晶体点群分类和晶面指数的计算

合集下载

晶体结构 知识点总结

晶体结构 知识点总结

简 单 立 方
体 心 立 方
面 心 立 方
简 单 四 方
体 心 四 方
四方底心, 四方底心,四方面心
(2)晶胞的二个基本要素 ) ①晶胞参数 晶胞形状
a, b, c, α , β , γ
α=bΛc β =aΛc γ =aΛb
晶轴
②晶胞内各原子的位置
分数坐标
例1:某种金属,立方体心晶胞 :某种金属, 含原子数为8*1/8 + 1 = 2 含原子数为 (顶点1,体心 ) 顶点 ,体心1) (0,0,0), (1/2,1/2,1/2) , , , , )
第四章 晶体结构 Chapt 4 Crystal Structure
固态物质按其原子(或分子、离子) 固态物质按其原子(或分子、离子)在空 间排列是否长程有序分成晶态和无定形两类。 间排列是否长程有序分成晶态和无定形两类。 晶体 例:聚乙烯 微粒在空间按周期性排列 微粒在空间按周期性排列 在空间按周期性
晶轴的夹角 90°60°… ° ° Notes: (1)优先考虑对称性 优先考虑对称性; 优先考虑对称性
(2)对称性相同时,优先选择素晶胞 对称性相同时,优先选择素 对称性相同时
晶胞 (平行六面体 平行六面体) 平行六面体 (1)晶胞 晶胞
并置堆积
实际晶体
素晶胞:含结构基元(点阵点 个 素晶胞:含结构基元(点阵点)1个 复晶胞:含结构基元(点阵点) ≥2个 复晶胞:含结构基元(点阵点 个
六方最密堆积 (A3)
正当晶胞含原子数目 = 8*1/8+1 = 2 顶点 体心
a=b=2r, c=1.633a (最密堆积 最密堆积) 最密堆积
Notes: ① 晶胞参数 a=b=2r, c=1.663a 晶胞中含原子数=2 ② 晶胞中含原子数

晶面指数计算公式

晶面指数计算公式

晶面指数计算公式晶面指数是晶体学中用来描述晶面方向的重要概念,而晶面指数的计算公式则是我们理解和确定晶面的关键工具。

在晶体结构中,晶面是由一系列原子排列所构成的平面。

为了准确地描述这些晶面在空间中的取向,我们就需要用到晶面指数。

晶面指数的计算其实有一套相对固定的方法。

首先,我们要找出晶面在三个坐标轴上的截距。

这可不是随便找的哦,得是实实在在的数值。

比如说,一个晶面在 X、Y、Z 轴上的截距分别是 2a、3b、4c(这里的 a、b、c 是晶格常数)。

接下来,就要进行倒数计算啦。

把这些截距的数值取倒数,就得到1/2、1/3、1/4 。

但是还没完呢,我们还得把这些倒数化作互质的整数。

怎么化呢?就是将它们分别乘以它们分母的最小公倍数。

在这个例子里,最小公倍数是 12 ,所以经过计算后,得到 6、4、3 。

最后,把这组整数括在圆括号里,就得到了这个晶面的指数(643) 。

我还记得之前给学生们讲这个知识点的时候,有个小调皮鬼一直搞不明白为啥要这么算。

我就给他打了个比方,我说这就好比咱们分蛋糕。

晶面就像是蛋糕的切面,坐标轴就是切蛋糕的刀,截距就是每一刀下去切到的位置。

而计算晶面指数呢,就是把这些切的位置给规范化,方便咱们统一描述和交流。

那孩子听了之后,眼睛一下子亮了起来,好像突然就开窍了。

从那以后,每次遇到晶面指数的计算,他都特别积极,还能给其他同学讲明白呢。

在实际的研究和应用中,晶面指数的准确计算对于理解晶体的物理和化学性质都有着至关重要的作用。

比如说,不同的晶面可能具有不同的表面能,这会影响晶体的生长过程和形态。

总之,晶面指数计算公式虽然看起来有点复杂,但只要我们掌握了方法,多做几道练习题,就一定能轻松拿下它。

相信大家在今后的学习和研究中,都能熟练运用这个工具,去探索晶体世界的奥秘!。

晶体学基础2

晶体学基础2
•(110)、(112 )、(312)面是否同属一个晶带?如是,求出晶 带轴的方向指数。
•下列的晶面:(234)、( 201 )、(111)、(241)、( 221)、 ( 432 )、(101)、(010)和(432)中有哪些面属于同一个晶带? 求出晶带轴。
•四方点阵的初基单胞轴长a=2.5nm、c=7.5nm,画出(h0l) 的倒易阵点(h 和l≤±4)。
1
>1
-K)/2
α
无相 180° 120 ° 90 ° 60 ° 0°
无相
当值
360 ° 当值
不含平移变换的对称要素 (2)
倒反轴:复合对称要素
旋转轴+轴上的一个对称中心。
倒转轴的轴次n及基转角都与其所包含的旋转轴相同(即 n=360 °/ , 360 °/ n)。国际符号:N(Nn)。
0,0,z 1 mm2
空间群国际表
查表 软件
1.9 典型金属结构
•晶体结构的最大空间利用率和配位数
晶体中原子排列的紧密程度是反映晶体结构特征的一个 重要因素。为了定量地表示原子排列的紧密程度,通常 应用配位数和空间密堆率这两个参数。配位数是指晶体 结构中,与任一原于最近邻并且等距离的原子数。
不含平移变换的对称要素 (1)
对称中心1 对称面m
1 C 2
对称轴n
(x, y, z)
1
(-x, -y, -z)
对称轴所构成的对称配置投影图:
晶体对称定律(law of crystal symmetry) 在晶体中,只可能出现轴次为一次、二次、 三次、四次和六次的对称轴,而不可能存 在五次及高于六次的对称轴。 国际符号:1,2,3,4,6
1,立方系

晶向指数和晶面指数例题

晶向指数和晶面指数例题

晶向指数和晶面指数例题晶向指数和晶面指数是晶体学中非常基础的概念,它们用于描述晶体内部的结构和性质。

在本文中,我们将通过几个例题来介绍晶向指数和晶面指数的概念和应用。

一、晶向指数晶向指数是用来表示晶体中某个方向的指标,通常用方向余弦表示。

举个例子,假设有一个晶体,其晶格常数为a,b,c,那么其晶向指数(hkl)表示为:(hkl) = (h/a, k/b, l/c)其中h,k,l是整数,表示晶体中某个方向的坐标。

这个晶向指数(hkl)表示的是晶体中从原点出发,经过(h, k, l)个晶格常数所到达的点的位置。

下面是一个例题:例1:一个简单立方晶体,其晶格常数为a,求以下晶向的晶向指数:(1)[100];(2)[110];(3)[111]。

解:(1)[100]方向的晶向指数为(1, 0, 0);(2)[110]方向的晶向指数为(1, 1, 0);(3)[111]方向的晶向指数为(1, 1, 1)。

二、晶面指数晶面指数是用来表示晶体中某个晶面的指标,通常用晶面法向量的坐标表示。

举个例子,假设有一个晶体,其晶格常数为a,b,c,那么其晶面指数(hkl)表示为:(hkl) = [h, k, l]其中h,k,l是整数,表示晶面法向量的坐标。

这个晶面指数(hkl)表示的是晶体中法向量的坐标。

下面是一个例题:例2:一个简单立方晶体,其晶格常数为a,求以下晶面的晶面指数:(1)(100);(2)(110);(3)(111)。

解:(1)(100)晶面的晶面指数为[1, 0, 0];(2)(110)晶面的晶面指数为[1, 1, 0];(3)(111)晶面的晶面指数为[1, 1, 1]。

三、晶向指数和晶面指数的应用晶向指数和晶面指数在晶体学中有着重要的应用。

举个例子,它们可以用于描述晶体中的晶面间距、晶体的晶体学性质等。

下面是一个例题:例3:一个简单立方晶体,其晶格常数为a,试判断以下晶向是否相等:(1)[100]和[010];(2)[110]和[1-10];(3)[111]和[1-1-1]。

晶向与晶面

晶向与晶面
已知铜具有面心立方结构,其点阵常数为 0.3615nm,计算铜晶体(111),(112)晶 面间距。
(2)晶面夹角
两晶向[u1v1w1]与[u2v2w2]间夹角:
cos
u1u2 v1v2 w1w2
u12 v12 w12 u2 2 v2 2 w2 2
晶面(hkl)与晶向[uvw]间夹角:
<111>晶向族如右图。
(2)晶面指数-------(hkl)
例3:
(1)截距r、s、t分别为3,3,5
z
(2)1/r : 1/s : 1/t = 1/3 : 1/3 : 1/5
(3)最小公倍数15,
(4)于是,1/r,1/s,1/t分别
c
乘15得到5,5,3,
ab
y
因此,晶面指标为(553)。
三、晶体的对称性 crystalline symmetry symmetrization of crystals
对称性——晶体的基本性质
对称元素(symmetry elements)
回转对称轴(n)1,2,3,4,6
宏观对称性 元素 对称面(m)
对称中心(i) 回转 — 反演轴 1,2,3,4,6
负号记在上方 [uv w] 。
1、红线代表的晶向由两个结点的坐标之差确定
2、晶向指数同乘、除一个数,晶向不改变。 如[012]---[0 ½ 1]
▪ 如图为立方晶系: X轴、Y轴、
Z轴;长度单位a=b=c=1。
▪例: OD为[101];
▪ Om为:坐标1/2、1、1/2;化
简后[121];
▪EF为:[111]
例如:a1轴的指标可以是[1000],也可以是 [2110].
解决方法:加限制条件:前三个指标之和为0 例如:晶向指标为[u v t w],则u+v+t=0,故a1轴的指

晶体学基础(晶向指数与晶面指数)

晶体学基础(晶向指数与晶面指数)

图 1 晶向指数的确定方法
图 2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向 上, 那就需要选取该晶向上两点的坐标 P(x1, y1, z1)和 Q(x2, y2, z2), 然后将(x1-x2), (y1-y2),
(z1-z2)三个数化成最小的简单整数 u, v, w, 并使之满足 u∶v∶w=(x1-x2)∶(y1-y2)∶(z1-z2)。 则[uvw]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指 数的数字相同,但符号相反,如图 3 中[0 1 0 ]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用<uvw>表示,数字 相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密 度相同的等同晶向称为晶向轴,用<UVW>表示。 <100>:[100] [010] [001] [ 1 00 ] [ 0 1 0 ] [ 00 1 ] <111>:[111] [ 1 1 1 ] [ 1 1 1 ] [ 1 11 ] [ 1 1 1 ] [ 1 1 1 ] [ 1 1 1 ] [ 11 1 ]
图 11 六方晶体中常见的晶面 (2)六方晶系晶向指数的标定 采用四轴坐标,六方晶系晶向指数的标定方法如下:当晶向通过原点时,把晶向沿四个 轴分解成四个分量,晶向 OP 可表示为:OP=ua1+va2+ta3+wC,晶向指数用[uvtw]表示,其中 t=-(u+v)。原子排列相同的晶向为同一晶向族,图 12 中 a1 轴为[ 2 1 1 0 ],a2 轴[ 1 2 1 0 ], a3 轴[ 1 1 20 ]均属〈 2 1 1 0 〉 ,其缺点是标定较麻烦。可先用三轴制确定晶向指数[UVW], 再利用公式转换为[uvtw]。采用三轴坐标系时。C 轴垂直底面,a1、a2 轴在底面上,其夹角 o 为 120 ,如图 12,确定晶向指数的方法同前。采用三轴制虽然指数标定简单,但原子排列 相同的晶向本应属于同一晶向族,其晶向指数的数字却不尽相同,例如 [100] , [010] , [ 1 1 0 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l)。图 4 中的红色晶 面为待确定的晶面,其确定方法如下。

02-2晶体结构参数

02-2晶体结构参数

对称轴及其垂直该轴切面的示意图
3/16/2014 2:01 PM 27
洛阳师范学院
(4)旋转反伸轴Sn(倒转轴)
● 概念:过晶体中心一假想直线,晶体绕此直线旋转一定 角度,再对对称中心反伸,可使相等部分重复出现。 ● 对称操作是旋转+反演的复合操作。 ● 轴次只有: 1, 2, 3, 4, 6
● 各类倒转轴中,只有 4 次倒转轴是一个独立的基本对称 操作,其他 4 种倒转轴都可以表示为对称中心、对称面、旋 转轴的组合。
3/16/2014 2:01 PM 19
洛阳师范学院
对称性举例说明 (1) 吊扇中的叶片以中心线为对称轴,三个叶片之间可以围 绕这个对称轴每旋转120重复一次。
对称操作:绕对称轴旋转120度 对称要素:旋转轴
(2) 左右手
对称操作:镜子的反映 (注意这是一个虚拟操作) 对称要素:镜子构成的对称面
3/16/2014 2:01 PM 8
洛阳师范学院
例 1: 如图晶面hkl,在X、Y、Z轴上的截距分别为2a、3b
、6c ,截距系数为2、3、6 ,其倒数比1/2:1/3:1/6 ,
化整得3:2:1 ,去掉比号并以小括号括起来,(321)即 为该晶面的所求米勒指数。
晶面符号图解
3/16/2014 2:01 PM 9
洛阳师范学院
例2:
• 晶面A:r、s、t =1、1、1,其倒数为1、1、1,则晶面指数 记为(111); • 晶面B,r、s、t=1、2、,其倒数为1、1/2和0,化为互质 的整数比为2:1:0,则晶面指数记为(210); • 晶面C:晶面过原点(0,0,0),沿y轴平移一个晶格参数 (平移后代表同一晶面)使其在y轴截距为-1,则r、s和t分 别为、-1和,其倒数为0、-1和0,则晶面指数记为 (0 1 0), 其中的负号写在数字上面。

晶体学基础(晶向指数与晶面指数)

晶体学基础(晶向指数与晶面指数)

1.4 晶向指数和晶面指数一晶向和晶面1 晶向晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。

晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。

2 晶面晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。

晶体中原子所构成的平面。

不同的晶面和晶向具有不同的原子排列和不同的取向。

材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。

所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。

为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。

二晶向指数和晶面指数的确定1 晶向指数的确定方法三指数表示晶向指数[uvw]的步骤如图1所示。

(1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。

(2)选取该晶向上原点以外的任一点P(xa,yb,zc)。

(3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。

(4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。

图1 晶向指数的确定方法图2 不同的晶向及其指数当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。

若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y2,z2),然后将(x1-x2),(y1-y2),(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。

则[uvw ]为该晶向的指数。

显然,晶向指数表示了所有相互平行、方向一致的晶向。

若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。

说明: a 指数意义:代表相互平行、方向一致的所有晶向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.晶体学点群概念及种类?
晶体学点群的概念:
晶体的宏观对称操作的集合构成宏观对称操作群,即晶体学点群;晶体的宏观对称元素的集合构成宏观对称元素系(亦称对称型)。

宏观对称元素系并不是群,不过,二者具有一一对应的关系,所以,常用宏观对称元素系表示相应的晶体学点群。

晶体学点群有32种。

任何一种晶体必定属于32种晶体学点群之一。

32种晶体学点群代表互不相同的对称类型,但有些点群具有某种共同的对称元素,据此可以把32种晶体学点群归属于7种晶系。

方法是:规定出某些点群共有的、有代表性的对称元素作为一种晶系的特征对称元素,具备这种特征对称元素的几个点群就归属于这种晶系。

27.晶系的种类及名称?
举个例子:
28. 晶族的种类及名称?
6种晶族
六方晶系与三方晶系的正当晶胞的几何特征相同(a=b≠c,α=β= 90º,γ=120º),同属于六方晶族
详见27题中表
29. Bravais 格子的含义及种类?
7种晶系共有14种空间点阵型式,即14种Bravais格子。

平面点阵指标也称为晶面指标或米勒指数,是标志一族平面点阵在晶体中方向的一组3个互质整数(个别晶系有4个整数),加圆括号记作(h*k*l*)。

晶面指标(h*k*l*)平面点阵指标需要经过三步才能写出:
(1)以a、b、c为度量单位,依次写出平面点阵在三条晶轴上的截数r、s、t;
(2)求倒易截数1/r、1/s、1/t;
(3)求出倒易截数的互质整数比h*:k*:l*,记作(h*k*l*),即为平面点阵指标。

(4)晶面与哪条坐标轴平行,相应的截数就是无穷大。

求倒易截数就是为了消除无穷大。

显然,相互平行的一族平面点阵,其(h*k*l* )相同。

相关文档
最新文档