几种简单恒流源电路

合集下载

压控恒流源电路设计

压控恒流源电路设计

压控恒流源电路设计
压控恒流源电路是一种常用的电子电路,用于实现对负载的恒定电流控制。

它可以根据负载的电流需求,自动调整输出电压,保持电流不变。

设计压控恒流源电路的关键是利用电压和电流之间的关系来实现控制。

以下是一种常见的压控恒流源电路设计:
1.基本电路结构:
该电路由一个可变电阻和一个电流传感器组成。

可变电阻用于调整电流大小,电流传感器用于检测实际电流值。

2.参考电压电路:
在该电路中,使用一个稳定的参考电压源,例如锗二极管或稳压源,来提供一个固定的参考电压。

3.比较放大器电路:
将负载电流与参考电流进行比较,并通过比较放大器将比较结果放大。

比较放大器可以是运算放大器或比较器。

4.反馈回路:
将比较放大器的输出反馈给可变电阻,以调整电流大小。

反馈回路可以使用反馈电阻网络来实现。

5.电流传感器:
为了测量负载电流,可以使用电阻、霍尔效应传感器或电流互感器等。

整个电路的工作原理是:电流传感器检测负载电流,并将其与参考电流进行比较。

比较放大器输出的误差信号通过反馈回路调整可变电阻的阻值,从而自动调整电流大小,以保持负载电流恒定。

需要注意的是,设计压控恒流源电路时,要考虑负载的额定电流范围和电压范围,选择合适的元器件,确保电路的稳定性和可靠性。

此外,还需要进行合适的保护措施,如过流保护、过压保护等,以确保电路和负载的安全运行。

几种简单的恒流源电路

几种简单的恒流源电路

几种简单的恒流源电路
2
推荐
恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。

1.由7805组成的恒流电路,电路图如下图1所示:
电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以
这个电路在精度要求有些高的场合不适用。

2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R(Vref=1. 25),Iadj的输出电流是微安级的所
以相对于Io可以忽略不计,由此可见其恒流效果较好。

3.由PQ30RV31组成的恒流电路如图3所示,I=Vref/R(Vref=1.25),他的恒流会更好,另外他是低压差稳压IC。

运放构成的恒流源电路方案

运放构成的恒流源电路方案

开发过项目的工程师都知道,在设计LED驱动的电路,为了达到稳定的显示效果,一般都需要设计一个恒流源电路。

恒流源电路,驱动LED,它的亮度就不会跟随电压的变化而变化了,亮度就始终维持在一个恒定的值了。

这是因为LED的亮度,只与流过它的电流有关。

OK,类似于这样的恒流源电路,工程师该如何去开发呢?当然,不同的工程师,有不同的方案,芯片哥要介绍的是一个简单且高效的电路,只需要一个运放和一个三极管,就能完成恒流源的功能电路。

恒流源电路这个电路是怎么实现恒流的功能呢?LM358是一个运算放大器,不过在这个电路中,它被当做比较器使用。

正相输入端,连接一个稳定的电压5V;负相输入端,连接的是R2电阻。

“比较器”的输出端,直接通过一个电阻R1驱动Q1三极管,三极管的发射极也连接着R2电阻,三极管的集电极是作为恒流源的输出,就是它能够输出一个稳定的电流。

我们知道,作为比较器,当正相输入端的电压大于负相输入端的电压,也就是VA > VB,比较器就会输出一个高电平;当正相输入端的电压小于负相输入端的电压,也就是VA < VB,比较器就会输出一个低电平。

因为VA是等于5V,是一个固定值,所以比较器输出的是高电平还是低电平,是取决于VB的电压。

由于R2电阻是连接比较器的负相输入端,因此VB的电压,它是等于R2电阻两端的电压。

R2电阻两端的电压,根据欧姆定律,它是等于流过R2电阻的电流乘以R2电阻的阻值。

也就是VB = VR2 = IR2 * R2感觉是不是有点绕?怎么那么多关系啊?别急,还没到重点呢?跟着芯片哥的节奏,我们再接着分析它的恒流原理运放构成的恒流电路对于三极管,它的特性是电流放大作用,比如放大100倍,将基极的小电流,放大100倍后,通过集电极输出。

也就是集电极的电流是要远远大于基极的电流,所以在这个放大倍数的基础上,工程师可以等效地看出,流过三极管的发射极电流是等于集电极电流的。

分析到这里,我们就不难发现,流过R2电阻的电流,它是等于流过三极管集电极电流的。

恒流源电路

恒流源电路

威尔逊电流源
❖ 该电流源的基本原理是利用负反馈来提高电
流源的输出阻抗以使电流源具有良好的恒+流
特性V。DD
IV -
IR
Io
M3
gm3Vgs3
rds3
Vgs3 -
M1
M2
g m1Vgs1
rds1 Vgs2 Vgs1
gm2Vgs2
rds2
-
威尔逊电流源
❖ 上图中,由于VDS1=VGS3+VGS2,而VGS1=VGS2,所以:
V萨D氏S1>方IoV程GS可1(W ,得因L:)此2M(11 一定VD 工2 S作) 在饱和区,所以根据饱和 IR (WL)1 (1VD1S)
❖ 由于VDS2=VGS2,VDS1=VGS2+VGS3,即VDS1≠VDS2,所
以在这种电流源中,Io/IR的值不仅与M1、M2的几何尺寸 相关,还取决于VGS2与VGS3的值。
❖ 假定gm1=gm2=gmro 3, 且grd m1r3dssg1>m >1 1r,d则1s上式可电流源具有
更大的输出阻抗,所以其恒流特性得到了很 VDD
大的提高,且只采用了三个MOS管IR ,结构I简o 单,并可应用在亚阈值区。
❖ 但是图4中M3与M2的漏源
IR
❖ 由图可以看出,三极管M3处于饱和区的条件为:
X
Io
V G 1 S V t1 h V b V G 3 ( SV A )
Vb
M3
M4
❖ 而三极管M1饱和的条件为:
A
B
V G 3 S ( V G 1 V S t1 h ) V b V G 1 V S t3 h
❖ 即:
M1
M2

mos管恒流源电路

mos管恒流源电路

mos管恒流源电路介绍在电子电路中,常常需要使用恒流源来对电路中的负载进行电流控制。

MOS管恒流源电路是一种常见的电路配置,它可以提供稳定的电流输出并对负载电阻的变化具有一定的抵抗能力。

本文将对MOS管恒流源电路进行全面、详细、完整且深入地探讨。

基本原理MOS管恒流源电路是通过MOS管的工作原理来实现恒流输出的。

当MOS管处于饱和区时,其漏极电流与栅极电压成正比。

通过合理的电路设计和偏置设置,可以使得MOS管工作在饱和区,从而实现恒流输出。

电路结构MOS管恒流源电路的基本结构如下所示:Vdd|R|+---| ||MOS|| |---|GND其中,Vdd为电源电压,R为负载电阻,MOS为MOS管。

通过控制MOS管的栅极电压,可以控制电路中的电流。

工作原理MOS管恒流源电路的工作原理如下:1.当电源电压Vdd施加在电路上时,MOS管的栅极电压为0V,此时MOS管处于截止区,没有漏极电流流过负载电阻R。

2.当把栅极电压逐渐增加时,当栅极电压达到某个阈值电压时,MOS管开始进入饱和区。

此时,栅极电压的增加将导致漏极电流的增加。

3.当栅极电压继续增加时,MOS管的漏极电流逐渐稳定在一个恒定值。

这是因为MOS管的饱和区特性决定了漏极电流与栅极电压成正比。

4.当电源电压Vdd变化时,由于MOS管的饱和区特性,漏极电流基本保持不变,从而实现了对负载电阻变化的抵抗能力。

设计与优化设计和优化MOS管恒流源电路时,需要考虑以下几个关键因素:1. MOS管尺寸选择MOS管的尺寸选择对电路的性能有重要影响。

较大的MOS管尺寸可以提供更大的漏极电流范围,但也会增加电路的功耗和面积。

因此,需要根据具体应用需求综合考虑。

2. 偏置电路设计为了使MOS管能够工作在饱和区,需要设计合适的偏置电路。

常见的偏置电路包括电流镜电路和电流源电路。

合理的偏置电路设计可以提高电路的稳定性和性能。

3. 电源电压选择电源电压的选择也会影响电路的性能。

恒流源电路设计总结

恒流源电路设计总结
uint result;
result = ADC12MEM0;
results[index++] = ADC12MEM0; // Move results
if(index == Num_of_Results)
{
uchar i;
unsigned long sum = 0;
index = 0;
for(i = 0; i < Num_of_Results; i++)
}
2、PWM输出模块
用定时器A输出pwm信号,P1.2作为输出
文件名*pwm.c*
#include <msp430x14x.h>
void out_pwm() //输出pwm信号
{
uchar i;
BCSCTL1 &= ~XT2OFF; //打开XT振荡器
BCSCTL2 |= SELM_2+SELS; //MCLK为8MHz,SMCLK为8MHz
do
{
IFG1 &= ~OFIFG; //清除振荡错误标志
for(i = 0; i< 100;i ++) //延时等待
_NOP();
}
while((IFG1 & OFIFG) != 0); //如果标志为1,则继续循环等待
IFG1 &= ~OFIFG;
P1SEL |= BIT2 ; //选择p1.2作为PWM输出
=
化简得
设计思路
1、编程让430单片机产生占空比可调的PWM方波,通过占空比的调节来控制MOS管的开启时间,从而调节电路的电流,达到相对恒定的电流。
2、通过单片机内部的AD转换模块,采集到硬件电路的电压值,比较得出电压(或电流)的变化趋势(增大还是减小),若电压(电流)增大,则减小占空比,缩短MOS管的开启时间;反之,增大占空比,增加MOS管的开启时间。

mos管恒流源电路

mos管恒流源电路

mos管恒流源电路
MOS管恒流源电路是一种使用金属氧化物半导体场效应管(MOSFET)作为恒流源的电路。

这种电路可以提供一个恒定的电流,无论输入电压如何变化。

以下是这种电路的基本组成:
1. 一个电源:为电路提供工作电压。

2. 一个电阻:用于调节电流。

3. 一个MOSFET:用于控制电流的流动。

工作原理如下:
1. 当输入电压增加时,MOSFET的栅极电压也会增加,这会导致MOSFET的导通电阻减小,从而增加电流的输出。

2. 当输入电压减小时,MOSFET的栅极电压也会减小,这会导致MOSFET的导通电阻增大,从而减少电流的输出。

3. 由于电阻的存在,无论输入电压如何变化,MOSFET的栅极电压都会保持在一定的值,从而保证电流的恒定。

这种电路广泛应用于电子设备中,如电源供应器、恒流源、开关电源等。

三极管简易恒流电路

三极管简易恒流电路

三极管简易恒流电路英文回答:## Simple Transistor Constant Current Circuit.A simple transistor constant current circuit can be constructed using a few basic components. These circuits are often used in applications where a constant current is required, such as in LED drivers or battery chargers.The basic circuit consists of a transistor, a resistor, and a voltage source. The transistor is connected in a common-emitter configuration, with the resistor connected between the collector and emitter terminals. The voltage source is connected between the base and emitter terminals.The current through the circuit is determined by the value of the resistor. The higher the resistance, the lower the current. The transistor acts as a current amplifier, amplifying the small base current into a larger collectorcurrent.The circuit can be modified to provide a more precise current by adding a feedback resistor between the collector and base terminals. This feedback resistor helps tostabilize the current by reducing the effects of transistor variations.中文回答:## 三极管简易恒流电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种简单的恒流源电路恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。

1.由7805组成的恒流电路,电路图如下图1所示:电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以这个电路在精度要求有些高的场合不适用。

2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R<Vref=1.25),Iadj的输出电流是微安级的所以相对于Io可以忽略不计,由此可见其恒流效果较好。

3.由PQ30RV31组成的恒流电路如图3所示,I=Vref/R(Vref=1.25>,他的恒流会更好,另外他是低压差稳压IC。

摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。

设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。

人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。

关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻一、方案论证根据题目要求,下面对整个系统的方案进行论证。

方案一:采用开关电源的恒流源采用开关电源的恒流源电路如图1.1所示。

当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。

BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。

当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。

图 1.1 采用开关电源的恒流源优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。

与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。

因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。

缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。

方案二:采用集成稳压器构成的开关恒流源系统电路构成如图1.2所示。

MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为:,式中为MC7805的静态电流,小于10mA。

当较小即输出电流较大时,可以忽略,当负载电阻变化时,MC7805改变自身压差来维持通过负载的电流不变。

图 1.2 采用集成稳压器件的恒流源电路优点:该方案结构简单,可靠性高缺点:无法实现数控。

方案三:单片机控制电流源该方案恒流源电路由N沟道的MOSFET、高精度运算放大器、采样电阻等组成,其电路原理图如图1.3所示。

利用功率MOSFET的恒流特性,再加上电流反馈电路,使得该电路的精度很高。

图1.3 恒流源电路该电流源电路可以结合单片机构成数控电流源。

通过键盘预置电流值,单片机输出相应的数字信号给D/A转换器,D/A转换器输出的模拟信号送到运算放大器,控制主电路电流大小。

实际输出的电流再通过采样电阻采样变成电压信号,A/D转换后将信号反馈到单片机中。

单片机将反馈信号与预置值比较,根据两者间的差值调整输出信号大小。

这样就形成了反馈调节,提高输出电流的精度。

本方案可实现题目要求,当负载在一定范围内变化时具有良好的稳定性,而且精度较高。

基于上述方案比较和题目的要求,采用了方案三。

二、详细软硬件设计根据题目要求和上述论证,确定的系统框图如图2.1。

图2.1 系统框图硬件连接图如图2.2,本系统中SPCE061A的IOA8~15,IOB12~15为复用端口。

图2.2 系统硬件连接图1、硬件设计<1)单片机控制电路本系统采用SPCE061A单片机作为控制核心。

SPCE061A是16位单片机,指令周期短,工作速率快,功耗低,具有丰富的片上资源,集成了可编程音频处理电路,可以在线下载,易于调试。

尤其是其语音播放功能对增加语音报警功能提供了很大的方便。

<2)A/D,D/A接口设计根据题目要求,数控直流恒流源的精度为1mA,所以至少需要11位的A/D转换器和D/A转换器。

A/D转换采用BB公司的ADS7816构成的转换电路,如图2.3。

ADS7816是12位串行模/数转换器,采样频率高达200kHz,转换所需时间短,转换精度高。

ADS7816转换器将采样电阻上的电压转换成数字信号反馈给单片机,单片机将此反馈信号与预置值比较,根据两者间的差值调整输出信号大小。

这样就形成了反馈调节,提高输出电流的精度。

同时,A/D采样回来的电流经过单片机处理传送到LCD,可以显示当前的实际电流值。

图2.3 A/D接口电路D/A转换采用12位DAC7625P构成的转换电路,如图2.4。

DAC7625P具有较高的精度。

D/A转换电路主要负责把单片机输出的控制信号送给高精度运算放大器,控制电流源输出电流大小。

图2.4 D/A接口电路设D/A转换器的参考电压为,键盘输入数字量为D,D/A转换输出的模拟电压 =。

选择参考电压=2.5V,采样电阻 1.2207。

当输入数字量加1,模拟增加量△V= V=0.61mV则输出电流变化=0.5mA即D/A转换器数字输入量每增加数值1,恒流源输出电流增加0.5mA。

因此为实现步进功能,每按一次步进"+"键,单片机送给D/A转换器的输入数字量D加2,从而输出电流加1mA,实现了电流步进1mA的要求。

步进减1mA同理。

当键盘设置输出电流大小为I时,单片机送给D/A转换器的数字量为 2×I,使得电流源电路输出电流为I。

然而这只是理想情况,实际电路因为种种原因,实际输出电流不会完全等于理论计算值,此时电流反馈控制起了关键作用。

单片机通过分析A/D转换的数值,得到电路实际输出的电流大小,对D/A转换器的给定数字量进行调整,使得输出电流大小更精确。

<3)恒流源电路恒流源电路是系统的重要组成部分,其电路原理图如图2.5所示。

主要由高精度运算放大器,MOSFET,采样电阻等组成。

图2.5 恒流源电路根据运放特性可得:MOSFET的电流D/A转换器输出的控制电压加在运算放大器正输入端,控制负载中流过的电流。

采样电阻选用康铜丝,以减少因温度变化而引起的采样电阻阻值的变化。

采样电阻将输出电流转换为电压信号,供A/D转换用。

设计中A/D、D/A转换器的参考电压都为2.5V,电路中流过的电流最大值为2000mA,因此正常情况下电阻阻值应为2500mV/2000mA=1.25。

考虑到系统的步进功能,当D/A 转换的数字输入加1时,其模拟输出增加量△V= ,与此同时采样电阻上的电压也相应增加相同的数值,令其输出电流增加0.5mA,则计算得采样电阻阻值为:运算放大器的输出控制着MOSFET的VGS,因此运算放大器输出的稳定性将直接决定系统输出电流的稳定性;同时,运算放大器还决定着系统输出电流的精度。

为了满足系统的精度及纹波要求,选用精密运算放大器OP07C。

<4)键盘及LCD显示电路系统中采用普通的4×4键盘实现电流的设计和调节。

4×4键盘原理图如图2.6所示。

键盘包括下列功能:S1:程序复位;S2:液晶复位;Set:设定;0~9预置输入;"+ ":电流上调;"-":电流下调;Enter:确认。

从0~9预置键中输入预置电流值,确认后便可通过液晶显示出预置电流值。

上调键 "+"和下调键 "-"分别用来控制电流以步进1mA增减,电流变化通过液晶显示出来。

图2.6 4×4键盘原理图液晶显示器选用凌阳公司的SPLC501液晶模组,SPLC501是128×64的点阵LCD,其内部自带驱动电路,外围电路非常简单,因为凌阳公司提供了驱动程序,使得编程也相当简单。

在本设计中用它来显示电流的给定值、实际测量值以及系统工作状态。

LCD 的接口电路如图2.7所示。

图2.7 液晶接口电路<5)系统电源因为系统对电流的精度及纹波要求较高,而系统电源的精度及稳定度在很大程度上决定了系统的性能,因此系统电源的设计是整个系统中的重要部分。

为了防止恒流源电路中的较大电流对控制部分产生干扰,将控制部分的电源和恒流源电路电源分成独立的两部分,分别由两组变压器供电,电路如图2.8所示。

图2.8 自制电源原理图控制部分:220V电压经变压器输出两组独立的交流10V电源和一个交流15V电源。

其中一路交流10V电源经整流、滤波、7805稳压后输出+5V电压,给CPU和LCD供电;第二路交流10V电源经整流、滤波、7805稳压后输出-5V<正端接地)电压为运算放大器提供负工作电源。

交流 15V输出电压经整流、滤波、7812稳压输出+12V电压,为运算放大器提供正工作电源,同时此+12V 电源经过参考电源芯片MC1403,输出+2.5V电压做为A/D,D/A的参考电压。

恒流源电路电源:220V电源经变压器降压输出交流19V电压,再经过整流、滤波、78H15稳压后输出+15V电压,直接作为恒流源电路电源。

2.软件设计软件系统的任务主要有A/D转换、D/A转换、步进加减、键盘扫描、液晶显示、语音报警等功能。

为了将所有任务有序的组织起来,软件系统采用前后台结构。

SPCE061A单片机拥有独立的时基发生器,无需占用定时器。

系统设置了一个1024Hz 的时基中断,为整个系统提供一个统一的运行节拍,保证了各个任务能有条不紊的工作。

对时间没有实时要求的任务如键盘扫描、液晶显示,放在主循环中。

A/D,D/A转换任务需要定周期运行,放在时基中断服务子程序中运行。

有效的保证了重要任务能及时被执行。

<1)主程序系统加电后,主程序首先完成系统初始化,其中包括I/O口,中断系统,定时器/计数器等工作状态的设置,系统变量赋初值等工作;完成系统初始化后打开中断;随之进入键盘扫描程序。

键盘扫描获取键值后根据键值,完成设定预置电流值,步进加减,并通过LCD显示输出电流值及系统是否正常工作信号。

主程序流程图如图2.9所示。

图2.9 主程序流程图<2)时基中断服务子程序时基中断服务子程序流程图如图2.10所示。

在此中断服务程序中控制进行A/D和D/A转换图2.10 时基中断服务子程序<3)A/D转换程序A/D转换器ADS7816的接口形式为位串行接口,因此在对ADS7816进行操作时需要考虑到时序问题,ADS7816的控制流程图如图2.11所示。

相关文档
最新文档