Wnt信号通路

合集下载

wnt信号通路检测指标

wnt信号通路检测指标

wnt信号通路检测指标(实用版)目录1.WNT 信号通路的概述2.WNT 信号通路的作用3.WNT 信号通路的检测指标4.WNT 信号通路检测指标的应用5.总结正文【1.WNT 信号通路的概述】WNT 信号通路是一种重要的细胞信号传导通路,参与了多种生物学过程,包括细胞增殖、分化和迁移等。

WNT 信号通路由一系列蛋白质组成,包括 WNT 蛋白、Frizzled 受体、Dishevelled 蛋白等。

WNT 信号通路的激活通常由配体 WNT 蛋白与 Frizzled 受体结合而触发,从而引发一系列信号转导事件,最终影响细胞功能。

【2.WNT 信号通路的作用】WNT 信号通路在多种生理和病理过程中发挥着重要的作用。

WNT 信号通路的激活可以促进细胞增殖和生存,因此在肿瘤发生中起到了重要的作用。

WNT 信号通路的异常激活也与多种神经系统疾病、骨骼疾病、心血管疾病等相关。

因此,研究 WNT 信号通路的作用和调控机制,对于理解相关疾病的发生机制和开发新的治疗方法具有重要意义。

【3.WNT 信号通路的检测指标】检测 WNT 信号通路的活性对于研究 WNT 信号通路的作用和调控机制具有重要意义。

常用的 WNT 信号通路检测指标包括以下几个方面:(1) WNT 蛋白的水平:WNT 蛋白是 WNT 信号通路的重要组成部分,其水平的变化可以直接影响 WNT 信号通路的活性。

(2) Frizzled 受体的表达和激活:Frizzled 受体是 WNT 信号通路的重要受体,其表达和激活情况可以直接反映 WNT 信号通路的活性。

(3) Dishevelled 蛋白的磷酸化:Dishevelled 蛋白是 WNT 信号通路的重要效应器,其磷酸化情况可以直接反映 WNT 信号通路的活性。

(4) β-连环蛋白的活性:β-连环蛋白是 WNT 信号通路下游的重要信号分子,其活性可以直接反映 WNT 信号通路的活性。

【4.WNT 信号通路检测指标的应用】WNT 信号通路检测指标的应用主要体现在以下几个方面:(1) 肿瘤诊断和预后:WNT 信号通路的激活与肿瘤的发生和发展密切相关,因此检测 WNT 信号通路的活性可以作为肿瘤诊断和预后的指标。

WNT通路

WNT通路

靶基因
目前已经研究鉴定出多种Wnt途径的靶基因,它 们在细胞增殖、分化以及肿瘤形成中起重要作用。 主要包括:细胞周期和凋亡相关基因c-myc和 cyclinD1,生长因子如VEGF(vascular endothelial growth factor),胃泌素(gastrin)、HGF(hepatocyte growth factor)、c-met等。参与肿瘤进展的基因 MMP7(trilysin)、MMP26、CD44和Nr-CAM,转录 因子ITF-2(immunoglobulin transcription factor-2)和 Id2,其他靶基因如COX-2等.由于这些因子在细胞增 殖、分化以及肿瘤发生发展中分别体现不同的特点, 因此Wnt信号传递是一种由多因子组成、涉及多个 环节、多种调控的复杂过程。
TCF是Wnt途径下游组分,属于DNA结合 蛋白,包括1个HMG盒子(highmobility group) 和β-catenin作用域。HMG盒子具有与DNA结合 的活性,通过与其它因子发生作用,而激活 转录活性。有趣的是,TCF转录因子家族的 不同成员具有不同的特性。尽管它们都可结 合DNA,但在大部分情况下并不能激活转录, 只有与β-catenin发生作用后,才可激活转录 过程。有报道在结直肠癌中,检测出Tcf-4突 变,且同时存在APC或β-catenin的突变,推测 Tcf-4突变可能是附加突变。
1996年,Wnt途径的主要成员被相继确定和克隆。 研究发现,这一信号途径主要包括三个环节,即由 Wnt配体与胞膜受体的特异性结合,引发胞内一系 列级联反应,进而调节核内的基因表达。传统的信 号途径系统观点认为,信号是从细胞表面到细胞核 的线性传递。Wnt信号途径的起点为胞膜,由分泌 性信号蛋白Wnt,通过跨膜的受体蛋白,经由多种 细胞内蛋白将信号传至细胞核内。这点上看,它是 一种与传统观点相一致的信号途径系统。然而许多 研究发现,Wnt途径和其他细胞功能、信号传递过 程相互交叉,不是直线型的结构,而是一个网络调 节模式,具有几个关键调控点。

wnt信号通路检测指标 -回复

wnt信号通路检测指标 -回复

wnt信号通路检测指标-回复信号通路(signaling pathway)是细胞内一系列互相作用的分子组成的网络,可调控细胞的生理活动和功能。

这些信号通路在维持细胞内平衡、响应外界环境变化和调控细胞生长、分化和凋亡等重要生物学过程中起到关键作用。

信号通路的正确调控对于细胞的正常功能至关重要,而信号通路的失调常与疾病的发生和发展密切相关。

因此,了解和研究信号通路的检测指标对于揭示疾病机理、发现新的治疗靶点以及开发相关药物具有重要意义。

一、信号通路检测指标的概念和分类信号通路检测指标是指利用多种技术手段对信号通路中的关键分子、互作蛋白、代谢产物等进行定量或定性检测的指标。

根据检测目的和方法的不同,信号通路检测指标可分为下述几类。

1. 蛋白质表达水平检测指标:包括Western blot、免疫组化染色(immunohistochemistry)、荧光定量PCR(qPCR)等,在蛋白质水平上检测基因或蛋白质表达的定量或定性变化。

2. 蛋白质磷酸化水平检测指标:磷酸化是信号通路传递中的重要机制,磷酸化的蛋白质活性常与信号通路的激活和抑制相关。

常用的检测方法包括Western blot、蛋白质芯片和质谱等。

3. 信号转导分子定位和局部化检测指标:研究信号转导的确切机制需要了解关键信号蛋白的定位和局部化情况。

常用的技术包括免疫荧光染色、原位杂交、电子显微镜等。

4. 信号通路底物酶活性检测指标:信号通路中的底物酶活性常与信号转导和调控密切相关。

常用的检测方法包括放射免疫法、荧光检测法和酶活性测定法等。

5. 信号通路相关基因表达水平检测指标:通过基因芯片、RNA测序、实时荧光定量PCR等方法,检测信号通路相关基因的表达水平变化,有助于了解信号通路的调控机制。

二、信号通路检测指标的应用与意义信号通路检测指标在疾病研究和药物研发中具有广泛的应用价值和重要意义。

1. 揭示疾病发生机制:通过检测信号通路关键分子的表达量、磷酸化水平、定位和酶活性等,可以揭示疾病发生的分子机制,明确信号通路在疾病发展中的作用。

wnt信号通路检测指标

wnt信号通路检测指标

wnt信号通路检测指标
Wnt信号通路检测指标主要包括以下几个方面:
1. β-catenin蛋白表达水平:Wnt信号通路激活后,β-catenin 蛋白的稳定性增加,其在细胞内的表达水平也会相应升高。

因此,通过检测β-catenin蛋白的表达水平可以反映Wnt信号通路的活性状态。

2. LRP6蛋白表达水平:LRP6是Wnt信号通路中的关键受体之一,其表达水平也会受到Wnt信号通路的影响。

因此,通过检测LRP6蛋白的表达水平也可以反映Wnt信号通路的活性状态。

3. GSK-3β磷酸化水平:GSK-3β是Wnt信号通路中的关键酶之一,其磷酸化水平会受到Wnt信号通路的影响。

因此,通过检测GSK-3β磷酸化水平也可以反映Wnt信号通路的活性状态。

4. TCF/LEF转录因子活性:TCF/LEF转录因子是Wnt信号通路中的下游效应分子,其活性会受到Wnt信号通路的影响。

因此,通过检测TCF/LEF转录因子活性也可以反映Wnt信号通路的活性状态。

以上是Wnt信号通路检测指标的主要方面,通过对这些指标的检测可以了解Wnt信号通路的活性状态,进而研究其在生物体内的功能和作用机制。

WNT信号通路

WNT信号通路

APC(adenomatous polyposis coli)是一种与结肠癌 发生有关的抑癌基因。定位于5q21,长度10.4kb, 编码一组较大的多结构域蛋白,属于胞浆蛋白,具 有支架蛋白的作用。APC蛋白、Axin和GSK3,可与 β-catenin形成复合物,而促进β-catenin发生磷酸化, 使β-catenin得以被蛋白酶降解。在固有的和散在的 大多数结直肠肿瘤中,均已发现有APC基因的突变 或缺失。APC基因突变可发生于任何外显子,其中 以第15外显子(654-2843密码子)最为常见 [2000],1020-1169密码子和1323-2075密码子编 码区域被认为是β-catenin与APC的结合位点,该区 域突变即导致β-catenin不能与APC结合,进而不能 被GSK3磷酸化,以致β-catenin降解受阻而积聚于胞 浆。因而APC是Wnt途径的负调控因子。在其他癌 症如髓母细胞瘤,侵袭性纤维瘤病,乳腺癌等也可 见APC异常。
Axin具有多个蛋白-蛋白作用域,与APC一样起支 架蛋白的作用,是支架蛋白复合体的构建基础。 Axin的RGS功能域(regulators of G protein signaling domain),能与全长的APC结合,但不能与截短的无 活性APC结合。APC-Axin-GSK-β-catenin形成复合 物时,GSK靠近β-catenin而促使其磷酸化,因此也 是Wnt途径的负调控因子。在肝癌、结直肠癌、乳 腺癌等肿瘤中检测到Axin基因突变,目前Axin被认 为是抑癌分子,其基因突变可促进肿瘤的发生。
TCF是Wnt途径下游组分,属于DNA结合 蛋白,包括1个HMG盒子(highmobility group) 和β-catenin作用域。HMG盒子具有与DNA结合 的活性,通过与其它因子发生作用,而激活 转录活性。有趣的是,TCF转录因子家族的 不同成员具有不同的特性。尽管它们都可结 合DNA,但在大部分情况下并不能激活转录, 只有与β-catenin发生作用后,才可激活转录 过程。有报道在结直肠癌中,检测出Tcf-4突 变,且同时存在APC或β-catenin的突变,推测 Tcf-4突变可能是附加突变。

验证wnt信号通路的方法

验证wnt信号通路的方法

验证wnt信号通路的方法验证Wnt信号通路的方法包括以下步骤:1. 构建报告基因质粒:TOPFlash质粒是一种常用的报告基因质粒,可用于检测Wnt信号通路中β-catenin介导的TCF/LEF转录活性水平。

TOPFlash质粒是以pGL6-TA为模板,在其多克隆位点插入两组TCF/LEF结合位点序列,每组有三个重复序列,一组为正向序列,另一组是它的反向互补序列。

这些序列可以高灵敏度地检测TCF/LEF的转录活性水平。

2. 观察细胞凋亡:可以通过药物处理或基因敲除等方法来影响Wnt通路的活性,然后观察细胞凋亡情况。

如果药物激活了Wnt通路,导致细胞凋亡,可以通过RNAi下调β-catenin的表达或使用deltaN TCF4(TCF4的dominant negative)或其他能阻断Wnt信号通路的活性的方法,观察细胞凋亡情况是否下降。

如果下调Wnt活性后,细胞凋亡能力下降,则说明药物是通过激活Wnt通路导致凋亡的。

相反,如果药物抑制了Wnt通路,导致细胞凋亡,可以通过表达不被降解的β-catenin或其他活化Wnt信号通路的活性的方法,观察细胞凋亡情况是否下降。

如果上调Wnt活性后,细胞凋亡能力下降,则说明药物是通过抑制Wnt通路导致凋亡的。

3. 研究具体靶基因:为了进一步了解Wnt信号通路的作用机制,可以研究具体的Wnt靶基因。

这些靶基因包括与细胞增殖、分化、迁移等相关的基因,例如c-myc、cyclin D1等。

通过检测这些基因的表达水平或使用相关抑制剂等方法,可以进一步验证Wnt信号通路的作用机制。

总之,验证Wnt信号通路的方法需要综合考虑多种因素,包括报告基因质粒的构建、细胞凋亡的观察和具体靶基因的研究等。

通过这些方法,可以深入了解Wnt信号通路的作用机制,为相关疾病的治疗提供新的思路和策略。

胚胎发育相关信号通路动态调节过程剖析

胚胎发育相关信号通路动态调节过程剖析

胚胎发育相关信号通路动态调节过程剖析胚胎发育是一个复杂而精确的过程,涉及到许多信号通路的动态调节。

这些信号通路的调控影响着胚胎细胞的命运和组织的发展,对于胚胎的正常发育至关重要。

一、Wnt信号通路Wnt信号通路是胚胎发育中最为重要的信号通路之一。

在胚胎发育的早期,Wnt信号通路参与了基胚层形成和胚腔形成。

在胚胎发育过程中,Wnt信号通路的活性受到调控,从而影响细胞的分化和命运决定。

例如,在胚胎的初期阶段,Wnt信号通路的活性比较低,这使得细胞保持干细胞状态,有利于胚胎的内部器官的发育。

而在胚胎后期的发育过程中,Wnt信号通路的活性逐渐上调,促使一部分细胞分化为不同的器官和组织。

二、BMP信号通路BMP(骨形成蛋白)信号通路在胚胎发育的各个阶段都起着重要的作用。

在胚胎早期,BMP信号通路促进基胚层细胞向外胚层的分化,从而形成胚胎的外皮。

在胚胎的后期,BMP信号通路影响了骨骼和神经系统的发育。

BMP信号通路的调节主要通过其配体与受体结合,并激活下游的信号分子,从而影响细胞的命运和分化。

三、Notch信号通路Notch信号通路在胚胎发育的过程中也扮演着重要的角色。

Notch信号通路的活性是由Notch受体和其配体Delta或Jagged之间的相互作用所调节的。

当Delta或Jagged与Notch受体结合时,Notch信号通路被激活,进而影响细胞的命运。

例如,在胚胎发育的早期,Notch信号通路的活性促使细胞保持干细胞状态,而在胚胎后期,Notch信号通路的活性促使细胞分化为不同的细胞类型。

四、Hedgehog信号通路Hedgehog信号通路在胚胎发育中具有重要的作用。

Hedgehog信号通路的活性受到Hedgehog配体与其受体的相互作用所调节。

当Hedgehog配体与受体结合时,Hedgehog信号通路被激活,并影响细胞的分化和组织的发展。

例如,在胚胎发育的早期,Hedgehog信号通路的活性促进细胞发育成特定的器官和组织。

wnt信号通路检测指标

wnt信号通路检测指标

wnt信号通路检测指标摘要:I.引言- 介绍wnt 信号通路- 阐述其在生物体中的重要性II.wnt 信号通路的检测指标- 详述wnt 信号通路的关键蛋白- 解释这些蛋白如何参与wnt 信号通路的调控III.检测wnt 信号通路的方法- 介绍荧光定量PCR 检测法- 阐述免疫组化染色法在检测wnt 信号通路中的应用- 简要介绍其他检测方法IV.检测wnt 信号通路的意义- 分析wnt 信号通路检测在生物医学研究中的价值- 讨论在疾病治疗中靶向wnt 信号通路的潜力V.结论- 总结wnt 信号通路检测的重要性- 展望未来研究方向正文:I.引言wnt 信号通路,作为一种重要的细胞间通讯机制,在生物体的生长、发育和疾病发生中发挥着至关重要的作用。

该通路涉及到多种信号分子的相互作用,调控着多种生物学过程。

本文旨在概述wnt 信号通路的检测指标及其在生物医学研究中的应用。

II.wnt 信号通路的检测指标在wnt 信号通路中,多种关键蛋白参与其调控,如Wnt、β-catenin、APC、CK1 和GSK3 等。

这些蛋白通过相互作用,维持着wnt 信号通路的活性。

例如,Wnt 蛋白作为信号分子,结合到细胞膜上的受体,启动信号传导。

随后,β-catenin 在Wnt 信号通路中的作用至关重要,它可以被稳定地积累在细胞核中,进而调控基因表达。

APC 和CK1 则通过负调控β-catenin 的稳定性,而GSK3 则通过磷酸化作用使其泛素化,从而降低其稳定性。

III.检测wnt 信号通路的方法荧光定量PCR 检测法是一种敏感且精确的检测方法,可以对wnt 信号通路中的基因表达进行定量分析。

通过实时监测目标基因的表达水平,研究者可以深入了解wnt 信号通路在生物体内的激活状态。

免疫组化染色法则是另一种常用的检测手段,可以直接观察到wnt 信号通路相关蛋白在细胞或组织中的定位和表达。

此外,还有其他检测方法,如Western Blot、质谱分析等,可对wnt 信号通路中的蛋白质进行检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Maturitas78(2014)233–237Contents lists available at ScienceDirectMaturitasj o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/m a t u r i t asReviewWnt signaling and osteoporosisStavros C.Manolagas∗Division of Endocrinology and Metabolism,Center for Osteoporosis and Metabolic Bone Diseases,University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System,Little Rock,AR,USAa r t i c l e i n f o Article history:Received8April2014 Accepted11April2014Keywords:OsteoblastsOsteoclastsOsteocytesRANKLOPGBone therapies a b s t r a c tMajor advances in understanding basic bone biology and the cellular and molecular mechanisms responsible for the development of osteoporosis,over the last20years,have dramatically altered the management of this disease.The purpose of this mini-review is to highlight the seminal role of Wnt signaling in bone homeostasis and disease and the emergence of novel osteoporosis therapies by targeting Wnt signaling with drugs.Published by Elsevier Ireland LtdContents1.Introduction (192)2.Wnt signaling (193)3.Wnt/␤-catenin signaling in bone health and disease (193)4.Wnt signaling,osteocytes,and the mechanical adaptation of the skeleton (193)5.Wnt/␤-catenin signaling,the FoxO transcription factors,and the pathogenesis of osteoporosis (194)6.Targeting Wnt signaling for the development of a novel bone anabolic therapy for osteoporosis (194)7.Summary (195)8.Research agenda (195)Contributors (195)Competing interest (195)Provenance and peer review (195)Funding (195)Acknowledgements (195)References (195)1.IntroductionThe mammalian skeleton regenerates throughout life by the removal(resorption)of old bone by osteoclasts and its replacement with new bone by osteoblasts,during a process called remodeling [1].Osteocytes–former osteoblasts which are entombed within the mineralized matrix–sense the need for regeneration in a∗Correspondence to:Distinguished Professor of Medicine,Division of Endocrinol-ogy and Metabolism,University of Arkansas for Medical Sciences,4301W.Markham St.,Slot587,Little Rock,AR72205,USA.Tel.:+15016865130;fax:+15016868148.E-mail address:manolagasstavros@ particular anatomical site and orchestrate the process by directing the homing of osteoclasts and osteoblasts to the site that is in need of remodeling,by producing and secreting key factors that control osteoclast and osteoblast generation[2,3].Under physiologic con-ditions,bone resorption and formation are balanced with the exact same amount of bone added in the site from which it was previously resorbed.With advancing age,the balance between resorption and formation is disturbed and bone mass declines.In addition bone progressively loses mechanical strength to an extent that is greater than the decline of bone mass because of the deterioration of its microarchitecture and the quality of its matrix and mineral(by mechanisms that are not well understood)and an increase in the number of dead or dysfunctional osteocytes as well as increased/10.1016/j.maturitas.2014.04.013 0378-5122/Published by Elsevier Ireland Ltd234S.C.Manolagas/Maturitas78(2014)233–237cortical porosity[4,5].Decreased bone mass and strength lead to the bone fragility syndrome known as osteoporosis.The traditional thinking of osteoporosis as a disease of women starting at menopause is nowadays yielding ground to the recog-nition that osteoporosis is a multifactorial disease that affects both sexes.The disease process begins as early as the third decade of life and age-related mechanisms intrinsic to bone cells,includ-ing oxidative stress,decreased Wnt/␤-catenin signaling,increased activation of FoxO transcription factors,oxidized lipids(acting via PPAR␥and increasing bone marrow adiposity),declining osteo-cyte autophagy,and increased osteocyte senescence,play a primary role[6].Age-dependent changes in other organs and tissues,such the decline of ovarian function at menopause and increased glu-cocorticoid production and/or responsiveness,contribute to the development of osteoporosis by accelerating the effects of aging.2.Wnt signalingWnts comprise a large family of secreted signaling glycoproteins that control cell proliferation,differentiation,apoptosis,survival, migration,and polarity in a plethora of cell types[7].They play a critical role during embryonic development(including skeletal patterning)as well as in postnatal health and diseases,including cancer and degenerative disorders.To date,19different Wnt pro-teins have been found in humans and mice and some of them are specific to certain cells and tissues.Wnt proteins deliver their signal by binding to transmembrane receptor proteins.Like Wnt proteins, there are several Wnt receptors.The list includes10members of the Frizzled family and low density lipoprotein receptor-related pro-tein(LRP)5as well as LRP6,Ror2,and Ryk.Different Wnts recognize different set of receptors and thereby selectively activate distinct intracellular pathways.Binding of Wnts to their cognate receptors activates at least three different intracellular signaling cascades: the Wnt/␤-catenin pathway(also known as the canonical Wnt pathway),the non-canonical Wnt pathway,and the Wnt-calcium pathway.Activation of the Frizzled/LRP5or Frizzle/LRP6receptor com-plexes by Wnts,such as Wnt1and Wnt3a,leads to the recruitment of Axin–a scaffold protein–to the Wnt/receptor complex on the cell membrane and causes the inactivation of glycogen synthase kinase3␤(GSK-3␤)(Fig.1).Inactivation of GSK-3␤,in turn,pre-vents the degradation of␤-catenin by the proteasome.This step allows the stabilization of␤-catenin in the cytoplasm and its sub-sequent entry into the nucleus,where it associates with the T-cell factor(TCF)lymphoid-enhancer binding factor(LEF)family of tran-scription factors and regulates the expression of Wnt target genes [8].3.Wnt/␤-catenin signaling in bone health and diseaseBone-forming osteoblasts and bone-resorbing osteoclasts are terminally differentiated cells with short lives.Therefore,both need to be continuously replaced with new ones originating from stem cells of the mesenchymal and hematopoietic lineage,respectively [9,10].The supply of differentiated cells of either lineage is up-or down-regulated,in order to meet the demand.This is accom-plished primarily through an increase or decrease of the replication of lineage-committed descendants of the respective stem cells [11,12].Aberrant osteoblast and/or osteoclast number underlines most acquired metabolic bone diseases,including osteoporosis,and it results from changes in their supply as well as their lifespan[1].Starting about twelve years ago,genetic studies of four patient families–three with unusually high and one with low bone mass–revealed that activating or deactivating mutations of Wnt signaling were responsible for their high and low bone mass,respectively.In two of the families,the mutations were located on the LRP5 gene[13,14].In the other two,the mutations were located on the SOST gene,which encodes for sclerostin–an antagonist of the Wnt signaling that is made and secreted primarily by osteocytes[15,16]. These discoveries established that lack of sclerostin expression in bone is the cause of sclerosteosis and Van Buchem disease–two rare bone sclerosing dysplasias;whereas the loss of function muta-tion of the LRP5gene is the cause of the osteoporosis-pseudoglioma syndrome.Following these genetic studies,an intensive research effort has revealed that Wnt signaling is indeed a key regulator of bone health and disease and can,therefore,be targeted to develop new therapies for osteoporosis.For an extensive discussion of the subject,the reader is referred to the excellent review by Baron and Kneissel[17].Wnt/␤-catenin signaling stimulates the generation of osteoblasts by promoting commitment and differentiation of pluripotential mesenchymal stem cells(MSCs)toward the osteoblast lineage,while simultaneously suppressing com-mitment to the chondrogenic and adipogenic lineage[12].In particular,Wnt/␤-catenin signaling promotes the progression of Osterix1(Osx1)-expressing cells to bone producing osteoblasts.In addition,Wnts prevent the apoptosis of mature osteoblasts and thereby prolong their lifespan by both␤-catenin-dependent and independent pathways[18].In addition to its effects on osteoblasts,Wnt/␤-catenin signaling decreases osteoclast differentiation by stimulating the production and secretion of osteoprotegerin(OPG)[19]–a natural antago-nist of the receptor activator of nuclear factor-B ligand(RANKL) [20].RANKL is indispensable for the differentiation,survival,and function of osteoclasts;thereby critical for bone resorption.RANKL is produced primarily by osteocytes[21].During the process of osteoclast generation,bone marrow macrophages(BMMs)differ-entiate into tartrate-resistant acid phosphatase(TRAP)-positive pre-osteoclasts,which then fuse with each other to form mature osteoclasts.RANKL and macrophage colony–stimulating factor, provide the two necessary and sufficient signals for osteoclast differentiation[22].In addition to their indirect effects on osteo-clastogenesis that are mediated by controlling OPG expression and secretion by osteoblasts/osteocytes,Wnts act directly on osteo-clasts.However,the biological significance of the direct effects is less clear.In any event,deletion of␤-catenin in osteoclasts increases osteoclast number and bone resorption and decreases bone mass[23].To date,several of the Wnt proteins have been shown to play a role in skeletal development and homeostasis as well as joint for-mation in humans and mice,including Wnt1,Wnt3a,Wnt4,Wnt5, Wnt5a,Wnt7a,Wnt10b,and Wnt14.Of those,Wnt10b seems to be the most critical positive modulator of bone formation in adult bone [24,25].In addition to Wnt proteins,mammals produce enhancers of Wnt/␤-catenin signaling,such as the four R-spondins proteins. Recently,missense mutations in the Wnt1gene were identified in a form of autosomal dominant early-onset osteoporosis and a severe form of osteogenesis imperfecta[26].4.Wnt signaling,osteocytes,and the mechanicaladaptation of the skeletonWnt signaling in bone isfine-tuned by several secreted glyco-proteins that act as Wnt antagonists[27].The most potent and best recognized of these are sclerostin,Wise,and the Dickkopf(DKK) proteins1and2.Sclerostin binds to LRP5and LRP6and inhibits canonical Wnt signaling by blocking the binding of Wnt proteins to the extracellular regions of LRP5and LRP6.Interference with the binding of Wnts to LRP6seems to be functionally most significant in this respect.Sclerostin deficiency,on the other hand,unleashesS.C.Manolagas/Maturitas78(2014)233–237235Fig.1.Canonical Wnt/␤-catenin signaling,osteocyte-derived sclerostin and RANKL,and the generation of osteoblasts and osteoclasts.Activation of the Frizzled/LRP5/6 receptor complex by Wnt proteins prevents the degradation of␤-catenin,which then enters the nucleus and together with TCF/LEF stimulates the transcription of several genes that promote osteoblastogenesis,thereby increasing bone mass.In addition,␤-catenin and TCF/LEF stimulate the transcription of the OPG gene,which is the natural antagonist of RANKL–the sine qua non factor for osteoclastogenesis–made primarily by osteocytes.Osteocyte-derived sclerostin blocks the binding of Wnts to their receptor complex.MSC=mesenchymal stem cell;HSC=hematopoietic stem cell.Wnt signaling and dramatically increase bone mass in mice and humans.The skeleton adapts to meet mechanical needs.This is best exemplified by the rapid and dramatic loss of bone that occurs with immobilization or weightlessness during spaceflights.The bone cells that are responsible for both sensing mechanical strains and orchestrating the adaptation of the skeleton to changing strains are the osteocytes[3].Mechanical stimulation of bone reduces osteocyte expression of SOST-sclerostin[28].Conversely,sclerostin expression increases during immobilization[29].5.Wnt/␤-catenin signaling,the FoxO transcription factors, and the pathogenesis of osteoporosisThe hallmarks of age-related osteoporosis are a decrease in bone formation and an increase in bone marrow adiposity[6].Recent researchfindings from the mouse model suggest that attenuation of Wnt/␤-catenin signaling may be responsible for these changes [30].The decline of bone mass and increase of marrow adipos-ity with advancing age is associated with a progressive increase in oxidative stress(OS)[31].In the last few years,members of the subclass of the forkhead family of transcription factors,called FoxOs,have emerged as an important defense mechanism against OS and growth factor deprivation–another accompaniment of old age.In the setting of OS or growth factor deprivation,FoxOs translocate from the cell cytoplasm to the nucleus where they stim-ulate the transcription of antioxidant enzymes as well as genes involved in cell cycle,DNA repair,and lifespan[32,33].Importantly,␤-catenin is an essential co-activator of FoxOs,in addition to its role in TCF/LEF-transcription[34].In the setting of OS or nutrient depletion,the limited pool of␤-catenin in osteoblast progenitors is diverted from Wnt/TCF-to FoxO-mediated transcription[35]. Through this mechanism attenuation of canonical Wnt/␤-catenin signaling decreases the progression of Osx1expressing cells to bone producing osteoblasts,and thereby it decreases bone mass and simultaneously increases adipogenesis[30].The diversion of ␤-catenin from TCF-to FoxO-mediated transcription may also con-tribute to several other age-related pathologies[34].Thus,similar to several other defense responses against aging,FoxO activation eventually aggravates the effects of aging on bone and becomes a culprit of involutional osteoporosis[36].6.Targeting Wnt signaling for the development of a novel bone anabolic therapy for osteoporosisHeterozygous carriers of the SOST mutation have high normal or increased BMD without any of the abnormal traits of the full carriers of the mutation,indicating that decreasing the levels of the gene product sclerostin can modestly unleash Wnt signaling and increase bone formation without undesirable side effects[37]. Importantly,parathyroid hormone(PTH)decreases the produc-tion of sclerostin by osteocytes[38].Intermittent administration of a recombinant form of parathyroid hormone(PTH)is currently the only approved therapy for the treatment of osteoporosis that can increase bone mass de novo.These and similar consider-ations have paved the way for an attempt by the pharmaceutical industry to develop a novel anabolic therapy for osteoporo-sis based on antibodies that neutralize sclerostin.Preclinical236S.C.Manolagas/Maturitas78(2014)233–237studies with the sclerostin neutralizing antibody have convincingly shown that sclerostin inhibition leads to increased bone formation, gain of bone mass,and increased bone strength in rodents and monkeys[39,40].Moreover,a multicenter,randomized,placebo-control study of post-menopausal women with low BMD has shown that romosozumab,a monoclonal sclerostin-neutralized antibody, increases BMD and bone formation and decreases bone resorption, within a year,to a greater extent(11.3%)than the bisphosphonate alendronate(4.1%)or PTH(teriparatide)(7.1%)[41].Unexpectedly, nonetheless,the effect of romosozumab on bone turnover markers suggested a rapid,marked,but transient increase in bone formation and a moderate but more sustained decrease in bone resorption. The reason for the unpredictable changes in bone turnover markers is unclear.In any event,denosumab,a neutralizing antibody against RANKL–another osteocyte-derived protein–is an approved and very effective anti-resorptive therapy for osteoporosis[42].7.SummaryAppreciation of the critical role of osteocytes in the orches-tration of bone remodeling and the discoveries of the seminal role of RANKL and the Wnt/␤-catenin signaling and its antago-nist sclerostin,have provided a much improved understanding of the pathophysiology of osteoporosis.Furthermore,these develop-ments have paved the way for the development of rational and effective new therapeutic strategies for the treatment of osteoporo-sis.8.Research agendaThe phase3clinical trial with romosozumab is on its way and should provide definitive answers on whether the effect of this therapy on BMD,shown in the phase2trial,will translate into anti-fracture efficacy;and whether,of course,romosozumab will be safe for long-term use.Future research aiming to elucidate age-related mechanisms affecting more than one tissue could lead to the development of even more advanced therapies that could simulta-neously combat osteoporosis and other degenerative disorders,for example sarcopenia,resulting from shared mechanisms of aging. ContributorsStavros C.Manolagas is the sole author of this manuscript. Competing interestThe author declares no competing interests.Provenance and peer reviewCommissioned and externally peer reviewed.FundingThe author’s research is supported by the NIH(P01AG13918and R01AR56679)and the Biomedical Laboratory Research and Devel-opment Service of the Veterans Administration Office of Research and Development(I01BX001405).AcknowledgementsThe author thanks Leah Elrod for help with the preparation of the manuscript,and Maria Almeida for advice and reviewing the manuscript.The author’s research is supported by the NIH (P01AG13918and R01AR56679)and the Biomedical Laboratory Research and Development Service of the Veterans Administration Office of Research and Development(I01BX001405).References[1]Manolagas SC.Birth and death of bone cells:basic regulatory mechanisms andimplications for the pathogenesis and treatment of osteoporosis.Endocr Rev 2000;21(April(2)):115–37.[2]Manolagas SC,Parfitt AM.For whom the bell tolls:distress signals fromlong-lived osteocytes and the pathogenesis of metabolic bone diseases.Bone 2012;54(September(2)):272–8.[3]Bonewald LF.The amazing osteocyte.J Bone Miner Res2011;26(February(2)):229–38.[4]Manolagas SC,Parfitt AM.What old means to bone.Trends Endocrinol Metab2010;21(March(6)):369–74.[5]Zebaze RM,Ghasem-Zadeh A,Bohte A,et al.Intracortical remodelling andporosity in the distal radius and post-mortem femurs of women:a cross-sectional ncet2010;375(May(9727)):1729–36.[6]Manolagas SC.From estrogen-centric to aging and oxidative stress:arevised perspective of the pathogenesis of osteoporosis.Endocr Rev 2010;31(3):266–300.[7]Kikuchi A,Yamamoto H,Sato A.Selective activation mechanisms of Wntsignaling pathways.Trends Cell Biol2009;19(March(3)):119–29.[8]Clevers H,Nusse XR.Wnt/beta-catenin signaling and disease.Cell2012;149(June(6)):1192–205.[9]Long F.Building strong bones:molecular regulation of the osteoblast lineage.Nat Rev Mol Cell Biol2012;13(January(1)):27–38.[10]Teitelbaum SL,Ross FP.Genetic regulation of osteoclast development and func-tion.Nat Rev Genet2003;4(August(8)):638–49.[11]Park D,Spencer JA,Koh BI,et al.Endogenous bone marrow MSCs are dynamic,fate-restricted participants in bone maintenance and regeneration.Cell Stem Cell2012;10(March(3)):259–72.[12]Rodda SJ,McMahon AP.Distinct roles for Hedgehog and canonical Wntsignaling in specification,differentiation and maintenance of osteoblast pro-genitors.Development2006;133(August(16)):3231–44.[13]Gong Y,Slee RB,Fukai N,et al.LDL receptor-related protein5(LRP5)affectsbone accrual and eye development.Cell2001;107(November(4)):513–23. [14]Boyden LM,Mao J,Belsky J,et al.High bone density due to a mutation in LDL-receptor-related protein5.N Engl J Med2002;346(20):1513–21.[15]Balemans W,Ebeling M,Patel N,et al.Increased bone density in sclerosteosisis due to the deficiency of a novel secreted protein(SOST).Hum Mol Genet 2001;10(March(5)):537–43.[16]Balemans W,Patel N,Ebeling M,et al.Identification of a52kb deletion down-stream of the SOST gene in patients with van Buchem disease.J Med Genet 2002;39(February(2)):91–7.[17]Baron R,Kneissel M.WNT signaling in bone homeostasis and disease:from human mutations to treatments.Nat Med2013;19(February(2)): 179–92.[18]Almeida M,Han L,Bellido T,Manolagas SC,Kousteni S.Wnt proteinsprevent apoptosis of both uncommitted osteoblast progenitors and differ-entiated osteoblasts by beta-catenin-dependent and-independent signaling cascades involving Src/ERK and phosphatidylinositol3-kinase/AKT.J Biol Chem 2005;280(December(50)):41342–51.[19]Glass DA,Bialek P,Ahn JD,et al.Canonical Wnt signaling in differenti-ated osteoblasts controls osteoclast differentiation.Dev Cell2005;8(May(5)):751–64.[20]Lacey DL,Timms E,Tan HL,et al.Osteoprotegerin ligand is a cytokine that regu-lates osteoclast differentiation and activation.Cell1998;93(April(2)):165–76.[21]Xiong J,Onal M,Jilka RL,Weinstein RS,Manolagas SC,O’Brien CA.Matrix-embedded cells control osteoclast formation.Nat Med2011;17(10):1235–41.[22]Boyle WJ,Simonet WS,Lacey DL.Osteoclast differentiation and activation.Nature2003;423(May(6937)):337–42.[23]Wei W,Zeve D,Suh JM,et al.Biphasic and dosage-dependent regula-tion of osteoclastogenesis by beta-catenin.Mol Cell Biol2011;31(December(23)):4706–19.[24]Bennett CN,Ouyang H,Ma YL,et al.Wnt10b increases postnatal bone formationby enhancing osteoblast differentiation.J Bone Miner Res2007;22(December(12)):1924–32.[25]Stevens JR,Miranda-Carboni GA,Singer MA,Brugger SM,Lyons KM,Lane TF.Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells.J Bone Miner Res2010;25(October(10)):2138–47.[26]Laine CM,Joeng KS,Campeau PM,et al.WNT1mutations in early-onsetosteoporosis and osteogenesis imperfecta.N Engl J Med2013;368(May(19)):1809–16.[27]Cruciat CM,Niehrs C.Secreted and transmembrane wnt inhibitors and acti-vators.Cold Spring Harb Perspect Biol2013;5(March(3)):a015081.[28]Robling AG,Niziolek PJ,Baldridge LA,et al.Mechanical stimulation ofbone in vivo reduces osteocyte expression of Sost/sclerostin.J Biol Chem 2008;283(February(9)):5866–75.[29]Gaudio A,Pennisi P,Bratengeier C,et al.Increased sclerostin serum lev-els associated with bone formation and resorption markers in patients with immobilization-induced bone loss.J Clin Endocrinol Metab2010;95(May(5)):2248–53.S.C.Manolagas/Maturitas78(2014)233–237237[30]Iyer S,Ambrogini E,Bartell SM,et al.FoxOs attenuate bone formation by sup-pressing Wnt signaling.J Clin Invest2013;123(8):3404–19.[31]Almeida M,Han L,Martin-Millan M,et al.Skeletal involution by age-associatedoxidative stress and its acceleration by loss of sex steroids.J Biol Chem 2007;282(September(37)):27285–97.[32]van der Horst A,Burgering BM.Stressing the role of FoxO proteins in lifespanand disease.Nat Rev Mol Cell Biol2007;8(June(6)):440–50.[33]Salih DA,Brunet A.FoxO transcription factors in the maintenance of cellularhomeostasis during aging.Curr Opin Cell Biol2008;20(April(2)):126–36. [34]Manolagas SC,Almeida M.Gone with the Wnts:beta-catenin,T-cell factor,forkhead box O,and oxidative stress in age-dependent diseases of bone,lipid, and glucose metabolism.Mol Endocrinol2007;21(November(11)):2605–14.[35]Almeida M,Han L,Martin-Millan M,O’Brien CA,Manolagas SC.Oxidative stressantagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor-to forkhead box O-mediated transcription.J Biol Chem 2007;282(September(37)):27298–305.[36]Lopez-Otin C,Blasco MA,Partridge L,Serrano M,Kroemer G.The hallmarks ofaging.Cell2013;153(June(6)):1194–217.[37]van Lierop AH,Hamdy NA,Hamersma H,et al.Patients with sclerosteosis anddisease carriers:human models of the effect of sclerostin on bone turnover.J Bone Miner Res2011;26(December(12)):2804–11.[38]O’Brien CA,Plotkin LI,Galli C,et al.Control of bone mass and remodeling byPTH receptor signaling in osteocytes.PLoS ONE2008;3(8):e2942.[39]Li X,Ominsky MS,Warmington KS,et al.Sclerostin antibody treatmentincreases bone formation,bone mass,and bone strength in a rat model of postmenopausal osteoporosis.J Bone Miner Res2009;24(April(4)):578–88. [40]Ominsky MS,Vlasseros F,Jolette J,et al.Two doses of sclerostin antibody incynomolgus monkeys increases bone formation,bone mineral density,and bone strength.J Bone Miner Res2010;25(May(5)):948–59.[41]McClung MR,Grauer A,Boonen S,et al.Romosozumab in postmenopausalwomen with low bone mineral density.N Engl J Med2014;370(January(5)):412–20.[42]Cummings SR,San MJ,McClung MR,et al.Denosumab for preventionof fractures in postmenopausal women with osteoporosis.N Engl J Med 2009;361(August(8)):756–65.。

相关文档
最新文档