传热学MATLAB温度分布大课后复习完整编辑版
【最全】的传热学复习题及其答案【考研、末考必备】

传热学复习题及其答案(Ⅰ部分)一、 概念题1、试分析室内暖气片的散热过程,各个环节有哪些热量传递方式?以暖气片管内走热水为例。
答:有以下换热环节及传热方式:(1) 由热水到暖气片管道内壁,热传递方式为强制对流换热; (2) 由暖气片管道内壁到外壁,热传递方式为固体导热;(3) 由暖气片管道外壁到室内空气,热传递方式有自然对流换热和辐射换热。
2、试分析冬季建筑室内空气与室外空气通过墙壁的换热过程,各个环节有哪些热量传递方式?答:有以下换热环节及传热方式:(1) 室内空气到墙体内壁,热传递方式为自然对流换热和辐射换热; (2) 墙的内壁到外壁,热传递方式为固体导热;(3) 墙的外壁到室外空气,热传递方式有对流换热和辐射换热。
3、何谓非稳态导热的正规阶段?写出其主要特点。
答:物体在加热或冷却过程中,物体内各处温度随时间的变化率具有一定的规律,物体初始温度分布的影响逐渐消失,这个阶段称为非稳态导热的正规阶段。
4、分别写出N u 、R e 、P r 、B i 数的表达式,并说明其物理意义。
答:(1)努塞尔(Nusselt)数,λlh Nu =,它表示表面上无量纲温度梯度的大小。
(2)雷诺(Reynolds)数,νlu ∞=Re ,它表示惯性力和粘性力的相对大小。
(3)普朗特数,aν=Pr ,它表示动量扩散厚度和能量扩散厚度的相对大小。
(4)毕渥数,λlh B i =,它表示导热体内部热阻与外部热阻的相对大小。
5、竖壁倾斜后其凝结换热表面传热系数是增加还是减小?为什么?。
答:竖壁倾斜后,使液膜顺壁面流动的力不再是重力而是重力的一部分,液膜流 动变慢,从而热阻增加,表面传热系数减小。
另外,从表面传热系数公式知,公式中的g 亦要换成θsin g ,从而h 减小。
6、按照导热机理,水的气、液、固三种状态中那种状态的导热系数最大? 答:根据导热机理可知,固体导热系数大于液体导热系数;液体导热系数大于气体导热系数。
《传热学》第四版课后习题标准答案

《传热学》第四版课后习题答案————————————————————————————————作者:————————————————————————————————日期:《传热学》第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
实验一 MATLAB软件应用复习含具体答案

,其中E,R,O,S分别为单位阵、随机阵、零阵和对角阵,试通过数值计算验证
。 2.某零售店有9种商品的单件进价(元)、售价(元)及一周的销量如表1.1,问哪种商品 的利润最大,哪种商品的利润最小;按收入由小到大,列出所有商品及其收入;求这一周该9种 商品的总收入和总利润。 表1.1
货号
1
2
3. 用两种方法在同一个坐标下作出 这四条曲线的图形,并要求用两种方法在图上加各种标注。 4.用subplot分别在不同的坐标系下作出下列四条曲线,为每幅图形加上标题, 1)概率曲线 ; 2)四叶玫瑰线 ; 3)叶形线
4)曳物线
。 5.作出下列曲面的3维图形, 1) ; 2)环面
(2) 新建一个M文件输入命令如下: v=0:0.01:2*pi; u=v; [U,V]=meshgrid(u,v); X=(1+cos(U)).*cos(V); Y=(1+cos(U)).*sin(V); Z=sin(U); mesh(X,Y,Z) 保存并运行,运行结果如下:
T6 新建一个M文件输入命令如下: function shuixianhuashu for m=100:999; a=fix(m/100); b=rem(fix(m/10),10); c=rem(m,10); if m==a.^3+b.^3+c.^3 disp(m) end end 保存,再在命令窗口输入shuixianhuashu结果如下: >> shuixianhuashu 153
探究实验 自由发挥:自己提出问题,实验探索,广泛联想,发现规律,大胆猜想。比如函数cos(1/x)在 x=0附近的振荡现象,有无规律可寻?
T1
新建一个M文件输入命令如下: E=eye(3,3); R=rand(3,2); O=zeros(2,3); S=diag([3,7]); A=[E,R;O,S]; AA=A*A; B=[E,R+R*S;O,S*S]; if B==AA disp('命题成立'); else disp('命题不成立'); end 保存并运行,结果如下: 命题成立 由运行结果可知,得以验证。
传热大作业 第4版4-23

东南大学能源与环境学院课程作业报告课程名称:传热学作业名称:传热学大作业——利用matlab程序解决热传导问题院(系):能源与环境学院专业:热能与动力工程姓名:姜学号:完成时间:2012 年11 月8日评定成绩:审阅教师:目录一.题目及要求 (3)二.各节点离散化的代数方程..............................3&13 三.源程序......................................................5&16 四.不同初值时的温度分布情况...........................7&18 五.冷量损失的计算.......................................12&24 六.计算小结 (27)传热大作业——利用matlab 程序解决复杂热传导问题姓名:姜 学号: 班级:成绩:____________________一、题目及要求计算要求:一个长方形截面的冷空气通道的尺寸如附图所示。
假设在垂直于纸面的方向上冷空气及通道墙壁的温度变化很小,可以忽略。
试用数值方法计算下列两种情况下通道壁面中的温度分布及每米长度上通过壁面的冷量损失:(1) 内、外壁面分别维持在10℃及30℃;(2) 内、外壁面与流体发生对流传热,且有110f t C =︒、2120/()h W m K =⋅,230f t C =︒、224/()h W m K =⋅。
(取管道导热系数为0.025/()W m K λ=⋅)二、各节点的离散化的代数方程1、基本思想:将导热问题的温度场,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
2、基本步骤:(1)建立控制方程以及定解条件:对于(1)问有:2.2m3m 2m1.2m h 1、t f1h 1、t f2导热微分方程22220t t x y ∂∂+=∂∂定解条件为第一类边界条件对(2)问有: 导热微分方程22220t t x y ∂∂+=∂∂定解条件为第三类边界条件(2)区域离散化:如下图所示,用一系列与坐标轴平行的网格线把求解区域划分成许多子区域,以网格线的交点作为需要确定温度值的空间位置,称为节点。
传热学课后习题精校版

导热1-21有一台气体冷却器,气侧表面传热系数1h =95W/(m 2.K),壁面厚δ=2.5mm ,)./(5.46K m W =λ水侧表面传热系数58002=h W/(m 2.K)。
设传热壁可以看成平壁,试计算各个环节单位面积的热阻及从气到水的总传热系数。
你能否指出,为了强化这一传热过程,应首先从哪一环节着手? 解:;010526.0111==h R ;10376.55.460025.052-⨯===λδR ;10724.1580011423-⨯===h R则λδ++=21111h h K =94.7)./(2K m W ,应强化气体侧表面传热。
平板2-2一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0.07)./(K m W 及0.1)./(K m W 。
冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。
为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。
解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-4一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。
已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。
为安全起见,希望烘箱炉门的外表面温度不得高于50℃。
设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。
环境温度=2f t 25℃,外表面总传热系数)./(5.922K m W h =。
(完整版)传热学试卷和答案

传热学(一)第一部分选择题1. 在稳态导热中 , 决定物体内温度分布的是 ( )A. 导温系数B. 导热系数C. 传热系数D. 密度2. 下列哪个准则数反映了流体物性对对流换热的影响 ?( )A. 雷诺数B. 雷利数C. 普朗特数D. 努谢尔特数3. 单位面积的导热热阻单位为 ( )A. B. C. D.4. 绝大多数情况下强制对流时的对流换热系数 ( ) 自然对流。
A. 小于B. 等于C. 大于D. 无法比较5. 对流换热系数为 100 、温度为 20 ℃的空气流经 50 ℃的壁面,其对流换热的热流密度为()A. B. C. D.6. 流体分别在较长的粗管和细管内作强制紊流对流换热,如果流速等条件相同,则()A. 粗管和细管的相同B. 粗管内的大C. 细管内的大D. 无法比较7. 在相同的进出口温度条件下,逆流和顺流的平均温差的关系为()A. 逆流大于顺流B. 顺流大于逆流C. 两者相等D. 无法比较8. 单位时间内离开单位表面积的总辐射能为该表面的()A. 有效辐射B. 辐射力C. 反射辐射D. 黑度9. ()是在相同温度条件下辐射能力最强的物体。
A. 灰体B. 磨光玻璃C. 涂料D. 黑体10. 削弱辐射换热的有效方法是加遮热板,而遮热板表面的黑度应()A. 大一点好B. 小一点好C. 大、小都一样D. 无法判断第二部分非选择题•填空题(本大题共 10 小题,每小题 2 分,共 20 分)11. 如果温度场随时间变化,则为。
12. 一般来说,紊流时的对流换热强度要比层流时。
13. 导热微分方程式的主要作用是确定。
14. 当 d 50 时,要考虑入口段对整个管道平均对流换热系数的影响。
15. 一般来说,顺排管束的平均对流换热系数要比叉排时。
16. 膜状凝结时对流换热系数珠状凝结。
17. 普朗克定律揭示了按波长和温度的分布规律。
18. 角系数仅与因素有关。
19. 已知某大平壁的厚度为 15mm ,材料导热系数为 0.15 ,壁面两侧的温度差为 150 ℃,则通过该平壁导热的热流密度为。
传热学复习资料(5套)

一、选择题1、下列哪几种传热过程不需要有物体的宏观运动(A)A导热2、在稳态传热过程中,传热温差一定,如果希望系统传热量增大,则不能采用下列哪种手段(A)A增大系统热阻 B 增大传热面积C增大传热系数 D增大对流传热系数3、温度梯度表示温度场内的某一点等温圈上什么方向的温度变化率(B)法线方向4、下述哪一点不是热力设备与冷冻设备加保温材料的目的。
(D) A 防止热量或冷量的消失B提高热负荷 C防止烫伤D保持流体温度5、流体纯自然对流传热的准则方程可写为(B)B Nu=f(Gr,Pr)6、流体掠过平板对流传热时,在下列边界层各区中,温度降主要发生在哪个区(C)C 层流底层7、由炉膛火焰向木冷壁传热的主要方式(A)A 热辐射8、将保温瓶的双层玻璃中间抽成真空,其目的是(D)D减少导热与对流传热9、下述几种方法中,强化传热的方法是哪一种(C)C加肋片10、若冷热流体的温度给定,传热器热流体侧结垢后传热壁面的温度将如何改变(B)B减少11、热量传递的三种基本方式(A)A导热、热对流、辐射12、无量纲组合用于对于换热时称为(C)准则 C Nu13、对流换热与以(B)作为基本计算式 B 牛顿冷却公式14、下述几种方法中,强化传热的方法是(C) C增大流速15、当采用加肋片的方法增强传热时,将肋片加在(B)时最有效 B换热系数较小一侧16、下列各参数中,属于物性参数的是(D)导温系数17、某热力管道采用两种导热系数不同的保温材料进行保温,为了达到较好的保温效果,应将(B)材料放在内层 B导热系数较小的18、物体能够发射热辐射的基本条件是(A)A温度大于0K19、下述哪种气体可以看作热辐射透明体(B)反射比=1 B 空气20、灰体的吸收比与投射辐射的波长分布(A)A无关21、在稳态导热中,决定物体内温度分布的是(B)B导热系数22、下列哪个准则数反应了流体物性对对流换热的影响(C) C普朗特数23、在稳态导热中,决定物体内温度分布的是(B) B导热系数24、单位面积的导热热阻单位为(B) B K/W25、绝大多数情况下强制对流时的对流换热系数(C)自然对流 C 大于26、对流换热系数为100W/(㎡·K),温度为20℃的空气流经50℃的壁面,其对流换热的热流密度为(D)D 3000W/㎡q=h(t2-t1)27、流体分别在较长的粗管和细管内作强制紊流对流换热。
(完整版)传热学试题库含参考答案

(完整版)传热学试题库含参考答案《传热学》试题库第⼀早⼀、名词解释1热流量:单位时间内所传递的热量 2. 热流密度:单位传热⾯上的热流量3?导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发⽣相对位移的情况下,物质微粒 (分⼦、原⼦或⾃由电⼦)的热运动传递了热量,这种现象被称为热传导,简称导热。
4. 对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合⽤的热量传递过程,称为表⾯对流传热,简称对流传热。
5?辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。
同时,物体也不断接收周围物体辐射给它的热能。
这样,物体发出和接收过程的综合结果产⽣了物体间通过热辐射⽽进⾏的热量传递,称为表⾯辐射传热,简称辐射传热。
6?总传热过程:热量从温度较⾼的流体经过固体壁传递给另⼀侧温度较低流体的过程,称为总传热过程,简称传热过程。
数表⽰复合传热能⼒的⼤⼩。
数值上表⽰传热温差为 1K 时,单位传热⾯积在单位时间内的传热量。
⼆、填空题1. _________________________________ 热量传递的三种基本⽅式为 _、、。
(热传导、热对流、热辐射)2. ________________________ 热流量是指 _______________ ,单位是 ____________________ 。
热流密度是指 _______ ,单位是 ____________________________ 。
2(单位时间内所传递的热量, W ,单位传热⾯上的热流量, W/m )3. ____________________________ 总传热过程是指 ________________,它的强烈程度⽤来衡量。
(热量从温度较⾼的流体经过固体壁传递给另⼀侧温度较低流体的过程,总传热系数 )4. ____________________________ 总传热系数是指 ___ ,单位是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东南大学能源与环境学院课程作业报告作业名称:传热学大作业——利用matlab程序解决热传导问题院系:能源与环境学院专业:建筑环境与设备工程学号:姓名:2014年11月9日一、题目及要求1.原始题目及要求2.各节点的离散化的代数方程3.源程序4.不同初值时的收敛快慢5.上下边界的热流量(λ=1W/(m℃))6.计算结果的等温线图7.计算小结题目:已知条件如下图所示:二、各节点的离散化的代数方程各温度节点的代数方程ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4tm=(2*i+300+n)/24; tn=(2*j+m+p+200)/24; to=(2*k+p+n+200)/24; tp=(l+o+100)/12 三、源程序【G-S迭代程序】【方法一】函数文件为:function [y,n]=gauseidel(A,b,x0,eps)D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);G=(D-L)\U;f=(D-L)\b;y=G*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=G*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0;-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0;0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0;0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0;0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0;0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]';[x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6) xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.1523 84.1429 67.9096 63.3793 62.4214 20.1557 15.4521 14.8744 14.7746 【方法2】>> t=zeros(5,5);t(1,1)=100;t(1,2)=100;t(1,3)=100;t(1,4)=100;t(1,5)=100;t(2,1)=200;t(3,1)=200;t(4,1)=200;t(5,1)=200;for i=1:10t(2,2)=(300+t(3,2)+t(2,3))/4 ;t(3,2)=(200+t(2,2)+t(4,2)+t(3,3))/4;t(4,2)=(200+t(3,2)+t(5,2)+t(4,3))/4;t(5,2)=(2*t(4,2)+200+t(5,3))/4;t(2,3)=(100+t(2,2)+t(3,3)+t(2,4))/4;t(3,3)=(t(3,2)+t(2,3)+t(4,3)+t(3,4))/4; t(4,3)=(t(4,2)+t(3,3)+t(5,3)+t(4,4))/4; t(5,3)=(2*t(4,3)+t(5,2)+t(5,4))/4;t(2,4)=(100+t(2,3)+t(2,5)+t(3,4))/4;t(3,4)=(t(3,3)+t(2,4)+t(4,4)+t(3,5))/4;t(4,4)=(t(4,3)+t(4,5)+t(3,4)+t(5,4))/4;t(5,4)=(2*t(4,4)+t(5,3)+t(5,5))/4;t(2,5)=(2*t(2,4)+300+t(3,5))/24;t(3,5)=(2*t(3,4)+t(2,5)+t(4,5)+200)/24;t(4,5)=(2*t(4,4)+t(3,5)+t(5,5)+200)/24;t(5,5)=(t(5,4)+t(4,5)+100)/12;t'endcontour(t',50);ans =100.0000 200.0000 200.0000 200.0000 200.0000 100.0000 136.8905 146.9674 149.8587 150.7444 100.0000 102.3012 103.2880 103.8632 104.3496 100.0000 70.6264 61.9465 59.8018 59.6008 100.0000 19.0033 14.8903 14.5393 14.5117【Jacobi迭代程序】函数文件为:function [y,n]=jacobi(A,b,x0,eps)D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=D\(L+U);f=D\b;y=B*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=B*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0;-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0; 0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0; 0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0; 0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0; 0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=jacobi(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6); xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)n =97Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.152384.1429 67.9096 63.3793 62.421420.1557 15.4521 14.8744 14.7746四、不同初值时的收敛快慢1、[方法1]在Gauss 迭代和Jacobi 迭代中,本程序应用的收敛条件均为norm(y-x0)>=eps ,即使前后所求误差达到e 的-6次方时,跳出循环得出结果。
将误差改为0.01时,只需迭代25次,如下[x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',0.01)运行结果为 将误差改为0.1时,需迭代20次,可见随着迭代次数增加,误差减小,变化速度也在减小。
[方法2]通过 i=1:10判断收敛,为迭代10次,若改为1:20,则迭代20次。
2、在同样的误差要求下,误差控制在e 的-6次方内,Gauss 迭代用了49次达到要求,而Jacobi 迭代用了97次,可见,在迭代中尽量采用最新值,可以大幅度的减少迭代次数,迭代过程收敛快一些。
在Gauss 中,初值为100,迭代46次达到精确度1.0e-6,初值为50时,迭代47次,初值为0时,迭代49次,初值为200时迭代50次,可见存在一个最佳初始值,是迭代最快。
这一点在jacobi 迭代中表现的尤为明显。
五、上下边界的热流量:上边界t=200℃,∞t =10℃,所以,热流量Φ1=λ*[2*100-200x y ∆∆+x y a∆∆t -200+x y ∆∆b t -200+x y ∆∆c t -200+2*t -200d x y ∆∆] =1*(100/2+(200-139.6088)+(200-150.3312)+(200-153.0517)+(200-153.5639)/2) =230.2264W 下边界热流量Φ2=|λ*[x y ∆∆mi t -t +x y ∆∆o j t -t +x y ∆∆p k t -t +2*t -t q l x y ∆∆]- h*(2*10-100x y ∆∆+x *t -t n ∆∆∞y +x *t -t o ∆∆∞y +x *t-t m ∆∆∞y +2*t -t p x y ∆∆∞)|=|1*((84.1429-20.1557)+(67.9096-15.4521)+(63.3793-14.8744)+(62.4214- 14.7746)/2)-10*(90/2+(20.1557-10)+(15.4521-10)+(14.8744-10)+(14.7746-10)/2)| = |-489.925|W =489.25W六、温度等值线Gauss:Yacobi:.\七、计算小结导热问题进行有限差分数值计算的基本思想是把在时间、空间上连续的温度场用有限个离散点温度的集合来代替,即有限点代替无限点,通过求解根据傅里叶定律和能量守恒两大法则建立关于控制面内这些节点温度值的代数方程,获得各个离散点上的温度值。