第2章自动控制数学模型
第2章 自动控制系统的数学模型

二、一阶惯性环节(一阶滞后环节)
1、数学表达式 :
2、特点 一阶惯性环节含有一个储能元件,输入 量的作用不能立即在输出端全部重现出来, 而是有一个延缓,即有惯性。 3、实例
例2-2 如图2-2所示的RC串联电路,以总电压ur 为输入,电容上电压uC为输出,试建立其微分方程。
图2-2 RC网络
解(1)确定系统的输入、输出变量,如图已知ur为输入,电 容电压uC为输出; (2)列微分方程组: 由基尔霍夫第二定律有: uR +uC =ur ① 由欧姆定律有: uR=R i ② 1 由电容充放电特性,有:uC= ∫idt ③ c (3)消去中间变量
n υ 他激直流电动
五、振荡环节(二阶滞后环节)
1、自动控制原理的研究对象是自动控制系统 的基本结构,这是本章的重点,要求通过实例掌 握自动控制系统各组成部分及其功能。 2、经典控制理论讨论的是按偏差进行控制的 反馈控制系统,应该了解其控制的目的、控制的 对象和控制的过程;熟悉对控制系统动态性能的 基本要求,即稳、快、准;为进一步掌握控制系 统的性能指标打好基础。
d n c(t ) d n 1c(t ) dc(t ) a0 a1 a n 1 a n c(t ) n n 1 dt dt dt d m r (t ) d m 1 r (t ) dr (t ) b0 b1 bm 1 bm r (t ) m m 1 dt dt dt
第2章 线性系统的数学模型
第2章 线性系统的数学模型
六、纯滞后环节(纯延迟环节)
表达式: c(t)=r(t-τ) 特点:输出比输入滞后一个时间τ。 实例:延时继电器。
2-2 传递函数
传递函数是线性定常连续系统最重要的数 学模型之一,是数学模型在复频域内的表示形 式。利用传递函数,不必求解微分方程就可以 求取初始条件为零的系统在任意形式输入信号 作用下的的输出响应,还可以研究结构和参数 的变化对控制系统性能的影响。经典控制理论 的主要研究方法——根轨迹分析法和频域分析 法都是建立在传递函数基础上的。
自控原理课件 第2章-自动控制系统的数学模型

第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
2.2.2 传递函数 建立数学模型的目的是为了对系统进行性能分析。分析 自动控制系统最直接的方法是求解微分方程,求得被控 量在动态过程中的时间函数,然后根据时间函数的曲线 对系统性能进行分析。求解的方法有经典法、拉氏变换 法等。 拉氏变换法是求解微分方程的简便方法,当采用这一方 法时。微分方程的求解就成为象函数的代数方程和查表 求解,使计算大为简化。更重要的是,采用拉氏变换法 能把以线性微分方程描述的数学模型转换成复数域中代 数形式的数学模型——传递函数。传递函数不仅可以表 征系统的性能,而且可以用来分析系统的结构和参数变 化对系统性能的影响。经典控制理论中应用最广泛的频 率特性法和根轨迹法就是以传递函数为基础建立起来的, 传递函数是经典控制理论中最基本最重要的概念。
解:(1)确定输入和输出量。网络的输入量为 电压ur(t),输出量为电压uc(t) (2)根据电路理论,列出原始微分方程。
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
1.信号线 信号线是带有箭头的直线,箭头表示信号的流向,在直线旁标 记信号的象函数,如图2.20(a)所示。 2.引出点 引出点表示信号引出或测量的位置。从同一位置引出的信号在 数值和性质上完全相同, 图2.20(b)所示。 3.比较点 比较点表示多个信号在此处叠加,输出量等于输入量的代数和。 因此在信号输入处要标明信号的极性,如图2.20(c)所示。 4.功能框 功能框表示一个相对独立的环节对信号的影响。框左边的箭头 处标以输人量的象函数,框右边的箭头处标以输出量的象函数, 框内为这一单元的传递函数。输出量等于输入量与传递函数的 乘积,即
自动控制系统的数学模型

1)
T
2s2
1
2Ts
1
其系数、 由 p1、p2 或 T1、T2 求得;
若有零值极点,则传递函数的通式可以写成:
G(s)
Kg s
m1
(s
zi
)
m2
(
s
2
2kk s
2 k
)
i1
k 1
n1
(s
p
j
)
n2
(
s
2
2ll
2 l
)
j 1
[例1]求电枢控制式直流电动机的传递函数。
[解]已知电枢控制式直流电动机的微分方程为:
TaTm
d 2
dt2
Tm
d
dt
Kuua
Km (Ta
dmc dt
mc )
方程两边求拉氏变换为:
(TaTms2 Tms 1)(s) KuUa (s) Km(Tas 1)Mc (s)
令 Mc (s) ,0得转速对电枢电压的传递函数:
M c
Mc
)
见例2-4
⑸消去中间变量:推出 ~ ug(Mc) 之间的关系:
TaTm 1 K0
T m 1
K0
K0
K 1 K0
(ug
ug
)
Km (TaM C
Mc
)
显然,转速 既与输入量ug有关,也与干扰 M 有c 关。
[增量式分析] (上式等号两端取增量):
⑴对于恒值调速系统,ug =常量,则ug 0, ug 0 。
, i
1 zi
,
Tj
1 pj
,
( is 1)
i 1 n
(Tj s 1)
j 1
自动控制原理:第二章--控制系统数学模型全

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
第二章 自动控制系统原理的数学模型分析

c(t ) a n1
d n1
c(t ) ... a1
d c (t ) a 0 c (t ) dt d r (t ) ... b1 r (t ) b0 r (t ) dt
在初始条件为零时,对方程两边进行拉氏变换并整理得
C ( s) bm s m bm 1 s m 1 b1 s b0 M ( s) G ( s) (2-25) n n 1 R( s ) N ( s) a n s a n 1 s a1 s a 0
一阶常系数线性微分方程
RC
duc uc ur dt
(2-4)
微分方程建立举例(2)
【例2-2】机械位移系统 (1)确定输入、输出量
设外作用力F (t ) 为输入量,质量 物体的位移 y (t )为输出量。
(2)建立微分方程组
根据牛顿第二定律可得:
F (t ) FB (t ) FK (t ) ma
初始条件为零,一般是指输入量在t=0时刻以后才 作用于系统,系统的输入量和输出量及其各阶导数在 t≤时的值也均为零。
传递函数的一般表达式
如果系统的输入量为 r (t ) ,输出量为 c(t ) ,并 由下列微分方程描述
an
bm
dn dt n dm
dt m
dt n1 d m 1 r (t ) bm 1d m 1 dt
c (t ) 1
式中
<1时
(2-44)
1 2
e n t 1 2
4.应用实例 例2-2机械位 移系统等。
sin( d t )
,
arctan
d n 1 2
R 将 R1 1 K 、 2 1 K 代入上式得: 2 1
自动控制原理-第二章 控制系统的数学模型

t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt
Raia (t)
Ea (t)
ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt
fmm (t)
Mm
MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t
L1 U C
S
L1
S
2
1 S
1
1 S
S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)
自动控制系统的数学模型

i1 nN
• K为系统增益或开环S N 放j1 (大S 倍Pj ) 数,
第二章 自动控制系统的数学模型
• 分子多项式根,系统零点(开环), • 分母多项式根,系统极点(开环)。
m
K Ti
Kg
i1 nN
Tj
j1
第二章 自动控制系统的数学模型
• 三、关于传递函数,有如下几点说明: • ⑴ 传递函数表征了系统对输入信号的传递
第二章 自动控制系统的数学模型
• 2.3 典型环节传函分析 • 自动控制系统是由不同功能的元器件构成
的。从物理结构上看,控制系统的类型很 多,相互差别很大,似乎没有共同之处。 在对控制系统进行分析研究时,我们更强 调系统的动态特性。具有相同动态特性或 者说具有相同传递函数的所有不同物理结 构,不同工作原理的元器件,我们都认为 是同一环节。
dt t0
Tc
T t0
c
• 可从图上求出 Tc
第二章 自动控制系统的数学模型
• 过渡过程时间,根据定义,为输出到达稳 定值的95%(98%)所需的时间。 Ts=3T(Ts=5T)
• 一个流出水箱的水流量由阀门控制的蓄水 箱就是一个惯性环节的实例。无源RC网络、 单溶液槽、盲室压力系统和无套管热电偶 系统等也都是典型的惯性环节。
第二章 自动控制系统的数学模型
• 建立数学模型的目的有如下几点: • 1.可以定量分析系统动静态性能,看是否能
满足生产工艺要求。 • 2.可以用于定量的控制计算,对系统行为进
行预测,并加以控制。控制精度与模型精度 有关。 • 3.利用模型可以进行有关参数的寻优
第二章 自动控制系统的数学模型
• 建模的方法大概有三种: • 1.机理分析法(适用于机理已知的系统),也
自动控制原理与应用第2章自动控制系统的数学模型

自动控制原理与应用第2章自动控制系统的数学模型自动控制是现代工业和科学技术的重要组成部分,它在各种自动化系统中起着关键作用。
通过对自动控制系统的数学建模,我们可以对系统的行为进行分析和预测,并设计合适的控制策略来实现系统的稳定性和性能要求。
本章主要介绍自动控制系统的数学模型及其应用。
自动控制系统的数学模型主要包括线性时不变系统和非线性时变系统两类。
1.线性时不变系统线性时不变系统是指系统的输出与输入之间存在线性关系,并且系统的性质不随时间的推移而变化。
线性时不变系统的数学模型可以用常微分方程或差分方程来表示,其中常微分方程适用于连续系统,差分方程适用于离散系统。
常见的线性时不变系统包括电路、机械系统等。
2.非线性时变系统非线性时变系统是指系统的输出与输入之间存在非线性关系,并且系统的性质随时间的推移而变化。
非线性时变系统的数学模型可以用偏微分方程、泛函方程等形式来表示。
非线性时变系统由于具有更复杂的动力学特性,通常需要借助数值方法来求解。
二、数学模型的建立方法建立自动控制系统的数学模型有多种方法,常用的方法包括物理模型法、数据模型法和状态空间法。
1.物理模型法物理模型法主要通过物理规律来建立系统的数学模型。
它基于系统的物理特性及其输入输出关系,通过建立微分方程或差分方程来描述系统的动态行为。
物理模型法适用于那些具有明确的物理意义和物理规律的系统。
例如,对机械系统可以利用牛顿定律建立系统的动力学方程。
2.数据模型法数据模型法是通过分析实验数据来建立系统的数学模型。
它基于系统的输入输出数据,借助统计方法和系统辨识技术来进行模型识别和参数估计。
数据模型法适用于那些难以建立明确物理模型的系统。
例如,对于生物系统或经验性系统,可以通过数据模型法来建立系统的数学模型。
3.状态空间法状态空间法是一种以状态变量和输出变量为基础的建模方法。
它将系统的动态行为表示为一组一阶微分方程或差分方程的形式。
状态空间法对于较复杂的系统具有较好的描述能力,能够反映系统的内部结构和动态特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[a0sna1sn 1 an 1san]C (s) [b0smb1sm 1 bm 1sbm ]R (s)
由传递函数的定义可得系统的多项式形式的传递函数为
2020/9/23G (s) C R ( (s s) ) b a 0 0 s s m n b a 1 1 s sm n 1 1 b a m n 1 1 s s a b m n
系统的数学模型:描述系统输入、输出变量以及内部各变量 之间关系的数学表达式。常用的动态数学模型有微分方程、传 递函数及动态结构图。
系统数学模型的建立,一般采用解析法或实验法。 解析法:依据系统及元件各变量之间所遵循的物理、化学定 律,列写出变量间的数学表达式,从而建立数学模型。 本章仅讨论解析法,关于实验法将在后面的章节进行介绍。
2020/9/23
令 T 1 R 1 C 1 ,T 2 R 2 C 2 ,T 3 R 1 C 2则上式可改写为:
T 1 T 2d d 2u 2ct(T 1T 2T 3)d dcu tucur
若撇开具体系统的物理属性,令r(t)为输入,c(t)为输出。 线性n阶系统的输入输出微分方程式的一般表达式可写为
a0dd nc(ntt)a1dd n1n c t(1t)a2dd n2nc t(2t) an1dd(c t)tanc(t) b0dd mrm (tt)b1dd m 1 m rt(1t)b2dd m2 m rt(2t) bm1dd(rt)tbmr(t)
式中 a 0 , a 1 , a 2 a n 。 b 0 , b 1 , b 2 b m 均为由系统结构参数决定的 常系数,且有n≥m。
2) MATLAB拉氏反变换指令:ilaplace(Fs,s,t) 例2.3的MATLAB求解程序: syms s,t;ilaplace(1/[s*(s+3)*(s+1)^2]) 计算结果与手算结果完全一样。
2020/9/23
例2.4 F(s)含有共轭复极点时的反变换。
s1 F(s)s(s2 s1)
拉氏变换将原来的时间函数f(t)转化为复变量函数F(s)。 通常 将F(s)称作f(t)的象函数, 将f(t)称作F(s)的原函数。
2020/9/23
2. 1) 根据定义积分计算,各典型函数的拉氏变换见下表。
2020/9/23
1(t )
t
t2 /2
eat
te a t
sint
cost
eat sint
2020/9/23
2.1.3 非线性数学模型的线性化
在建立控制系统的数学模型时,常常遇到非线性的问题。严格 地讲,实际的物理系统都包含着不同程度的非线性因素。但是, 许多非线性系统在一定的条件下可以近似地视作线性系统。
若控制系统在工作点的附近微小运动,则可将非线性函数展开 为泰勒级数,并忽略级数展开式中的高次项,从而得到只含一次 项的线性化方程。即用工作点的切线代替非线性曲线。
2020/9/23
2.1.1线性系统的微分方程模型
很多常见的元件或系统的输出量和输入量之间的关系都可 以用一个微分方程表示。微分方程的阶数一般是指方程中最高 导数项的阶数, 又称为系统的阶数。
如图机械系统,由牛顿定理得到以下关系:
FFk Ff mdd2t2y
Fk
ky;Ff
f
dy dt
2020/9/23
对于一般的非线性系统,假设其输入量为r,输出量为c,
并 设 在 给 定 工 作 点 处 c0=f(r 0), 各 阶 导 数 均 存 在 , 则 可 在
的邻域展开泰勒级数,即
2c 02 0/9/f23(r ) f(r 0 ) d d (r ) f r r r 0(r r 0 ) 2 1 ! d 2 d f2 (r ) r r r 0(r r 0 )2
1
s
1 s2
1 s3 1
sa 1
(s a)2
s2 2 s
s2 2
(s a)2 2
2)MATLAB计算 syms s t ;Ft=1-sin(t) Fs=laplace(Ft,t,s) 执行结果:Fs=1/s-1/(s^2+1)
3. 拉氏反变换 已知时间函数的象函数通过拉氏反变换求出其时间函数:
2020/9/23
例2.2 图示为一个单摆系统,输入量M为零(不加外力矩), 输出量为摆幅θ(t)。摆锤的质量为m, 摆杆长度为l, 空气阻 尼系数为μ,重力加速度为g。试建立系统的近似线性运动方程。
解 对于图示的单摆系统,根据牛顿运动定律可以直接推出 如下系统运动方程:
md dl22tμld dtmsgiln0
解:s 2 s 1 (s 0 .5 j0 .8)6 s( 0 6 .5 j0 .8)66
F (s)c s1sc 2 2 s sc 3 11 s(s s0 .5 0 ).2 5 0 0 ..8 52 66
f ( t ) L 1 F ( s ) 1 e 0 . 5 t c 0 . 8 o t 0 . 5 6 e s 0 . 5 t s 7 6 0 . 8 i t 8 ( t n 6 0 )
显然方程是一个二阶的非线性微分方
程(因为含有sinθ), 但是在摆幅较
小的情况下, 将其线性化处理:
2020/9/23
令非线性函数sin(θ)=f,则工作点在θ0=0,f0=0。线性化:
kdsdin0co0s)(1
ff0k(0)
f
即单摆系统的近似线性化动态方程为:
2020/9/23
mddl22tμlddtmgl0
n
snF(s) snkf(k1)(0) k1
如果初始条件
f( 0 ) f'( 0 ) f( n 1 ) ( 0 ) 0
成立, 则有
2020/9/23
L[f(n)(t)]snF(s)
3) 终值定理
函数 f(t) 在 t →+∞时的函数值(即稳定值)可以通过 f(t) 的拉氏变换F(s)乘以 s 取 s→0 时的极限而得到, 即
当(r-r 0),很小时,可以忽略上式中二阶以上各项,得
cf(r)f(r0)dd(fr)rrr0(rr0)
或
c c c 0 K (r r 0 ) K r
在处理非线性问题时,应注意以下几点: 1.线性化是在输入、输出量围绕平衡点作小范围变化的假 设下进行的。一般取零误差状态作为平衡工作状态。 2.线性化以切线代替曲线,是一种近似处理。系统的实际 变化量如果很大,则采用小偏差线性模型将会带来较大的计 算误差。 3.对于某些严重的典型非线性,不能进行求导运算,因此 原则上不能用小偏差法进行线性化
d2y
dy
m f kyF
d2 t
dt
如图RLC网络,由电路定律可得:
uruRuLuC0
di u RR;iu LLd;t
icdcu dt
LC d2uc d2t
RC ddcutuc
ur
不同的物理系统可能得到相似的数学表达式。如果它们对应
的系数和初始条件相同,则它们的解将完全相同。这样就可以
撇开系统的具体物理属性,研究这些系统的运动过程的共同规
总之,建立合理的数学模型,是至关重要的问题。许多系统, 事件及项目就是因为无法建立合理的数学模型而不能加以预测 和控制。
2020/9/23
2.1.2 列写微分方程的一般方法
用解析法列写系统或元件微分方程的一般步骤是: 1.根据实际工作情况,将系统划分为多个独立的环节,
标出各环节的输入、输出变量。各环节之间无负载效应。 2.从输入端开始,按照信号的传递顺序,依据各环节所
§ 2.2 传 递 函 数
传递函数是对微分方程取拉氏变换后推导出来的概念。
2.2.1 拉氏变换
1.
将时间函数f(t)乘上指数函数e-st(其中s=σ+jω是一个复数),
并且在[0,+∞]上对t积分, 称为f(t)的拉氏变换,并用L[f(t)]
表示。
F (s)L [f(t) ] f(t)esd t t 0
2020/9/23
f(t)L1[F(s)]
1) 部分分式法 将F(s)展开成多个典型函数的象函数之代数和,查表。 例2.3 F(s)含单极点和重极点时的拉氏反变换。
解: F (s) s(s 3 ) 1 s( 1 )2 c s 1 sc 2 3 (s c 3 1 )2 s c 4 1
c1[F(s)s]s01/3
L [ f 1 ( t ) f 2 ( t ) L [ ] f 1 ( t ) L [ ] f 2 ( t ) F 1 ] ( s ) F 2 ( s ) 函数放大k倍的拉氏变换等于该函数拉氏变换的k倍, 即
L[k(ft)]kF (s)
2020/9/23
2) 微分定理
Ld(n d )fn(tt)snF(s)sn1f(0)sn2f(0) s(fn2)(0)f(n1)(0)
遵循的物理定律,列写的动态方程,一般为微分方程组。 3.消去中间变量,写出系统输入、输出变量的微分方程。 4.标准化。即将与输入有关的各项放在等号右侧,与输
出有关的各项放在等号左侧,并按降幂排列。最后将系数归 化为具有一定物理意义的形式。
2020/9/23
例2.1 列写如图所示RC滤波电路的微分方程。(假设电路的 输入电源的内阻为零,输出接的负载具有无限大阻抗)
用MATLAB求解:
syms s t;ft=ilaplace((s+1)/[s*(s^2+s+1)]);
pretty(ft) %将符号表达式写成易读形式 f t1e2 tco3s t1e2 tsin 3t (t0 ) 23 2
与20手20/9算/23 结果一样
4. 拉氏变换的基本定理 1) 线性定理 两个函数和的拉氏变换, 等于每个函数拉氏变换的和, 即