数} \] 其中 \( P \) 是压力,\( \rho \) 是流体密度,\( v \) 是流速,\( g \) 是重力加速度,\( h \) 是高度。

4. 水头损失有哪些类型?水头损失主要有三种类型:局部损失、沿程损失和入口损失。

5. 什么是雷诺数?雷诺数是一个无量纲数,用于描述流体流动的特性,表达式为:\[ Re = \frac{\rho v L}{\mu} \] 其中 \( \rho \) 是流体密度,\( v \) 是流速,\( L \) 是特征长度,\( \mu \) 是流体的动态粘度。

6. 什么是管道的流量系数?管道的流量系数是一个无量纲系数,用于描述管道在给定的压差下流量的能力,表达式为:\[ C_v = \frac{Q}{\sqrt{\frac{2\Delta P}{\rho}}} \]7. 什么是水力梯度线?水力梯度线是表示管道或渠道中不同位置的水头变化的曲线,通常用于分析管道或渠道的水力特性。

8. 什么是临界流速?临界流速是指流体在管道中流动时,从层流过渡到湍流的临界状态的流速。

9. 什么是水力半径?水力半径是描述管道或渠道截面特性的参数,定义为截面面积与湿周的比值。

10. 什么是水力坡度?水力坡度是表示管道或渠道中水流能量变化的参数,定义为单位长度的水头损失。

11. 如何计算管道的沿程损失?管道的沿程损失可以通过达西-韦斯巴赫公式计算:\[ h_f =\frac{f L Q^2}{2.5 g A^2} \] 其中 \( h_f \) 是沿程水头损失,\( f \) 是摩擦系数,\( L \) 是管道长度,\( Q \) 是流量,\( g \) 是重力加速度,\( A \) 是管道横截面积。

环境水力学(M1)

环境水力学(M1)

V
dC K C M (t ) dt
M K exp( t ) V V M Q M 1 exp( ( k1 )t ) exp( ( k1 )t ) V V V td
其特解
C
一般解为
C (
M 1 C0 ) exp( ( k1 )t ) V td
四、稳态解
Qe=0.5m3/s Ce=100mg/L 2、某排污口向一均匀河段恒定排放废水,排污申报数据:排水量0.1m3/s, 浓度10mg/L,从河段下游测得A断面浓度5mg/L,B断面浓度2mg/L,已知 河流平均流速8km/d,试问该排污申报数据正确否?如不正确,你认为排污 数据应为多少? 8km 8km Qu=0.3m3/s
k1=0,V>0
k1>0,V>0
c( x) c0 exp[ Vx (m 1)] 2K
k1>0,V=0 o
Vx c( x) c0 exp[ (m 1)] 2K
c( x) c0 exp[
m
k1 x] K
x
河口段和潮汐河流(k1=0和k1>0),点源输入响应。
例题2
• 某排污口向一均匀河段恒定排放含酚废水,起始断面河水 含酚浓度C0=20mg/L,河流平均流速40km/d,纵向分散系数 K=1km2/d,该河段酚降解速率k1=2d-1,求下游50km处河水 含酚浓度?
有阶跃输入的一般解
C C0 exp[ ( 1 1 k1 )t )] CB 1 exp[ ( k1 )t ] td td
浓度分布:
当C0 CB时
CB C0
t
CB C0
t
当C0>CB时
C0 CB

水力学第二章(1)

水力学第二章(1)

静水压强各向同性证明
D py dx z
O
px pn dy pz C
dz A
B y
x
dx,dy,dz为四面体 为四面体ABCD dx,dy,dz为四面体ABCD 的棱长;dA为斜平面BCD的 为斜平面BCD 的棱长;dA为斜平面BCD的 面积; 面积; cos(n,x),cos(n,y),cos(n,z)为 为 斜平面BCD外法线n BCD外法线 斜平面BCD外法线n的方向 余弦; 余弦; px,py,pz ,pn分别表示 与坐标轴一致的平面和斜 面上的平均压强
第二章 水静力学
主要内容: 主要内容: §2-1 静水压强及其特性 §2-2 液体平衡微分方程及其积分 §2-3 重力作用下静水压强的分布规律
水静力学的任务: 水静力学的任务 是研究液体平衡的基本规 律及其实际应用。 律及其实际应用。 液体的平衡 状态有两种 静止状态 相对平衡状态
• 液体处于平衡状态时,液体质点之间没有相 液体处于平衡状态时, 对运动,液体内部不存在切应力; 对运动,液体内部不存在切应力; • 液体质点间的相互作用是通过压强的形式表 现出来的。 现出来的。
同理, 轴方向可推出类似结果, 同理,对y、z轴方向可推出类似结果,从而可得 液体平衡微分方程
1 ∂p = 0 ρ ∂x 1 ∂p Y− =0 ρ ∂y 1 ∂p Z− = 0 ρ ∂z X−
上式的物理意义为:液体处于平衡状态时, 上式的物理意义为:液体处于平衡状态时,单位 质量液体所受的表面力与质量力彼此相等。 质量液体所受的表面力与质量力彼此相等。 注意: 注意:该方程对于不可压缩液体和可压缩液体均 适用。 适用。
p = lim ∆P ∆A → 0 ∆ A
国际单位制中,静水压强p的单位为Pa(N/m )。 国际单位制中,静水压强p的单位为Pa(N/m²)。 Pa

(完整版)水力学试题带答案

(完整版)水力学试题带答案

水力学模拟试题及答案1、选择题:(每小题2分)(1)在水力学中,单位质量力是指()a、单位面积液体受到的质量力;b、单位体积液体受到的质量力;c、单位质量液体受到的质量力;d、单位重量液体受到的质量力。

答案:c(2)在平衡液体中,质量力与等压面()a、重合;b、平行c、相交;d、正交。

答案:d(3)液体中某点的绝对压强为100kN/m2,则该点的相对压强为a、1 kN/m2b、2 kN/m2c、5 kN/m2d、10 kN/m2答案:b(4)水力学中的一维流动是指()a、恒定流动;b、均匀流动;c、层流运动;d、运动要素只与一个坐标有关的流动。

答案:d(5)有压管道的管径d与管流水力半径的比值d /R=()a、8;b、4;c、2;d、1。

答案:b(6)已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于a、层流区;b、紊流光滑区;c、紊流过渡粗糙区;d、紊流粗糙区答案:c(7)突然完全关闭管道末端的阀门,产生直接水击。

已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为a、1.54m b 、2.0m c 、2.45m d、3.22m答案:c(8)在明渠中不可以发生的流动是()a、恒定均匀流;b、恒定非均匀流;c、非恒定均匀流;d、非恒定非均匀流。

答案:c(9)在缓坡明渠中不可以发生的流动是()。

a、均匀缓流;b、均匀急流;c、非均匀缓流;d、非均匀急流。

答案:b(10)底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为a、缓流;b、急流;c、临界流;答案:b(11)闸孔出流的流量Q与闸前水头的H()成正比。

a、1次方b、2次方c、3/2次方d、1/2次方答案:d(12)渗流研究的对象是()的运动规律。

a、重力水;b、毛细水;c、气态水;d、薄膜水。

答案:a(13)测量水槽中某点水流流速的仪器有a、文丘里计b、毕托管c、测压管d、薄壁堰答案:b(14)按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为a、1米,λQ =1000;b、10米,λQ =100;c、1米,λQ =100000;d、10米,λQ=100000。

水力学 各章专题浓缩附详解

水力学 各章专题浓缩附详解

水力学各章专题浓缩(附详解)第1章绪论一、选择题1.按连续介质的概念,流体质点是指A .流体的分子; B. 流体内的固体颗粒; C . 无大小的几何点; D. 几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

2.作用在流体的质量力包括A. 压力;B. 摩擦力;C. 重力;D. 惯性力。

3.单位质量力的国际单位是: A . N ; B. m/s; C. N/kg; D. m/s。

4.与牛顿内摩擦定律直接有关系的因素是A. 切应力和压强; B. 切应力和剪切变形速率;C. 切应力和剪切变形。

5.水的粘性随温度的升高而 A . 增大;B. 减小;C. 不变。

6.气体的粘性随温度的升高而 A. 增大;B. 减小;C. 不变。

7.流体的运动粘度υ的国际单位是A. m/s ;B. N/m ;C. kg/m ;D. N·s/m8.理想流体的特征是A. 粘度是常数;B. 不可压缩;C. 无粘性; D. 符合pV=RT。

9.当水的压强增加1个大气压时,水的密度增大约为A.120000110000;B.2222;C.14000 。

10.水力学中,单位质量力是指作用在A. 单位面积液体上的质量力;B. 单位体积液体上的质量力;C. 单位质量液体上的质量力;D. 单位重量液体上的质量力。

11.以下关于流体粘性的说法中不正确的是A. 粘性是流体的固有属性;B. 粘性是在运动状态下流体具有抵抗剪切变形速率能力的量度C. 流体的粘性具有传递运动和阻滞运动的双重作用;D. 流体的粘性随温度的升高而增大。

12.已知液体中的流速分布μ-y如图所示,其切应力分布为A.τ=0;B.τ=常数;C. τ=ky (k为常数)。

13.以下关于液体质点和液体微团的正确论述是A. 液体微团比液体质点大;B. 液体微团包含有很多液体质点; yu C. 液体质点没有大小,没有质量;D. 液体质点又称为液体微团。

14.液体的汽化压强随温度升高而A. 增大;B. 减小;C. 不变;15.水力学研究中,为简化分析推理,通常采用以下三种液体力学模型A. 牛顿液体模型;B. 理想液体模型;C. 不可压缩液体模型;D. 非牛顿液体模型;E. 连续介质模型。

水力学例题 (1)

水力学例题 (1)

第1章 绪论例1:已知油品的相对密度为0.85,求其重度。

解:3/980085.085.0m N ⨯=⇒=γδ例2:当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。

解:0=+=⇒=dV Vd dM V M ρρρρρd dV V -= Padp d dp V dV E p 84105.2105%02.01111⨯=⨯⨯==-==ρρβ例3:已知:A =1200cm 2,V =0.5m/sμ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F绘制:平板间流体的流速分布图及应力分布图 解:(前提条件:牛顿流体、层流运动)dy du μτ= ⎪⎪⎩⎪⎪⎨⎧-=-=⇒2221110h u h u V μτμτ 因为 τ1=τ2 所以sm h h Vh u h uh u V /23.02112212211=+=⇒=-μμμμμN h uV A F 6.411=-==μτ第2章 水静力学例1:如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。

解:分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合0=+s gz ax 等压面与x 轴方向之间的夹角g a tg =θPaL tg H h p A A 177552=⎪⎭⎫ ⎝⎛⋅+==θγγ PaL tg H h p B B 57602=⎪⎭⎫ ⎝⎛⋅-==θγγ例2:(1)装满液体容器在顶盖中心处开口的相对平衡分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变:Cz gr p +-⋅=)2(22ωγ利用边界条件:r =0,z =0时,p =0作用于顶盖上的压强:g r p 222ωγ=(表压)(2)装满液体容器在顶盖边缘处开口的相对平衡压强分布规律:Cz gr p +-⋅=)2(22ωγ边缘A 、B 处:r =R ,z =0,p =0g R C 222ωγ-=作用于顶盖上的压强:()2222r R gp --=ωγ例3:已知:r 1,r 2,Δh求:ω0 解:212120=-s z gr ω (1)222220=-s z gr ω (2)因为 h z z s s ∆==21所以212202r r h g -∆=ω例4已知:一圆柱形容器,直径D =1.2m ,完全充满水,顶盖上在r 0=0.43m 处开一小孔,敞开测压管中的水位a =0.5m ,问此容器绕其立轴旋转的转速n 多大时,顶盖所受的静水总压力为零?已知:D =1.2m ,r 0=0.43m ,a =0.5m 求:n解:据公式 )(Z d z Y d y X d x dp ++=ρ 坐标如图,则 x X 2ω=,y Y 2ω=,g Z -= 代入上式积分:C z gr p +-⋅=)2(22ωγ (*)由题意条件,在A 点处:r =r 0,z =0,p =γa 则 C gr a +-⋅=)02(202ωγγ 所以 )2(202gr a C ωγ-⋅=所以 )2()2(20222gr a z gr p ωγωγ-⋅+-⋅= 当z =0时: )2(220222gr a gr p ωγωγ-⋅+=它是一旋转抛物方程:盖板上静压强沿径向按半径的二次方增长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 绪论例1:已知油品的相对密度为0.85,求其重度。

解:3/980085.085.0m N ⨯=⇒=γδ例2:当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。

解:0=+=⇒=dV Vd dM V M ρρρρρd dV V -= Padp d dp V E p 84105.2105%02.0111⨯=⨯⨯==-==ρρβ例3:已知:A =1200cm 2,V =0.5m/sμ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F绘制:平板间流体的流速分布图及应力分布图 解:(前提条件:牛顿流体、层流运动)dy du μτ= ⎪⎪⎩⎪⎪⎨⎧-=-=⇒2221110h u h u V μτμτ 因为 τ1=τ2 所以sm h h Vh u h uh u V /23.02112212211=+=⇒=-μμμμμN h uV A F 6.411=-==μτ第2章 水静力学例1:如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。

解:分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合0=+s gz ax 等压面与x 轴方向之间的夹角g a tg =θPaL tg H h p A A 177552=⎪⎭⎫ ⎝⎛⋅+==θγγ PaL tg H h p B B 57602=⎪⎭⎫ ⎝⎛⋅-==θγγ例2:(1)装满液体容器在顶盖中心处开口的相对平衡分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变:Cz gr p +-⋅=)2(22ωγ利用边界条件:r =0,z =0时,p =0作用于顶盖上的压强:g r p 222ωγ=(表压)(2)装满液体容器在顶盖边缘处开口的相对平衡压强分布规律:Cz gr p +-⋅=)2(22ωγ边缘A 、B 处:r =R ,z =0,p =0g R C 222ωγ-=作用于顶盖上的压强:()2222r R gp --=ωγ例3:已知:r 1,r 2,Δh求:ω0 解:212120=-s z gr ω (1)222220=-s z gr ω (2)因为 h z z s s ∆==21所以212202r r h g -∆=ω例4已知:一圆柱形容器,直径D =1.2m ,完全充满水,顶盖上在r 0=0.43m 处开一小孔,敞开测压管中的水位a =0.5m ,问此容器绕其立轴旋转的转速n 多大时,顶盖所受的静水总压力为零?已知:D =1.2m ,r 0=0.43m ,a =0.5m 求:n解:据公式 )(Z d z Y d y X d x dp ++=ρ 坐标如图,则 x X 2ω=,y Y 2ω=,g Z -= 代入上式积分:C z gr p +-⋅=)2(22ωγ (*)由题意条件,在A 点处:r =r 0,z =0,p =γa 则 C gr a +-⋅=)02(202ωγγ 所以 )2(202gr a C ωγ-⋅=所以 )2()2(20222gr a z gr p ωγωγ-⋅+-⋅= 当z =0时: )2(220222gr a gr p ωγωγ-⋅+=它是一旋转抛物方程:盖板上静压强沿径向按半径的二次方增长。

而 02)2(22202220=⋅⎥⎥⎦⎤⎢⎢⎣⎡-⋅+=⋅==⎰⎰⎰r d r g r a g r r d r p p d AP RRAπωγωγπ 所以0)2(2202320=⎥⎥⎦⎤⎢⎢⎣⎡-+⎰dr r g r a g r Rωω 即 02)2(420220242=⎥⎥⎦⎤⎢⎢⎣⎡-+Rr g r a r g ωω 则 2202022224042Rr ga ga r R -=⇒=+-ωωω所以 22024212Rr ga n -==ππω代入数据得:n =7.118转/秒例5:闸门宽1.2m ,铰在A 点,压力表G 的读数为-14700Pa ,在右侧箱中装有油,其重度γ0=8.33KN/m 3,问在B 点加多大的水平力才能使闸门AB 平衡? 解:把p 0折算成水柱高:m p h 5.1980014700-=-==γ相当于液面下移1.5m ,如图示虚构液面则左侧:()()N A h Pc 7056022.11298001=⨯⨯+⨯==γ压力中心距A 点:3.11-2=1.11m右侧:设在B 点加水平力F 使闸门AB 平衡,对A 点取矩 ∑ M A =0即 AB F h P h PD D +=2211 KNF 87.25233.1992.1911.156.70=⨯-⨯=例6:一示压水箱的横剖面如图所示,压力表的读数为0.14个大气压,圆柱体长 L =1.2m ,半径R =0.6m求:使圆柱体保持如图所示位置所需的各分力(圆柱体重量不计)。

解:水平分力:→N A h P x c x 2.119952.16.07.19800=⨯⨯⨯==γ垂直分力:↑第3章 水动力学基础例1:已知:⎪⎩⎪⎨⎧=+-=+=0z y x u t y u t x u 求:t =0 时,A (-1,1)点流线的方程。

解: t y dy t x dx +-=+积分:ln(x+t)=-ln(-y+t)+C → (x+t) (-y+t)=C` 当t =0时,x =-1,y =1,代入上式得: C`=1 所以,过A (-1,1)点流线的方程为:xy =-1例2、伯努利方程式的应用实例 例2-1 : 一般水力计算问题有一喷水装置如图示。

已知h 1=0.3m ,h 2=1.0m ,h 3=2.5m ,求喷水出口流速,及水流喷射高度h (不计水头损失)。

解:① 以3-3断面为基准面,列1-1、3-3两断面的能量方程:()320320000h h p p h h +=⇒++=+++γγ以2-2断面为基准面,列2-2、4-4两断面的能量方程: ()g V h h p 200024120+++=++γ 所以,()()()[]()sm h h h h g h h g p gV /57.63.05.28.9222212321204=-⨯⨯=+-+=+-=γ② mg V h 20.2224==例2-2: 节流式流量计已知:U 形水银压差计连接于直角弯管, d 1=300mm ,d 2=100mm,管中流量Q =100L/s试问:压差计读数Δh 等于多少?(不计水头损失)解:以0-0断面为基准面,列1-1、2-2两断面的能量方程:()2g V 2g V 0222211++∆+=++γγp h z p ()2g V V 212221-+∆+=-h z p p γ又s m A Q V /42.13.014.31.04211=⨯⨯==, s m A Q V /74.121.014.31.04222=⨯⨯==由等压面a -a 得压强关系:h p z p H g ∆-=-γγ21 则 z h p p H g γγ+∆=-21所以 ()6.1942.174.1222-+∆+=+∆h z z h Hg γγγmmm h Hg 649649.018.8==-=∆γγγ例2-3: 毕托管原理水从立管下端泄出,立管直径为d =50mm ,射流冲击一水平放置的半径R =150mm 的圆盘,若水层离开盘边的厚度δ=1mm 求:流量Q 及汞比压计的读数Δh 。

水头损失不计。

分析:1-1: p 1(=0), V 1(?), z 1(√)2-2: p 2(=0), V 2(?), z 2(√) 3-3: p 3( ?), V 3(=0), z 3(√)(驻点) 每点都有一个未知数,可对任何两点列方程。

解:以圆盘为基准面,列1-1、2-2两断面的能量方程:2gV 022g V 032221++=++δ ①列1-1、3点的能量方程:02g V 03321++=++γp ②据连续性方程:212241V R V d Q ⋅=⋅=δππ ③③代入①式:2242222/4.766416s m d R g V =⎪⎪⎭⎫⎝⎛-=δ (忽略δ/2)V 2=8.74m/s, V 1=4.196m/sV 1代入②式: mp 898.32g V 3213=+=γ所以:s L V A V A Q /23.82211=⋅=⋅=h p H g ∆=⋅+γγ5.13mmm p h Hg 396396.098006.1398005.19800898.35.13==⨯⨯+⨯=⋅+=∆γγ例2-4: 流动吸力图示为一抽水装置,利用喷射水流在吼道断面上造成的负压,可将M 容器中的积水抽出。

已知:H 、b 、h (不计损失),求:吼道有效断面面积A 1与喷嘴出口断面面积A 2之间应满足什么样的条件能使抽水装置开始工作?解:以1-1为基准面,列0-0、1-1断面的能量方程:2g V 211+=γp h 以0`-0`为基准面,列1-1、2-2断面的能量方程:()2g V 2g V 22211=++-γp h H要使抽水机工作: bp ≥-γ1则:()gH V b h g V 2,221=+=又因为:2211V AV A ⋅=⋅所以:b h H V V A A +==1221例3:水头线(局部损失不计)例4:已知:Q =0.001m 3/s ,D =0.01mH w 吸=1m ,h w 排=25m 求:H =?p B =?N 泵=? 解:取1-1、2-2断面列伯努利方程:O mH h z z H w 21232)(=+-=取1-1、B 断面列伯努利方程:W QH N Pap s m V VA Q h p B w B6.31332001.09800108.9/74.122gV 7.0042=⨯⨯==⨯-=∴=⇒=+++=γγ泵吸例5:动量方程已知:一个水平放置的90º弯管输送水d 1=150mm ,d 2=75mm p 1=2.06×105Pa ,Q =0.02m 3/s求:水流对弯管的作用力大小和方向(不计水头损失) 分析:1-1: p 1(√), V 1(可求), z 1(√) 2-2: p 2(?), V 2(可求), z 2(√)解:s m d QA Q V /132.142111===π s m d Q A Q V /527.442222===π取1-1、2-2两断面列伯努利方程对选取的控制体列动量方程: x 方向:)0(111V Q R A p x -=-ρ y 方向:)0(222-=-V Q A p R y ρ所以,N R N R y x 9583663== NR R R y x 378622=+=66.14==xy R R arctgθ所以,水流对弯管壁的作用力为F 的反作用力F`,大小相等,方向相反。

相关文档
最新文档