八年级数学上册第课时练习题及答案

合集下载

八年级初二上册数学人教版课时练《 等边三角形》01(含答案)

八年级初二上册数学人教版课时练《 等边三角形》01(含答案)

13.3.2 等边三角形一、单选题1.如图,Rt△ABC 中,△C =90°,△B =30°,△BAC 的平分线AD 交BC 于点D ,CD =BD 的长是( )A .2B .C .3D .2.如图,//,AB CD ACE 为等边三角形,40DCE ∠=︒,则EAB ∠等于( )A .40︒B .30C .20︒D .15︒3.下列说法错误的是( ) A .有两边相等的三角形是等腰三角形 B .直角三角形不可能是等腰三角形 C .有两个角为60°的三角形是等边三角形 D .有一个角为60°的等腰三角形是等边三角形4.如图,点B 是线段AC 上任意一点(点B 与点A ,C 不重合),分别以AB 、BC 为边在直线AC的同侧作等边三角形ABD 和等边三角形BCE ,AE 与BD 相交于点G 、CD 与BE 相交于点F ,AE与CD 相交于点H ,连HB ,则下列结论:△AE CD =;△120AHC ∠=︒;△HB 平分AHC ∠;△CH EH BH =+.其中正确的结论有( )A .4个B .3个C .2个D .1个5.如图,过边长为3的等边ABC 的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交边AC 于点D ,则DE 的长为( )A .13B .12C .32D .26.下列所叙述的三角形一定全等的是( ) A .边长相等的两个正三角形B .腰相等的两个等腰三角形C .含有30°角的两个直角三角形D .两边和其中一边的对角分别相等的两个三角形7.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .68.如图,ABC 为等边三角形,BO 为中线,延长BA 至D ,使AD AO =,则DOB ∠的度数为( )A .105︒B .120︒C .135︒D .150︒9.如图,△ABC 是等边三角形,AD=AE ,BD=CE ,则△ACE 的度数是( )A .40°B .50°C .60°D .70°10.如图,在边长为9的等边△ABC 中,CD △AB 于点D ,点E 、F 分别是边AB 、AC 上的两个点,且AE=CF=4cm ,在CD 上有一动点P ,则PE +PF 的最小值是( )A .4B .4.5C .5D .811.如图,ABC 是等边三角形,D 是线段BC 上一点(不与点,B C 重合),连接AD ,点,E F 分别在线段,AB AC 的延长线上,且DE DF AD ==,点D 从B 运动到C 的过程中,BED 周长的变化规律是( )A .不变B .一直变小C .先变大后变小D .先变小后变大12.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,1-B .(2020,1--C .(2019,1-+D .(2019,1--13.如图,ABC ∆是等边三角形,AD 是BC 上的高,//DE AC ,图中与BD (BD 除外)相等的线段共有( )条A .1B .2C .3D .414.以下说法正确的是( )A .三角形中 30°的对边等于最长边的一半B .若a + b = 3,ab = 2,则a - b = 1C .到三角形三边所在直线距离相等的点有且仅有一个D .等腰三角形三边垂直平分线的交点、三个内角平分线的交点、顶角的顶点三点共线 15.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .118二、填空题16.如图,在△ABC 中,△B =30°,AC = 边AB 的垂直平分线分别交AB 和BC 与点E ,D ,且AD 平分△BAC 则DE 的长度为____.17.如图,在△ABC 中,DE 是AC 的垂直平分线,△BCD 的周长为13,△ABC 的周长是19,若△ACD =60°,则AD =___.18.如图,在等边△ABC 中,点D 、E 分别在边AC 、BC 上,AD =CE ,连接BD ,AE ,点M 、N 分别在线段BE 、BD 上,满足BM =BN ,MN =ME ,若△DBC :△BEN =8:7,则△AEN 的度数为_______.19.如图是一个正方形和两个等边三角形,若△3=80°,则△1+△2=____________20.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两个动点,且总使AD =BE ,AE 与CD 交于点F ,AG △CD 于点G ,则△F AG =_____°.三、解答题21.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △△CBE △.CE AB,且AE△CE.解答下22.如图,在等边三角形ABC中,D为AC边的中点,过点C作//列问题:(1)△CAE=△ABD成立吗?请说明理由;(2)还有哪些结论?(写出一个即可)23.如图,在等边ABC中,高线BD和高线CE相交于点O.△≌△;(1)求证:ABD ACE△的形状,并说明理由.(2)连接DE,判断CDE24.如图,ABC和ADE都是等边三角形,BE和CD交于点F,ADE绕点A旋转.(1)如图1所示,求证:BAE CAD△≌△;(2)如图2所示,求证:AF平分BFD.参考答案16.1 17.6 18.45° 19.70° 20.30°21.证明:△ABC 和BDE 是等边三角形 △60ABC DBE ∠=∠=︒△ABC DBC DBE DBC ∠-∠=∠-∠ △ABD CBE ∠=∠又△AB BC =,BD BE =, ∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩△ABD △△CBE △()SAS 22.解:(1)成立,理由为:△三角形ABC 是等边三角形, AD =CD , △AB =BC =AC ,BD △AC 即△AEC =△BDA =90°, △AB △CE , △△ACE =△BAD . 在△ABD 和△AEC 中,90AEC BDA ACE BAD AC AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△AEC (AAS ), △△CAE =△ABD ;(2)AE = BD ,由(1)得:△ABD △△AEC , △AE = BD . 23.解:(1)证明:ABC 是等边三角形,AB AC ∴=.BD 和CE 是等边ABC 的高线,即BD 和CE 是等边ABC 的中线, 12AD AC ∴=,12AE AB =,AD AE ∴=.在ABD △与ACE 中,AD AE A A AB AC =⎧⎪∠=∠⎨⎪=⎩,(SAS)ABD ACE ∴△≌△.(2)CDE △是等腰三角形. 理由:ABC 是等边三角形,60A ∴∠=︒.AD AE =,ADE ∴是等边三角形, AD DE ∴=.BD 是等边ABC 的中线, AD CD ∴=, DE CD ∴=,CDE ∴是等腰三角形.24.证明:(1)△ABC 和ADE 都是等边三角形 △AB AC =,AE AD =,60BAC DAE ∠=∠=︒ △BAC BAD DAE BAD ∠+∠=∠+∠,即BAE CAD ∠=∠ 在BAE △和CAD 中, AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩△()BAE CAD SAS ≌.(2)过点A 作AG BF ⊥交BF 于点G ,过点A 作AH DF ⊥交DF 于点H ,由(1)可得:BAE CAD △≌△, △BE CD =, △AG AH = △AF 平分BFD ∠.。

八年级数学上册第1课时练习题及答案

八年级数学上册第1课时练习题及答案

【导语】数学练习积累越多,掌握越熟练,下⾯是为您整理的⼋年级数学上册第1课时练习题及答案,仅供⼤家学习参考。

⼀.选择题(共8⼩题) 1.如图,⼀个等边三⾓形纸⽚,剪去⼀个⾓后得到⼀个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300° 2.下列说法正确的是() A.等腰三⾓形的两条⾼相等C.有⼀个⾓是60°的锐⾓三⾓形是等边三⾓形 B.等腰三⾓形⼀定是锐⾓三⾓形D.三⾓形三条⾓平分线的交点到三边的距离相等 3.在△ABC中,①若AB=BC=CA,则△ABC为等边三⾓形;②若∠A=∠B=∠C,则△ABC为等边三⾓形;③有两个⾓都是60°的三⾓形是等边三⾓形;④⼀个⾓为60°的等腰三⾓形是等边三⾓形.上述结论中正确的有()A.1个B.2个C.3个D.4个 4.如图,CD是Rt△ABC斜边AB上的⾼,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60° 5.如图,已知D、E、F分别是等边△ABC的边AB、BC、AC上的点, 且DE⊥BC、EF⊥AC、FD⊥AB,则下列结论不成⽴的是()A.△DEF是等边三⾓形B.△ADF≌△BED≌△CFEC.DE=ABD.S△ABC=3S△DEF 6.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A.30°B.45°C.120°D.15° 7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cmB.3cmC.2cmD.1cm 第1题第4题第5题第7题 8.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三⾓形是()A.直⾓三⾓形B.钝⾓三⾓形C.等腰三⾓形D.等边三⾓形 ⼆.填空题(共10⼩题) 9.已知等腰△ABC中,AB=AC,∠B=60°,则∠A=_________度. 10.△ABC中,∠A=∠B=60°,且AB=10cm,则BC=_________cm. 11.在△ABC中,∠A=∠B=∠C,则△ABC是_________三⾓形. 12.如图,将两个完全相同的含有30°⾓的三⾓板拼接在⼀起,则拼接后的△ABD的形状是_________. 13.如图,M、N是△ABC的边BC上的两点,且BM=MN=NC=AM=AN.则∠BAN=_________. 第13题第14题第15题 14.如图,⽤圆规以直⾓顶点O为圆⼼,以适当半径画⼀条弧交两直⾓边于A、B两点,若再以A为圆⼼,以OA为半径画弧,与弧AB交于点C,则∠AOC等于_________. 15.如图,将边长为6cm的等边三⾓形△ABC沿BC⽅向向右平移后得△DEF,DE、AC相交于点G,若线段CF=4cm,则△GEC的周长是_________cm. 16.如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=_________度. 第16题第17题第18题 17.三个等边三⾓形的位置如图所⽰,若∠3=50°,则∠1+∠2=_______°. 18.如图,△ABD与△AEC都是等边三⾓形,AB≠AC.下列结论中,正确的是_________. ①BE=CD;②∠BOD=60°;③∠BDO=∠CEO. 三.解答题(共5⼩题) 19.如图,已知△ABC为等边三⾓形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F. (1)求证:△ABE≌△CAD; (2)求∠BFD的度数. 20.如图,D是等边△ABC的边AB上的⼀动点,以CD为⼀边向上作等边△EDC,连接AE,找出图中的⼀组全等三⾓形,并说明理由. 21.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三⾓形.求证: (1)△AEF≌△CDE; (2)△ABC为等边三⾓形. 22.已知:如图,在△ABC中,AB=BC,∠ABC=120°,BE⊥AC于点D,且DE=DB,试判断△CEB的形状,并说明理由. 23.已知:如图1,点C为线段AB上⼀点,△ACM,△CBN都是等边三⾓形,AN交MC于点E,BM交CN于点F. (1)求证:AN=BM; (2)求证:△CEF为等边三⾓形; (3)将△ACM绕点C按逆时针⽅向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两⼩题的结论是否仍然成⽴(不要求证明). 答案 ⼀、CDDBDCCD ⼆、9、60;10、10;11、等边;12、等边三⾓形;13、90度;14、60度;15、6; 16、60;17、130;18、①② 三、19、(1)证明:∵△ABC为等边三⾓形, ∴∠BAC=∠C=60°,AB=CA,即∠BAE=∠C=60°, 在△ABE和△CAD中,, ∴△ABE≌△CAD(SAS). (2)解:∵∠BFD=∠ABE+∠BAD, ⼜∵△ABE≌△CAD, ∴∠ABE=∠CAD. ∴∠BFD=∠CAD+∠BAD=∠BAC=60°. 20、解答:解:△BDC≌△AEC.理由如下: ∵△ABC、△EDC均为等边三⾓形, ∴BC=AC,DC=EC,∠BCA=∠ECD=60°. 从⽽∠BCD=∠ACE. 在△BDC和△AEC中,, ∴△BDC≌△AEC(SAS). 21、解答:证明:(1)∵BF=AC,AB=AE(已知) ∴FA=EC(等量加等量和相等).(1分) ∵△DEF是等边三⾓形(已知), ∴EF=DE(等边三⾓形的性质).(2分) ⼜∵AE=CD(已知), ∴△AEF≌△CDE(SSS).(4分) (2)由△AEF≌△CDE,得∠FEA=∠EDC(对应⾓相等), ∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换), △DEF是等边三⾓形(已知), ∴∠DEF=60°(等边三⾓形的性质), ∴∠BCA=60°(等量代换), 由△AEF≌△CDE,得∠EFA=∠DEC, ∵∠DEC+∠FEC=60°, ∴∠EFA+∠FEC=60°, ⼜∠BAC是△AEF的外⾓, ∴∠BAC=∠EFA+∠FEC=60°, ∴△ABC中,AB=BC(等⾓对等边).(6分) ∴△ABC是等边三⾓形(等边三⾓形的判定).(7分) 22、解答:解:△CEB是等边三⾓形.(1分) 证明:∵AB=BC,∠ABC=120°,BE⊥AC, ∴∠CBE=∠ABE=60°.(3分) ⼜DE=DB,BE⊥AC, ∴CB=CE.(5分) ∴△CEB是等边三⾓形.(7分) 23、(1)证明:∵△ACM,△CBN是等边三⾓形, ∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°, ∴∠ACM+∠MCN=∠NCB+∠MCN, 即:∠ACN=∠MCB, 在△ACN和△MCB中, AC=MC,∠ACN=∠MCB,NC=BC, ∴△ACN≌△MCB(SAS). ∴AN=BM. (2)证明:∵△ACN≌△MCB, ∴∠CAN=∠CMB. ⼜∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°, ∴∠MCF=∠ACE. 在△CAE和△CMF中 ∠CAE=∠CMF,CA=CM,∠ACE=∠MCF, ∴△CAE≌△CMF(ASA). ∴CE=CF. ∴△CEF为等腰三⾓形. ⼜∵∠ECF=60°, ∴△CEF为等边三⾓形. (3)解:如右图, ∵△CMA和△NCB都为等边三⾓形, ∴MC=CA,CN=CB,∠MCA=∠BCN=60°, ∴∠MCA+∠ACB=∠BCN+∠ACB,即∠MCB=∠ACN, ∴△CMB≌△CAN, ∴AN=MB, 结论1成⽴,结论2不成⽴.。

八年级数学上册第三章位置与坐标课时练习题及答案

八年级数学上册第三章位置与坐标课时练习题及答案

八(上)第三章位置与坐标分节练习题和本章复习题带答案第1节确定位置1、【基础题】下列数据不能确定物体位置的是()★A. 4楼8号B.北偏东30度C.希望路25号D.东经118度、北纬40度2、【基础题】如左下图是某学校的平面示意图:如果用(2:5)表示校门的位置:那么图书馆的位置如何表示?图中(10:5)处表示哪个地点的位置?★3、【基础题】如右上图:雷达探测器测得六个目标A、B、C、D、E、F:目标C、F的位置表示为C(6:120°)、F(5:210°):按照此方法在表示目标A、B、D、E的位置时:其中表示不正确的是()★A.A(5:30°)B.B(2:90°)C.D(4:240°)D.E(3:60°)30方向:距学校1000m处:则学校在小明家的_______. ★4、【综合题】小明家在学校的北偏东○第2节平面直角坐标系5、【基础题】写出左下图中的多边形ABCDEF各个顶点的坐标. ★★★6、【基础题】在右上图的平面直角坐标系中:描出下列各点:A(-5:0):B(1:4):C(3:3):D(1:0):E(3:-3):F(1:-4). ★★★6.1【基础题】在右边的直角坐标系中描出下列各组点:并将各组内的点用线段依次连接起来:并观察这几组点所连的线段合在一起像什么? ★第一组:(0:0)(6:0)(6:7)(0:7)(0:0) 第二组:(1:4)(2:6) 第三组:(4:6)(5:5) 第四组:(2:0)(2:3)(4:3)(4:0) 7、【综合题】如左上图:若点E 的坐标为(-2:1):点F 的坐标为(1:-1):则点G 的坐标为______. ★ 8、【基础题】如右图:对于边长为4的正△ABC :建立适当的直角坐标系:写出各个顶点的坐标. ★ 9、【基础题】在平面直角坐标系中:下面的点在第一象限的是( ) ★ A. (1:2) B. (-2:3) C. (0:0) D. (-3:-2) 【综合题】若023=++-b a :则点M (a :b )在( ) ★ A.第一象限 B.第二象限 C.第三象限 D.第四象限10、【基础题】在平面直角坐标系中:点P (1:2-m )在第四象限:则m 的取值范围是_________. ★10.1【基础题】点),(b a P 是第三象限的点:则( ) ★(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <011、【基础题】点P 在第二象限:若该点到x 轴的距离为3:到y 轴的距离为1:则点P 的坐标是______. ★★★11.1【基础题】已知点)68(,-Q :它到x 轴的距离是____:它到y 轴的距离是____:它到原点的距离是_____. ★ 12、【提高题】在平面直角坐标系中:点A 的坐标为(-3:4):点B 的坐标是(-1:-2):点O 为坐标原点:求△AOB 的面积. ☆第3节 轴对称与坐标变化13、【基础题】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是_______:关于x 轴的对称点的坐标是_______:关于原点的对称点的坐标是_______:点M 到原点的距离是_______. ★★★13.1【综合题】如右图:在直角坐标系中:△AOB 的顶点O 和B 的坐标分别是O (0:0):B (6:0):且∠OAB =90°:AO =AB :则顶点A 关于x 轴的对称点的坐标是 ( ) ★(A )(3:3) (B )(-3:3)(C )(3:-3) (D )(-3:-3)O AB y14、【综合题】△ABC 在平面直角坐标系中的位置如图所示. ★★★ (1)作出△ABC 关于x 轴对称的△A 1B 1C 1:并写出点A 1的坐标: (2)作出将△ABC 绕点O 顺时针旋转180°后的△A 2B 2C 2: (3)求S △ABC .15、【提高题】 在如图所示的直角坐标系中:四边形ABCD 的各个顶点的坐标分别是A (0:0):B (2:5):C (9:8):D (12:0):求出这个四边形的面积. ★本章复习题一、选择题1、一只七星瓢虫自点(-2:4)先水平向右爬行3个单位:然后又竖直向下爬行2个单位:则此时这只七星瓢虫的位置是 ( ) (A )(-5:2) (B )(1:4) (C )(2:1) (D )(1:2)2、若点P 的坐标为)0,(a :且a <0:则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴 3、若点P ),(b a 在第四象限:则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、点M (-2:5)关于x 轴的对称点是N :则线段MN 的长是 ( ) (A )10 (B )4 (C )5 (D )25、如右图:把矩形OABC 放在直角坐标系中:OC 在x 轴上:OA 在y 轴上:且OC=2:OA=4:把矩形OABC 绕着原点顺时针旋转90°得到矩形OA ′B ′C ′:则点B ′的坐标为( ) A 、(2:3) B 、(-2:4) C 、(4:2) D 、(2:-4)二、填空题6、如右下图:Rt △AOB 的斜边长为4:一直角边OB 长为3:则点A 的坐标是_____:点B 的坐标是_____.DCBAyx123459678101112108769543217、如右图:∠OMA =90°:∠AOM =30°:AM =20米:OM =203米:站在O 点观察点A :则点A 的位置可描述为:在北偏东_____度的方向上:距离点O_____米.8、点A )2,(a 和点B ),3(b 关于x 轴对称:则ab =_____.9、将点P (2:1)绕原点O 按顺时针方向旋转90°到点Q :则点Q 的坐标是_____. 10、(2012山东泰安)如左下图:在平面直角坐标系中:有若干个横坐标分别为整数的点:其顺序按图中“→”方向排列:如(1:0):(2:0):(2:1):(1:1):(1:2):(2:2)…根据这个规律:第2012个点的横坐标为 .三、解答题11、 如图:每个小方格都是边长为1的正方形:在平面直角坐标系中.(1)写出图中从原点O 出发:按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标: (2)按图中所示规律:标出下一个点F 的位置. 12、(1)在左下的直角坐标系中作△ABC :使点A 、B 、C 的坐标分别为(0:0):(-1:2):(-3:-1): (2)作出△ABC 关于x 轴和y 轴的对称图形.13、在右上的平面直角坐标系中作点A (4:6):B (0:2):C (6:0):并求△ABC 的周长和面积.AOM北A B C DO E x y 11题八(上) 第三章位置与坐标 分节练习答案第1节确定位置 答案 1、【答案】 选B 2、【答案】 图书馆的位置表示为(2:9):图中(10:5)表示旗杆的位置. 3、【答案】 选D 4、【答案】 南偏西○30方向:距小明家1000 m 处.第2节平面直角坐标系 答案 5、【答案】 A (-2:0): B (0:-3): C (3:-3): D (4:0): E (3:3): F (0:3). 6、【答案】略. 6.1【答案】 囧 (注意:右眉毛短一点) 7、【答案】 (1:2) 8、【答案】 略 9、【答案】 选A 9.1【答案】 选 D10、【答案】 2<m 10.1【答案】 选C 11、【答案】 (-1:3) 11.1【答案】 6:8:10. 12、【答案】 △AOB 的面积是5.第3节 轴对称与坐标变化 答案 13、【答案】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是(3:4):关于x 轴的对称点的坐标是 (-3:-4):关于原点的对称点的坐标是(3:-4)::点M 到原点的距离是5. 13.1【答案】 选C 14、【答案】(1)A 1的坐标是(-2:-3)(2)关于原点对称的点的横、纵坐标都互为相反数. (3)S △ABC 15、【答案】本章复习题 答案 一、选择题 答案 1、【答案】 选D 2、【答案】 选B 3、【答案】 选A 4、【答案】 选A 5、【答案】 选 C 二、填空题 答案6、【答案】 )7,0( (3:0)7、 【答案】 60 408、【答案】 -69、【答案】 (1:-2) 10、【答案】 45 三、解答题11、【答案】 (1)A(1:0):B(1:2):C(-2:2):D(-2: -2):E(3:-2):(2)F (3:4).12、【答案】 略13、【答案】 周长是24104+:面积是16.。

八年级数学北师大版上册课时练第1章《一定是直角三角形吗》 练习测试卷 含答案解析(1)

八年级数学北师大版上册课时练第1章《一定是直角三角形吗》 练习测试卷 含答案解析(1)

课时练第1单元一定是直角三角形吗一.选择题1.下列各组数中能作为直角三角形三边长的是()A .1,2,2B .3,4,5C .4,5,6D .13,14,152.一个三角形的三边长分别是cm cm cm 25,20,15,则这个三角形的面积是()A 2502cm B1502cm C2002cm D 不能确定3.由下列线段组成的三角形中,不是直角三角形的是()A .a=7,b=25,c=24B .a=2.5,b=2,c=1.5C .a=45,b=1,c=32D .a=15,b=20,c=254.在△ABC 中,若AC 2﹣BC 2=AB 2,则()A .∠A =90°B .∠B =90°C .∠C =90°D .不能确定5.下列各组数据不是勾股数的是()A .2,3,4B .3,4,5C .5,12,13D .6,8,106.满足下列条件的△ABC ,不是直角三角形的是()A .b 2=c 2-a 2B .a ∶b ∶c=3∶4∶5C .∠C=∠A -∠BD .∠A ∶∠B ∶∠C=12∶13∶157.下列各组线段中,能构成直角三角形的是()A .2,3,4B .3,4,6C .4,6,7D .5,12,138.如果△ABC 的三边分别为m 2-1,2m ,m 2+1(m >1)那么()A .△ABC 是直角三角形,且斜边长为m 2+1B .△ABC 是直角三角形,且斜边长2为mC .△ABC 是直角三角形,但斜边长需由m 的大小确定D .△ABC 不是直角三角形9.分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17;(4)4、5、6,其中能构成直角三角形的有()A .四组B .三组C .二组D .一组10.已知一轮船以18n mile/h 的速度从港口A 出发向西南方向航行,另一轮船以24n mile/h 的速度同时从港口A 出发向东南方向航行,离开港口1.5h 后,两轮船相距()A .30n mileB .35n mileC .40n mileD .45n mile二.填空题11.请写出一组勾股数(三个数都要大于10).12.在⊿ABC 中,若5,7,252222==-=+c b a b a ,则最大边上的高为.13.在如图所示的方格中,连接格点AB 、AC ,则∠1+∠2=度.14.小白兔每跳一次为1米,先沿直线跳12次后左拐,再沿直线向前跳5次后左拐,最后沿直线向前跳13次正好回到原来的地方,则小白兔第一次左拐的角度是.15.已知一个三角形的三边分别为3k ,4k ,5k (k 为自然数),则这个三角形为,理由是.16.以ABC D 的三条边向外作正方形,16.依次得到的面积为25,144,169,则这个三角形是________三角形.17.在△ABC 中,AB =15,AC =20,D 是BC 边所在直线上的点,AD =12,BD =9,则BC =.18.观察下列各组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26……请根据你发现的规律写出第⑦组勾股数:.三.解答题19.判断满足下列条件的三角形是否是直角三角形.(1)在△ABC 中,∠A =20°,∠B =70°;(2)在△ABC 中,AC =7,AB =24,BC =25;(3)△ABC 的三边长a 、b 、c 满足(a +b)(a -b)=c 2.20.一个零件的形状如图1所示,按规定这个零件中DBC A ÐÐ,都应是直角。

八年级上册数学人教版课时练《2 画轴对称图形》 试题试卷 含答案解析

八年级上册数学人教版课时练《2 画轴对称图形》 试题试卷 含答案解析

人教版数学八年级上册《13.2画轴对称图形》课时练习一、选择题1.下列说法正确的是()A.任何一个图形都有对称轴;B.两个全等三角形一定关于某直线对称;C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′C′;D.点A,点B在直线1两旁,且AB与直线1交于点O,若AO=BO,则点A与点B 关于直线l对称.2.已知两条互不平行的线段AB和A′B′关于直线1对称,AB和A′B′所在的直线交于点P,下面四个结论:①AB=A′B′;②点P在直线1上;③若A、A′是对应点,则直线1垂直平分线段AA′;④若B、B′是对应点,则PB=PB′.其中正确的是()A.①③④B.③④C.①②D.①②③④3.已知点A(3x﹣6,4y+15),点B(5y,x)关于x轴对称,则x+y值是()A.0B.9C.﹣6D.﹣124.点(6,3)关于直线x=2的对称点为()A.(﹣6,3)B.(6,﹣3)C.(﹣2,3)D.(﹣3,﹣3)5.在平面直角坐标系中,已知点P(a,5)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是()A.(-a,5)B.(a,-5)C.(-a+2,5)D.(-a+4,5)6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点7.在平面直角坐标系内,已知在y轴与直线x=3之间有一点M(a,3),如果该点关于直线x=3的对称点N的坐标为(5,3),那么a的值为()A.4B.3C.2D.18.若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知两点的坐标分别是(﹣2,3)和(2,3),则下列情况正确的有()①两点关于x轴对称②两点关于y轴对称③两点之间距离为4.A.3个B.2个C.1个D.0个10.两个完全相同的三角形纸片,在平面直角坐标系中的摆放位置如图,点P与点P′是一对对应点,若点P的坐标为(a,b),则点P′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(3﹣a,﹣b)D.(b+3,a)二、填空题11.点(0,-10)关于x轴的对称点的坐标是,关于y轴的对称点的坐标是.12.点(-3,4)向右平移5个单位长度后再关于x轴对称的点的坐标是.13.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.14.在平面直角坐标系中,已知直线l:y=x,作A1(1,0)关于y=x的对称点B1,将点B1向右水平平移2个单位得到点A2;再作A2关于y=x的对称点B2,将点B2向右水平平移2个单位得到点A3;……,按此规律,则点B2027的坐标是.三、作图题15.把图中的某两个小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.16.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.四、解答题17.(1)若点(5﹣a,a﹣3)在第一、三象限角平分线上,求a的值;(2)已知两点A(﹣3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围;(3)点P到x轴和y轴的距离分别是3和4,求点P的坐标;(4)已知点A(x,4﹣y)与点B(1﹣y,2x)关于y轴对称,求y x的值.18.认真观察图(1)的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:______________________________________________;特征2:______________________________________________.(2)请在图(2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.参考答案1.C2.D3.C4.C5.D6.B7.D8.D9.B10.C 11.(0,10),(0,-10)12.(2,-4)13.2514.(2026,2027).15.如图所示:16.解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.12.∴S四边形BB1C1C=17.解:(1)∵点(5﹣a,a﹣3)在第一、三象限角平分线上,∴5﹣a=a﹣3,解得:a=4;(2)∵两点A(﹣3,m),B(n,4),AB∥x轴,∴m=4,n≠3的任意实数;(3)∵点P到x轴和y轴的距离分别是3和4,∴P点可能在一、二、三、四象限,∴点P的坐标为:(4,3),(﹣4,3),(﹣4,﹣3),(4,﹣3);(4)∵点A(x,4﹣y)与点B(1﹣y,2x)关于y轴对称,∴,解得:,18.解:(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积;(2)满足条件的图形有很多,只要画正确一个,都可以得满分.。

北师大版八年级数学上册第六章第1节《平均数》课时练习题(含答案)

北师大版八年级数学上册第六章第1节《平均数》课时练习题(含答案)

北师大版八年级数学上册第六章第1节《平均数》课时练习题(含答案)一、单选题1.数据10,3,a ,7,5的平均数是6,则a 等于( ). A .3B .4C .5D .62.如果1x 与2x 的平均数是5,那11x -与25x +的平均数是( ) A .4B .5C .6D .73.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是( ) A .4B .5C .6D .74.为了满足顾客的需求,某商场将5kg 奶糖,3kg 酥心糖和2kg 水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克( ) A .25元B .28.5元C .29元D .34.5元5.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行综合考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的各项分数依次为90、88、85分,那么小王的最后综合得分是( ) A .87B .87.5C .87.6D .886.小刘利用空闲时间到外地某建筑公司打工,公司承诺:正常上班的工资为200元/天,不能正常上班(如下雨)的工资为80元/天,如果某月(30天)正常上班的天数占80%,则当月小刘的日平均工资为( ) A .140元B .160元C .176元D .182元7.六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是( ) A .平均数是14B .中位数是14.5C .方差3D .众数是148.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y >z >xB .x >z >yC .y >x >zD .z >y >x二、填空题9.如果一组数据中有3个6、4个1-,2个2-、1个0和3个x ,其平均数为x ,那么x =______. 10.已知一组数据10、3、a 、5的平均数为5,那么a 为_____.11.某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分. 12.若已知数据1x ,2x ,3x 的平均数为a ,那么数据121x +,221x +,321x +的平均数为______(用含a 的代数式表示).13.已知数据1x ,2x ,3x ,4x 的平均数为10,则数据11x +,22x +,33x +,44x +的平均数是______.14.每年的4月23日是“世界读书日”,某校为了解4月份八年级学生的读书情况,随机调查了八年级50名学生读书的册数,数据整理如下:由此估计该校八年级学生4月份人均读书______册.三、解答题15.某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取.他们的各项成绩(单项满分100分)如表所示:(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?16.中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分,为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下: 抽取的200名学生成绩统计表 组别 海选成绩 人数 A 组 5060x ≤<10 B 组 6070x ≤< 30 C 组 7080x ≤< 40 D 组 8090x ≤<aE 组 90100x ≤≤ 70请根据所给信息解答下列问题:(1)填空:①=a ____________,②b =____________,③θ=____________度;(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A 组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?17.学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如表.请解答下列问题:演讲总评成绩各部分所占比例的统计图:三位同学的成绩统计表:内容表达风度印象总评成绩小明8 7 8 8 m小亮7 8 8 9 7.85小田7 9 7 7 7.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整?18.某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级500名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图:测试成绩/分测试项目甲乙丙笔试92 90 95面试85 92 88其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示,请你根据以上信息解答下列问题:(1)请计算每名候选人的得票数;(2)若每名候选人得一票记0.5分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?19.某学校对九年级共500名男生进行体能测试.从中任意选取40名的测试成绩进行分析,分为甲,乙两组,绘制出如下的统计表和统计图(成绩均为整数,满分为10分).甲组成绩统计表成绩7 8 9 10人数 1 9 5 5请根据上面的信息,解答下列问题:(1)m ______:(2)从平均分角度看,评价甲,乙两个小组的成绩;(3)估计该校男生在这次体能测试中拿满分的人数.20.从甲、乙两个企业随机抽取部分职工,对某个月月收入情况进行调查,并把调查结果分别制成扇形统计图和条形统计图.(1)在扇形统计图中,“6千元”所在的扇形的圆心角是;(2)在乙企业抽取的部分职工中,随机选择一名职工,求该职工月收入超过5千元的概率;(3)若要比较甲、乙两家企业抽取的职工的平均工资,小明提出自己的看法:虽然不知道甲企业抽取职工的人数,但是可以根据加权平均数计算甲企业抽取的职工的平均工资,因此可以比较;小明的说法正确吗?若正确,请比较甲企业抽取的职工的平均工资与乙企业抽取的职工的平均工资的多少;若不正确,请说明理由。

八年级数学上册分式的基本性质课时练习(含解析)

八年级数学上册分式的基本性质课时练习(含解析)

分式的基本性质一、选择题1、下列说法正确的是( )A.2y x 与23x y x+的最简公分母是5x 2B. 313a b 与316ab 的最简公分母是3ab C. 313a b 与316ab的最简公分母是3a 3b 3 D. 2y x 与23x y x +的最简公分母是6x 2【答案】D【解析】试题分析:根据最简公分母的定义求出结果.解:A 选项:2y x 与23x y x+的最简公分母是6x 2,故A 选项错误;B 选项:313a b 与316ab的最简公分母是6a 3b 3,故B 选项错误;C 选项:313a b 与316ab的最简公分母是6a 3b 3,故C 选项错误;D 选项:2y x 与23x y x +的最简公分母是6x 2,故D 选项正确.故应选D.考点:最简公分母2、下列分式是最简分式的( )A.223a a b B.23a a a - C.22a b a b ++ D. 222a ab a b --【答案】C【解析】试题分析:根据最简分式的定义进行判断.解:A 选项:223a a b 的分子、分母中有公因式a ,故A 选项不符合题意;B 选项:23a a a-的分子、分母中有公因式a ,故B 选项不符合题意;C 选项:22a b a b++的分子、分母没有公因式,所以是最简分式,故C 选项符合题意;D 选项:222a ab a b--的分子、分母中有公因式a-b ,故D 选项不符合题意.故应选C.考点:最简分式3、分式221x y -与1x y+的最简公分母为( )A. x-yB. x+yC. x 2-y 2D. (x 2-y 2)(x+y)【答案】C【解析】试题分析:先对可以分解因式的分母分解因式,再根据求最简公分母的方法求解即可.解:∵()()22x y x y x y -=+-∴分式221x y -与1x y+的最简公分母为x 2-y 2故应选C.考点:最简公分母4、如果把分式3x y x y+中的x 和y 都扩大为2倍,则分式的值( )A. 扩大为4倍 B. 扩大为8倍 C. 不变 D. 缩小为2倍【答案】B【解析】试题分析:根据分式的基本性质对分式进行变形,根据变形结果进行判断.解:如果x 和y 都扩大为2倍,则有()()()()333322821682222x y x y x y x y x y x y x y x y ⋅⋅===++++,所以分式的值扩大为原来的8倍.故应选B.考点:分式的基本性质5、已知2334b a b =-,则a b=( )A. 6 B. 119 C. 215 D. 27-【答案】B【解析】试题分析:根据比例的性质,可得8b=9a﹣3b,根据等式的性质,可得答案.解:由比例的性质,得8b=9a﹣3b.由等式的性质,得11b=9a ,119a b =故应选:B .考点:分式的基本性质.6、不改变分式的值,将分式20.020.23x x a b-+中各项系数均化为整数,结果为 ( )A. 2223x x a b -+ B.25010150x x a b -+ C. 2502103x x a b -+ D. 2210150x x a b-+【答案】B【解析】试题分析:利用分式的基本性质把分式的分子、分母都乘以100即可得到结果.解:()()2220.021000.02500.230.2310010150x x x x x x a b a b a b-⨯--==++⨯+,故应应选B.考点:分式的基本性质7、不改变分式的值,将下列各分式中的分子、分母的系数化为整数,其结果不正确的为( )A. 113223113223a b a b a ba b ++=-- B. 1.30.813820.7207x y x y x y x y --=-- C. 134624172748x y x y x yx y --=++ D. 135320.55x y x y x x --=【答案】D【解析】试题分析:根据分式的基本性质进行变形得到结果,根据得到的结果判断正误.解:A 选项,分子、分母同乘以6,正确;B 选项,分子、分母同乘以10,正确;C 选项,分子、分母同乘以8,正确;D 选项,分子、分母同乘以2,即得13620.5x y x y x x--=,错误.故应选D.考点:分式的基本性质8、根据分式的基本性质,分式a a b--可变形为( )A. a a b -- B. a a b + C. a a b -- D. a a b -+ 【答案】C【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:.故应选C.考点:分式的基本性质二、填空题9、分式312x ;()216x x y -的最简公分母是_ .【答案】6x 3(x-y)【解析】试题分析:根据确定最简公分母的方法求出结果.解:分式312x ;()216x x y -的最简公分母是6x 3(x-y)考点:最简公分母10、不改变分式的值,使分式的分子与分母都不含负号.(1)5x y-=-_____________;(2)2a b--=-_____________.【答案】(1) 5x y ;(2) 2a b-【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:(1)55x x y y-=-;(2) 22a a b b--=--.故答案是(1) 5x y ;(2) 2a b-.考点:分式的基本性质11、把分式32223a b a b -+的分子、分母中的各项系数都化为整数,且保持分式的值不变,则结果为_________________.【答案】12946a ba b-+【解析】试题分析:根据分式的基本性质把分子、分母同时乘以6,可得结果.解:33262129222246633a b a b a b a b a b a b ⎛⎫-⨯- ⎪-⎝⎭==+⎛⎫++⨯ ⎪⎝⎭.故答案是12946a b a b-+.考点:分式的基本性质. 12、若23b a =,则a b a b -=+ .【答案】15【解析】试题分析:根据23b a =,可设a=3k ,b=2k ,然后再利用代入法求出分式的值.解:因为23b a =,设a=3k ,b=2k ,3213255a b k k k a b k k k --===++.故答案是15.考点:分式的基本性质三、解答题13、化简:2223712a a a a ---+.【答案】14a a +-【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:2223712a a a a ---+()()()()3134a a a a -+=--14a a +=-.考点:约分14、约分:22211m m m-+-.【答案】11mm -+【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:22211m m m -+-()()()2111m m m -=-+11m m -=+.考点:约分15、先化简,再求值.(1)22969m m m -++,其中m=5.【答案】14【解析】试题分析:首先根据分式的基本性质把分式化简,然后再把字母的值代入化简后的分式中求值.解:22969m m m -++()()()2333m m m +-=+33m m -=+,当m=5时,原式33m m -=+5353-=+14=考点:分式的化简求值.。

八年级数学北师大版上册课时练第1章《一定是直角三角形吗》 练习测试卷 含答案解析

八年级数学北师大版上册课时练第1章《一定是直角三角形吗》 练习测试卷 含答案解析

课时练第1单元一定是直角三角形吗一.选择题1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或252.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3B.7,24,25C.6,8,10D.9,12,15 3.下列四组数据,不是勾股数的是()A.3,4,5B.5,6,7C.6,8,10D.9,40,41 4.在△ABC中,∠A,∠C的对边分别记为a,b,c,下列条件中,能判定△ABC是直角三角形的是()A.a2=(c﹣b)(c+b)B.a=1,b=2,c=3C.∠A=∠C D.∠A:∠B:∠C=3:4:55.如图所示的网格是正方形网格,A,B,C,D是网格线交点,则∠BAC与∠DAC的大小关系为()A.∠BAC>∠DAC B.∠BAC<∠DAC C.∠BAC=∠DAC D.无法确定6.在△ABC中,∠A,∠B,∠C的对应边长分别为a,b,c,若a,b,c满足b2=a2+c2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.无法确定7.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果a2=b2﹣c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形D.如果∠A﹣∠B=∠C,那么△ABC是直角三角形二.填空题8.已知三角形三边长分别是6,8,10,则此三角形的面积为.9.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.10.如图,每个小正方形的边长为1,则∠ABC的度数为°.11.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组:.12.如图所示的网格是正方形网格,A,B,C是网格线交点,则∠ABC+∠BAC=°.13.如图,△ABC是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别在AB,BC边上匀速移动,它们的速度分别为2cm/s和1cm/s,当点P到达点B时,P,Q 两点停止运动,设点P的运动时间为ts,则当t=s时,△PBQ为直角三角形.三.解答题14.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.15.已知三条线段的长分别为a,a+1,a+2.(1)当a=3时,证明这三条线段可以组成一个直角三角形.(2)若这三条线段可以组成一个三角形,求a的取值范围.16.观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c 根据你发现的规律,请写出(1)当a=19时,求b、c的值;(2)当a=2n+1(n为正整数)时,求b、c的值;(3)用(2)的结论判断15,111,112是否为一组勾股数,并说明理由.17.如图,已知AC⊥BC,CA=BD=CB=2,.(1)求AB的长;(2)求△ABD的面积.18.如图,在△ABC中,点D是BC边的中点,DE⊥BC交AB于点E,且BE2﹣EA2=AC2.(1)求证:∠A=90°;(2)若AC=6,BD=5,求AE的长度.19.如图,已知点C是线段BD上一点,∠B=∠D=90°,若AB=4,BC=3,CD=8,DE=6,AE2=125.(1)求AC、CE的长;(2)求证:∠ACE=90°.20.如图,在4×4的正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°;(3)若点P为直线AC上任意一点,则线段BP的最小值为.21.如图,在△ACD中,AD=17,AC=15,DC=8,点B是CD延长线上一点,连接AB,若AB=25.求:△ABD的面积.22.如图,AD是△ABC的中线,DE⊥AC于点E,DF是△ABD的中线,且CE=2,DE=4,AE=8.(1)求证:∠ADC=90°;(2)求DF的长.参考答案一.选择题1.D2.A3.B4.A5.C6.B7.A二.填空题8.249.12010.4511.(13,84,85)12.4513.或.三.解答题14.解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.15.(1)证明:当a=3时,a+1=4,a+2=5,∵32+42=52,∴这三条线段可以组成一个直角三角形.(2)解:根据三角形的三边关系,得a+a+1>a+2,解得a>1.故a的取值范围是a>1.16.解:(1)观察得给出的勾股数中,斜边与较大直角边的差是1,即c﹣b=1∵a=19,a2+b2=c2,∴192+b2=(b+1)2,∴b=180,∴c=181;(2)通过观察知c﹣b=1,∵(2n+1)2+b2=c2,∴c2﹣b2=(2n+1)2,(b+c)(c﹣b)=(2n+1)2,∴b+c=(2n+1)2,又c=b+1,∴2b+1=(2n+1)2,∴b=2n2+2n,c=2n2+2n+1;(3)由(2)知,2n+1,2n2+2n,2n2+2n+1为一组勾股数,当n=7时,2n+1=15,112﹣111=1,但2n2+2n=112≠111,∴15,111,112不是一组勾股数.17.解:(1)∵AC⊥BC,∴∠C=90°,∵AC=BC=2,∴AB===2,∴AB的长为2;(2)∵AB2+BD2=(2)2+22=12,AD2=(2)2=12,∴AB2+BD2=AD2,∴△ABD是直角三角形,∴∠ABD=90°,∴△ABD的面积=AB•BD=×2×2=2,∴△ABD的面积为2.18.(1)证明:连结CE,∵D是BC的中点,DE⊥BC,∴CE=BE,∵BE2﹣EA2=AC2,∴CE2﹣EA2=AC2,∴EA2+AC2=CE2,∴△ACE是直角三角形,即∠A=90°;(2)解∵D是BC的中点,BD=5,∴BC=2BD=10,∵∠A=90°,AC=6,∴AB===8,在Rt△AEC中,EA2+AC2=CE2,∵CE=BE,∴62+AE2=(8﹣AE)2,解得:AE=,∴AE的长为.19.(1)解:∵∠B=90°,AB=4,BC=3,∴AC===5,∵∠D=90°,CD=8,DE=6,∴CE===10;(2)证明:∵AC=5,CE=10,AE2=125,∴AE2=AC2+CE2,∴∠ACE=90°.20.解:(1)AB=,BC=,AC=,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.(3)过B作BP⊥AC,∵△ABC的面积=,即,解得BP=2,故答案为:221.解:∵AD=17,AC=15,DC=8,∴AC2+CD2=AD2,∴∠C=90°,∵AB=25,AC=15,∴由勾股定理得:BC==20,∴BD=BC﹣DC=20﹣8=12,∴△ABD的面积是==90.22.证明:(1)∵DE⊥AC于点E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)∵AD是△ABC的中线,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵点F是边AB的中点,∴DF=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第1课时练习题及答案
一.选择题(共8小题)
1.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()
A.180°
B.220°
C.240°
D.300°
2.下列说法正确的是()
A.等腰三角形的两条高相等C.有一个角是60°的锐角三角形是
等边三角形
B.等腰三角形一定是锐角三角形D.三角形三条角平分线的交点
到三边的距离相等
3.在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若
∠A=∠B=∠C,则△ABC为等边三角形;③有两个角都是60°的三角
形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述
结论中正确的有()
A.1个
B.2个
C.3个
D.4个
4.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B
点恰好落在AB的中点E处,则∠A等于()
A.25°
B.30°
C.45°
D.60°
5.如图,已知D、E、F分别是等边△ABC的边AB、BC、AC上的点,
且DE⊥BC、EF⊥AC、FD⊥AB,则下列结论不成立的是()
A.△DEF是等边三角形
B.△ADF≌△BED≌△CFE
C.DE=AB
D.S△ABC=3S△DEF
6.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()
A.30°
B.45°
C.120°
D.15°
7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()
第1题第4题第5题第7题
8.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()
A.直角三角形
B.钝角三角形
C.等腰三角形
D.等边三角形
二.填空题(共10小题)
9.已知等腰△ABC中,AB=AC,∠B=60°,则∠A=_________度.
10.△ABC中,∠A=∠B=60°,且AB=10cm,则BC=_________cm.
11.在△ABC中,∠A=∠B=∠C,则△ABC是_________三角形.
12.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是_________.
13.如图,M、N是△ABC的边BC上的两点,且BM=MN=NC=AM=AN.则∠BAN=_________.
第13题第14题第15题
14.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则∠AOC等于_________.
15.如图,将边长为6cm的等边三角形△ABC沿BC方向向右平移后得△DEF,DE、AC相交于点G,若线段CF=4cm,则△GEC的周长是_________cm.
16.如图,在等边△ABC中,D、E分别是AB、AC上的点,且
AD=CE,则∠BCD+∠CBE=_________度.
第16题第17题第18题
17.三个等边三角形的位置如图所示,若∠3=50°,则
∠1+∠2=_______°.
18.如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是_________.
①BE=CD;②∠BOD=60°;③∠BDO=∠CEO.
三.解答题(共5小题)
19.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠BFD的度数.
20.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.
21.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,
顺次连接D,E,F,得到△DEF为等边三角形.求证:
(1)△AEF≌△CDE;
(2)△ABC为等边三角形.
22.已知:如图,在△ABC中,AB=BC,∠ABC=120°,BE⊥AC于
点D,且DE=DB,试判断△CEB的形状,并说明理由.
23.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).
答案
一、CDDBDCCD
二、9、60;10、10;11、等边;12、等边三角形;13、90度;14、60度;15、6;
16、60;17、130;18、①②
三、19、(1)证明:∵△ABC为等边三角形,
∴∠BAC=∠C=60°,AB=CA,即∠BAE=∠C=60°,
在△ABE和△CAD中,,
∴△ABE≌△CAD(SAS).
(2)解:∵∠BFD=∠ABE+∠BAD,
又∵△ABE≌△CAD,
∴∠ABE=∠CAD.
∴∠BFD=∠CAD+∠BAD=∠BAC=60°.
20、解答:解:△BDC≌△AEC.理由如下:
∵△ABC、△EDC均为等边三角形,
∴BC=AC,DC=EC,∠BCA=∠ECD=60°.
从而∠BCD=∠ACE.
在△BDC和△AEC中,,
∴△BDC≌△AEC(SAS).
21、解答:证明:(1)∵BF=AC,AB=AE(已知)
∴FA=EC(等量加等量和相等).(1分)
∵△DEF是等边三角形(已知),
∴EF=DE(等边三角形的性质).(2分)
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).(4分)
(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),△DEF是等边三角形(已知),
∴∠DEF=60°(等边三角形的性质),
∴∠BCA=60°(等量代换),
由△AEF≌△CDE,得∠EFA=∠DEC,
∵∠DEC+∠FEC=60°,
∴∠EFA+∠FEC=60°,
又∠BAC是△AEF的外角,
∴∠BAC=∠EFA+∠FEC=60°,
∴△ABC中,AB=BC(等角对等边).(6分)
∴△ABC是等边三角形(等边三角形的判定).(7分) 22、解答:解:△CEB是等边三角形.(1分)
证明:∵AB=BC,∠ABC=120°,BE⊥AC,
∴∠CBE=∠ABE=60°.(3分)
又DE=DB,BE⊥AC,
∴CB=CE.(5分)
∴△CEB是等边三角形.(7分)
23、(1)证明:∵△ACM,△CBN是等边三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
∴∠ACM+∠MCN=∠NCB+∠MCN,
即:∠ACN=∠MCB,。

相关文档
最新文档