水力学典型例题分析(上)
《水力学》练习题1—6

水力学习题1一、单项选择题1.某流体的运动粘度v=3×10-6m2/s,密度ρ=800kg/m3,其动力粘度μ为( )A.3.75×10-9Pa·sB.2.4×10-3Pa·sC.2.4×105Pa·sD.2.4×109Pa·s2.图中相互之间可以列总流伯努利方程的断面是A.1-1断面和2-2断面B.2-2断面和3-3断面C.1-1断面和3-3断面D.3-3断面和4-4断面3.如图所示,孔板上各孔口的大小形状相同,则各孔口的出流量是( )A.Q A>Q BB.Q A=Q BC.Q A<Q BD.不能确定4.并联管道A、B,两管材料、直径相同,长度 B=2 A,两管的水头损失关系为( )A.hfB =hfAB.hfB =2hfAC.hfB =1.41hfAD.hfB =4hfA5.如图所示,水泵的扬程是( )A.z1B.z2C.z1+ z2D.z1+ z2+h w6.在已知通过流量Q、渠道底坡i、边坡系数m及粗糙系数n的条件下,计算梯形断面渠道尺寸的补充条件及设问不能是( )A.给定水深h,求底宽bB.给定宽深比β,求水深h与底宽bC.给定最大允许流速[v]max,求水底h与底宽bD.给定水力坡度J,求水深h与底宽b7.断面单位能量e随水深h的变化规律是( )A.e存在极大值B.e存在极小值C.e随h增加而单调增加D.e随h增加而单调减少8.下列各型水面曲线中,表现为上凸型的水面曲线是( )A.M3型B.C3型C.S3型D.H3型9.根据堰顶厚度与堰上水头的比值,堰可分为( )A.宽顶堰、实用堰和薄壁堰B.自由溢流堰、淹没溢流堰和侧收缩堰C.三角堰、梯形堰和矩形堰D.溢流堰、曲线型实用堰和折线型实用堰10.速度v、长度l、运动粘度v的无量纲组合是( )A.vlv2B.v lv2C.v lv22D.vlv二、填空题(不写解答过程,将正确的答案写在每小题的空格内。
水力学考试题及答案解析

水力学考试题及答案解析一、单项选择题(每题2分,共20分)1. 水力学中,流体的连续性方程描述的是()。
A. 质量守恒B. 动量守恒C. 能量守恒D. 动量和能量守恒答案:A解析:连续性方程是流体力学中描述质量守恒的基本方程,它表明在没有质量源或汇的情况下,流体的流量在流经任何截面时都是恒定的。
2. 伯努利方程适用于()。
A. 可压缩流体B. 不可压缩流体C. 静止流体D. 任何流体答案:B解析:伯努利方程适用于不可压缩流体,即流体的密度在流动过程中保持不变。
3. 在流体流动中,雷诺数(Re)是描述流体流动状态的重要参数,它与()无关。
A. 流体的密度B. 流体的粘度C. 流动的速度D. 管道的直径答案:B解析:雷诺数是流体流动状态的无量纲数,它与流体的密度、流动的速度和管道的直径有关,但与流体的粘度无关。
4. 流体在管道中流动时,若管道直径增大,则流速()。
A. 增大B. 减小C. 不变D. 无法确定答案:D解析:根据连续性方程,流体的流速与管道的横截面积成反比。
若管道直径增大,而流量保持不变,则流速会减小;若流量增加,则流速可能增大或减小,具体取决于流量的增加程度。
5. 流体的粘性是由于()。
A. 流体分子间的吸引力B. 流体分子间的排斥力C. 流体分子的热运动D. 流体分子的无规则运动答案:A解析:流体的粘性是由于流体分子间的吸引力,这种吸引力使得流体在流动时产生内部摩擦力。
6. 流体的表面张力是由于()。
A. 流体分子间的吸引力B. 流体分子间的排斥力C. 流体分子的热运动D. 流体分子的无规则运动答案:A解析:流体的表面张力是由于流体分子间的吸引力,这种吸引力使得流体的表面具有收缩的趋势。
7. 在流体流动中,若流速增加,则流体的动能()。
A. 增大B. 减小C. 不变D. 无法确定答案:A解析:流体的动能与流速的平方成正比,因此流速增加时,流体的动能也会增加。
8. 流体的压强能是由于()。
水力学例题

例题1:如下图所示,一圆锥体绕自身轴线等速旋转,锥体与固定壁面间的距离为K ,空隙全部被动力粘滞系数为μ的牛顿流体所充满。
当旋转角速度为ω,锥体底部半径为R ,高为H ,求作用于圆锥的阻力矩。
解:M=⎰⎰⎰⎰====Kdhr KdA rKdAr Ku dAr322cos 2πμωαπμωωμμτ=HK Rαπμωcos23而22cos RHH+=α;故:M=2232RHKR+⨯πμω例题2:涵洞进口处,装有与水平线成600倾角而边长为1m 的正方形平板闸门(AB=1m ),求闸门所受静水总压力的大小及作用点。
解:坐标只能建在水面上。
A kp p 807.91807.9=⨯=aB kp p 300.18)231(807.9=+⨯=KNp p P BA 050.14112=⨯⨯+=h h Ay I y y C C C C C D 6.160sin 433.112160sin 433.1160sin 121160sin 03=+=⨯⨯+=+=0=D x矩形和圆形的C y 和C I 值矩形:2hy C =123bhI C =圆形:r y C =44rI C π=例题3:一直立矩形闸门,用三根工字梁支撑,门高及上游水深H 均为3m,把此闸门所受静水压强分布图分为三等份,每根工字梁分别设在这三等份的重心,求三个工字梁的位置?解:设静水压力分布图的面积为A ,则每一等份为A/3mh H A h 3,21313211221=∴⨯==γγ mh H A h 45.2,213232212222=∴⨯==γγm h h h h m h h c 091.22718.0121212=-+==-m Ah J h y c xc c 11.2718.0091.212)718.0(091.2322=⨯+=+=mh H h h m h H c 725.2255.02232=-+==-mAh J h y c xc c 73.2725.212)55.0(725.22333=+=+=mh h h h h h h y m h y 11.22)(31,15.1322121121211=++-+===。
水力学习题详解

1—5:∵Gsina =T ,∴45.04.0135⨯⨯==⨯dtdu A G μτ∴s Pa ⋅=105.0μ 1—6:∵M=T (r +=hr r r h r u Ar 22)(2)()(2δπδδωμδπδμτ+⨯+=+⨯=∴s Pa r h M ⋅=+=07.0])(2[3δπωδμ 2—5:H h p p a a γγ++=11,22h p p a γ+=H p p 煤煤煤γγγ+⨯-=⨯-1000115100010021,得:3/25.5m N =煤γ 2—6:)()()()(404323210z z z z z z z z p p p ---+---=γγγγ=252448Pa2—10:∵0===z y x f f f 由)(dz f dy f dx f dp z y x ++=ρ得:dp =0 ∴p =C=p 02—11:∵0=+dz f dx f z x (1),将2/98.0s m f x -=,2/8.9s m g f z -=-=,m dx 5.1-=代入(1)式得:m dz 15.0=15.1)]([00⨯=-+=+=+=γγγγA dz dz h h p p =2—12:m h h H R R h H 1.0)(21)(1122=∴-=-ππ mh H gR z 4.02122=-==ω得:)/(67.18)15.0(8.02s rad g==ω∵s rad n /7.1830==πω ∴min /17830r n ==πω2—13:2mDA B 1.5m2m30kNA h P c 38.765.1260sin 38.90=⨯⨯⨯==γ=⨯⨯⨯+=+=25.131225.133A y I y y c c c D 3.11m0)1(60cos 20=+--⨯c D y y P T ∴T =2—16:设上面的水对水闸的压力为P 1,则作用点为y D1,则:HHb H H b H y D 934sin sin 2)sin (12sin 231=⋅+=αααα 设下面的水对水闸的压力为P 2,则作用点为y D2,则:h hb h h b h y D 934sin sin 2)sin (12sin 232=⋅+=ααααP 1的作用点到o 点的距离为:x H x y H D -=--932sin 1α P 2的作用点到o 点的距离为:H x h h x 932)934sin (-=--α以o 点为转轴:)932(sin 2)932(sin 2h x hb h g x H Hb H g-⋅=-⋅αραρ 解得:x =0.795m2—18:不是。
水力学习题评讲课件

22
3.26 一台离心泵, 抽水量为0.22m3/s, 水泵进口允许真空度已知 为4.5m水柱, 水泵进口直径d=300mm(题3.26图), 从水池经 管道进口的吸水滤头至水泵进口的水头损失为1m, 求能避免汽 蚀的水泵进口轴线至水源水面的最大高度(称为水泵的最大安装 高度)hs。
解: 选择水池水面作为基准面
解: 以管轴线0-0为基准线,
写A→B的伯方程:
hp
pA
u
2 A
0
pa
0
g 2g
g
0 uA A
0 d
u
2 A
pa pA
2g g
(1)
题3.11图
5
又由水银压差计公式:
(zB
pB
g
)
(
z
A
pA )
g
pg g
g
h
在本题中: zA=zB=0,故知: pB pA p g g h
(2)
g
g
将(2)代入(1)中得:
u
2 A
p g g h
hp
2g g
0 uA A
0
uA
2gh pg g g
2g(12.6hp )
题3.11图
d
uA 2g(12.6hp ) 29.812.60.06 3.85m / s
Q
vA
0.84u A
1
4
0.22
0.84 3.85
1 3.14 0.22 4
0.102m3
/s
6
3.12 一个水深1.5m, 水平截面积为3m×3m的水箱(题3.12 图), 箱底接一直径d=200mm, 长为2m的竖直管, 在水箱进 水量等于出水量情况下作恒定出流, 试求点3的压强。略去水 流阻力, 即hw=0。
(完整版)水力学试题带答案

水力学模拟试题及答案1、选择题:(每小题2分)(1)在水力学中,单位质量力是指()a、单位面积液体受到的质量力;b、单位体积液体受到的质量力;c、单位质量液体受到的质量力;d、单位重量液体受到的质量力。
答案:c(2)在平衡液体中,质量力与等压面()a、重合;b、平行c、相交;d、正交。
答案:d(3)液体中某点的绝对压强为100kN/m2,则该点的相对压强为a、1 kN/m2b、2 kN/m2c、5 kN/m2d、10 kN/m2答案:b(4)水力学中的一维流动是指()a、恒定流动;b、均匀流动;c、层流运动;d、运动要素只与一个坐标有关的流动。
答案:d(5)有压管道的管径d与管流水力半径的比值d /R=()a、8;b、4;c、2;d、1。
答案:b(6)已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于a、层流区;b、紊流光滑区;c、紊流过渡粗糙区;d、紊流粗糙区答案:c(7)突然完全关闭管道末端的阀门,产生直接水击。
已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为a、1.54m b 、2.0m c 、2.45m d、3.22m答案:c(8)在明渠中不可以发生的流动是()a、恒定均匀流;b、恒定非均匀流;c、非恒定均匀流;d、非恒定非均匀流。
答案:c(9)在缓坡明渠中不可以发生的流动是()。
a、均匀缓流;b、均匀急流;c、非均匀缓流;d、非均匀急流。
答案:b(10)底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为a、缓流;b、急流;c、临界流;答案:b(11)闸孔出流的流量Q与闸前水头的H()成正比。
a、1次方b、2次方c、3/2次方d、1/2次方答案:d(12)渗流研究的对象是()的运动规律。
a、重力水;b、毛细水;c、气态水;d、薄膜水。
答案:a(13)测量水槽中某点水流流速的仪器有a、文丘里计b、毕托管c、测压管d、薄壁堰答案:b(14)按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为a、1米,λQ =1000;b、10米,λQ =100;c、1米,λQ =100000;d、10米,λQ=100000。
水力学习题附答案

第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
水力学例题 (1)

第1章 绪论例1:已知油品的相对密度为0.85,求其重度。
解:3/980085.085.0m N ⨯=⇒=γδ例2:当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。
解:0=+=⇒=dV Vd dM V M ρρρρρd dV V -= Padp d dp V dV E p 84105.2105%02.01111⨯=⨯⨯==-==ρρβ例3:已知:A =1200cm 2,V =0.5m/sμ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F绘制:平板间流体的流速分布图及应力分布图 解:(前提条件:牛顿流体、层流运动)dy du μτ= ⎪⎪⎩⎪⎪⎨⎧-=-=⇒2221110h u h u V μτμτ 因为 τ1=τ2 所以sm h h Vh u h uh u V /23.02112212211=+=⇒=-μμμμμN h uV A F 6.411=-==μτ第2章 水静力学例1:如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。
解:分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合0=+s gz ax 等压面与x 轴方向之间的夹角g a tg =θPaL tg H h p A A 177552=⎪⎭⎫ ⎝⎛⋅+==θγγ PaL tg H h p B B 57602=⎪⎭⎫ ⎝⎛⋅-==θγγ例2:(1)装满液体容器在顶盖中心处开口的相对平衡分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变:Cz gr p +-⋅=)2(22ωγ利用边界条件:r =0,z =0时,p =0作用于顶盖上的压强:g r p 222ωγ=(表压)(2)装满液体容器在顶盖边缘处开口的相对平衡压强分布规律:Cz gr p +-⋅=)2(22ωγ边缘A 、B 处:r =R ,z =0,p =0g R C 222ωγ-=作用于顶盖上的压强:()2222r R gp --=ωγ例3:已知:r 1,r 2,Δh求:ω0 解:212120=-s z gr ω (1)222220=-s z gr ω (2)因为 h z z s s ∆==21所以212202r r h g -∆=ω例4已知:一圆柱形容器,直径D =1.2m ,完全充满水,顶盖上在r 0=0.43m 处开一小孔,敞开测压管中的水位a =0.5m ,问此容器绕其立轴旋转的转速n 多大时,顶盖所受的静水总压力为零?已知:D =1.2m ,r 0=0.43m ,a =0.5m 求:n解:据公式 )(Z d z Y d y X d x dp ++=ρ 坐标如图,则 x X 2ω=,y Y 2ω=,g Z -= 代入上式积分:C z gr p +-⋅=)2(22ωγ (*)由题意条件,在A 点处:r =r 0,z =0,p =γa 则 C gr a +-⋅=)02(202ωγγ 所以 )2(202gr a C ωγ-⋅=所以 )2()2(20222gr a z gr p ωγωγ-⋅+-⋅= 当z =0时: )2(220222gr a gr p ωγωγ-⋅+=它是一旋转抛物方程:盖板上静压强沿径向按半径的二次方增长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题1在旋转锥阀与阀座之间有厚度为1δ,动力粘度为μ的一层油膜,锥阀高为h,上、下底半径分别为1r 和2r 。
试证明,锥阀以角速度ω旋转时,作用在锥阀上的阻力矩为:T =〔解〕证明:任取r 到r+dr 的一条微元锥面环带,在半径r 处的速度梯度是δωγ,切应力ωγτμδ=,假定锥面上的微元环形面积为dA ,则作用在锥阀微元环带表面上的微元摩擦力是dF=τdA微元摩擦力矩 dT=τdA ⨯r下面讨论dA 的表达式,设半锥角为θ,显然,由锥阀的几何关系可得 222121)(hr r r r Sin +--=θθππθSin rdr dA rdr dASin 22== ∴ dr r Sin rdA dT 32θδπμωτ== ()1122441232sin 2sin r r rrr r T dT r dr πμωπμωδθδθ-===⎰⎰将)(4241r r -进行因式分解,并将Sin θ的表达式代入化简整理上式可得221212()(2T r r r r πμωδ=++例题2盛有水的密闭容器,其底部圆孔用金属圆球封闭,该球重19.6N ,直径D=10cm ,圆孔直径d=8cm ,水深H 1=50cm 外部容器水面低10cm ,H 2=40cm ,水面为大气压,容器内水面压强为p(1)当p 0也为大气压时,求球体所受的压力; (2)当p(1)计算p 0=p a如解例题2(a)图,由压力体的概念球体所受水压力为()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=464622132213d H H D d H H D P γπγππ ())(205.0408.04.05.061.014.3980023↑=⎥⎦⎤⎢⎣⎡⨯--⨯⨯=N(2) 设所求真空度为Hm(水柱)高,欲使球体浮起,必须满足由于真空吸起的“吸力”+上举力=球重,如解例题2(b)6.19205.042=+d H πγ()()m d H 39.008.014.398004205.06.194205.06.1922=⨯⨯⨯-=-=γπ γKP ≥0.39 p K ≥9800×0.39=3822N/m2当真空度p K ≥3822N/m 2时,球将浮起。
例题3管道从1d 突然扩大到2d 时的局部水头损失为j h ',为了减小水头损失的数值,在1d 与2d 之间再增加一个尺寸为d 的管段,试问:(1)d 取何值时可使整体的损失为最小;(2)此时的最小水头损失j h 为多少?〔解〕(1)根据已知的圆管突然扩大局部水头损失公式gV V h j 2)('221-=根据连续方程2211A V A V =,增加直径为d 的管段后,仍满足2211A V VA A V == 由此可得22112211)(,)(d d V V d d V V== (4-1) 在1d 与2d 之间加入直径为d 的管段后,水头损失j h 应该是两个突然扩大的局部水头损失之和,即gV V g V V h j 2)(2)(2221-+-= []V V V V V V V g2222122122221-+-+=⎥⎦⎤⎢⎣⎡-+-+=))((2)()(2)(21211221212121V V V V V V V VV V gV将(4-1)式代入⎥⎦⎤⎢⎣⎡--++=21221214212121)()(2)(2)()(12d d d d d d d d d d gV h j 求导数 ⎥⎦⎤⎢⎣⎡++-=---32241321541214482d d d d d d d g V dd dh j⎥⎦⎤⎢⎣⎡++-=--22122132121)(12)4(2d d d d d d g V 当0=dd dh j 时,j h 取得极小值令0=dddh j ,则⎪⎩⎪⎨⎧=++-==--0)(12)(002212213d d d d d d 不合题意,舍去 22121)(1)(2d dd d +=2221222122d d d d d += 2221212dd d d d +=(4-2)(2)求j h 的极小值[]2221min )()(21v v v v gh j -+-=将211)(d d V V =及222)(ddV V =代入上式,则 222212min11221()()2jd d h V V V V gd d ⎧⎫⎡⎤⎡⎤⎪⎪=-+-⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎪⎪⎩⎭再将(4-2)式代入并整理可得⎥⎦⎤⎢⎣⎡--+-=22221212222222212221min)12()2((21d d d d V d d d V g h j 利用(4-1)式,则 ⎥⎦⎤⎢⎣⎡-+-=2212221221min)1(4)1(421V V V V V V g h jgV V V V V V g 2)(21)(41)(4121221221221-⨯=⎥⎦⎤⎢⎣⎡-+-='min21j j h h =加中间段所得的损失正是原来突然扩大不加中间段时损失的一半,由此可见,逐渐扩大比突然扩大的损失要小得多。
例题4比重S=0.85,运动粘度ν=0.125cm 2/s 的油在粗糙度△=0.04mm 的钢管中流动,管径d=300mm ,流量Q=100l/s,试确定:(1)流动型态;(2)沿程阻力系数λ(3)粘性底层厚度δ(4)管壁上的切应力0τ 〔解〕首先判别流态 2000339533.010125.01.0444>=⨯⨯⨯⨯===-ππννd Q VdR e紊流(1)假定光滑紊流区,用布拉修斯公式计算λ值,即0233.03164.025.0==e R λ粘性底层厚度 0233.08.3225.0==eR dδ 粘性底层厚度 mm m R d e 9.110898.10233.0339533.08.328.323≈⨯=⨯==-λδ由于3.002.09.104.0<==∆δ,流动处于紊流光滑区,前述假定正确。
(2)沿程阻力系数λ=0.0233 (3)粘性底层厚度δ=1.9mm (4)管壁处的切应力2*20)(8181AQ S V ρλλρτ== 89.4)3.01.04(100085.00233.081220=⨯⨯⨯⨯⨯⨯=πτ2/m N 例题5两水池的水位差H=24m ,中间由四段管道连接,如图所示。
已知水池水位保持不变,管长 l 1=l 2=l 3=l 4=100m ,管道直径d 1=d 2=d 4=100mm ,d 3=200mm ,沿程阻力系数,02.0,025.03421====λλλλ阀门局部阻力系数 ζ=30,其余局部阻力忽略不计。
试求: (1)管道中的流量(2)如果关闭阀门,流量如何变化〔解〕将阀门处的局部水头损失折合成第3管段适当长度L e 上的沿程水头损失,则ζ g V 223=3λ2332e l v d g令 33d le λζ=,故 33λζd l e = 沿程水头损失 252282Q dg lg d V l h f πλλ=⋅⋅= 令 528d g lS πλ=,管道摩阻2SQ h f =先求出每条管道的摩阻值 7.206561.08.9100025.08852512111=⨯⨯⨯⨯==ππλd g l SS 333252530.280.02(10030)8()0.022065.679.80.2e l l g d λππ⨯⨯+⨯+===⨯⨯可见 S 1=S 2=S 4=10 S 3(1)求管道通过的流量根据连续方程 Q 1=Q 4=Q 2+Q 3=Q (4-1) 2管与3管并联 2f h =3f h 233222Q S Q S = 1032332QS S Q Q == (4-2) 将(4-2)式代入(4-1)式,得Q Q Q =+33101Q Q 76.03= (4-3) Q Q 24.02= (4-4) 在图示的复杂管道中421f f f h h h H ++=2422221Q S Q S Q S ++= 24221)24.0(Q S S S +⨯+=)(124.017.2065622++⨯=Q223.42503Q =s l Q /76.2323.4250324==所以sl Q Q s l Q Q sl Q Q /06.1876.0/70.524.0/76.233241======(2)当关闭了管中的阀门,流量如何变化阀门全部关闭后,成为三条管道串联,即 Q Q Q Q ===421 242221421Q S Q S Q S h h h Hf f f ++=++=因为 7.20656421===S S S 所以 27.206563Q H ⨯= 4210873.37.20656324-⨯=⨯=Qs l Q /68.19=可见,关闭阀门后,虽然2管的流量增大了,但1管和4管的流量减小,使得从水池A 到水池B 的输水能力降低了。
例题6梯形断面土渠,通过的流量Q=0.75s m /3,底坡i=5501,边坡系数m=1.5。
砂质粘土,粗糙系数n=0.025,当渠道中水深为0.4~1.0m 时不冲允许流速V ′=1.0m/s ,不淤允 许流速V ″=0.4m/s ,试按宽深比β=1.5设计断面尺寸。
〔解〕当渠道中形成均匀流时 Q=ACRi面积 A=(b +m h )h =(1.5h+1.5h )h=3.02h 湿周 χ= b+2h21m +=1.5h+2h 25.11+=5.11h水力半径 R =χA =h h h 587.011.50.32= 谢才系数 C=n161RQ=A n 132R i =3.0⨯2h ⨯025.01⨯(0.587h)32⨯5501=3.587h 38h 38=587.3Q = 21.0587.375.0=h=0.56mb=βh=1.5 ⨯0.56=0.84m 校核渠道允许流速 A=3.0 ⨯0.562=0.941 2m =V A Q =797.0941.075.0=s m / '"V V V << 断面平均流速在允许流速范围之内。
例题7证明:当断面比能E s 及渠道断面形式,尺寸(b 、m)一定时,最大流量相应的水深是临界水深。
证明 22222gAQ h gV h E sαα+=+= (4---1))(222h E gA Q s -=α(4---2)当E s 一定时,断面形式,尺寸一定,A=f(h),上式为Q=F(h),绘出Q ~h 关系曲线见6-3-4图。
由图可知,Q=F(h)取得极大值,将(4-2)式对h 取一阶导数,可得 ])(2[222A h E dhdAA g dh dQ Q S --=α 令)(,0h F Q dhdQ==取得极大值,只能 ,0)(22=--A h E dh dA A S 因为,B dhdA=则0)(2=--A h E B s 将(4-1)式代入上式,可得23Q A g Bα=(4-3)式即为水流作临界流时临界水深关系式,可见,当断面比能Es 一定,断面形状、尺寸一定时,最大流量时的水流作临界流,水深即为临界水深h s ,即kk B A gQ 32max=α (4-3) 5、某矩形断面渠道,底宽b=2m ,试确定: (1)流量Q=2m 3/s 时的临界水深及最小断面比能 (2)断面比能Es=1m 时的临界水深及最大流量 〔解〕(1)当Q=2m 3/s 时当Q 一定时,断面比能最小时的水深为临界水深 22222gAQ h gV h E sαα+=+= (5-1)将上式对h 取一阶导数,并令0=dhdE s,Es 取得极小值,此时临界水深满足 32332)(k k k k h b bbh B A g Q ===αgq gb Q hk2223αα==0.45k h m === 最小断面比能7.025.045.0)45.02(8.9220.145.02222min=+=⨯⨯⨯⨯+=+=g V h E K k s α(2)当Es=1m 时 ,流量最大时的水深为临界水深,由(5-1)式可得 )(222h E A gQ s -=α将上式对h 取一阶导数,并令0=dhdQ,Q 取得极大值,此时临界水深满足3232k kk mh b B A gQ ==α 223gbQ h mkα=(5-3)因为 22222kmk k k s gAQ h gV h E αα+=+= (5-4)联立求解(5-3)式和(5-4)式,可得 s m Q m hk /43.3,67.03max ==k h =0.67m ,max Q =3.43m 3/s故临界水深为0.67m ,最大流量为3.43m 3/s 。