高中数学《椭圆及其标准方程》教学设计
《椭圆及其标准方程》教学设计一等奖3篇

4、《椭圆及其标准方程》教学设计一等奖一、教学内容解析1、地位与作用:本章是北师大版选修1—1的第二章《圆锥曲线与方程》,是高中数学解析几何的第二大部分。
解析几何是数学中一个重要的分支,它联系了数学中的数与形、代数与几何等最基本对象之间的联系。
在北师大版必修2中,学生已掌握了在平面直角坐标系下研究直线和圆的方法,本章教材进一步利用三种基本圆锥曲线深化代数与几何的关系。
本章教材内容的顺序是:椭圆→抛物线→双曲线→曲线与方程。
这样安排的用意是,先学圆锥曲线,再学曲线与方程,这样的顺序更有利于学生的学习,符合学生从特殊到一般,具体到抽象的认知规律。
在圆锥曲线的学习过程中,不断的渗透曲线与方程的思想,为学生理解并掌握“曲线与方程”这一概念奠定了基础。
本节是北师大版选修1—1的第二章《圆锥曲线与方程》第1节的内容,主要学习椭圆的定义、标准方程及其简单的应用,分为两课时,本节课是第1课时,主要学习椭圆的定义及其标准方程。
教材以椭圆为基础和重点说明了求方程并利用方程讨论几何性质的一般方法,然后在认知抛物线和双曲线中得到了巩固和应用,因此《椭圆及其标准方程》这一节课起到了承上启下的作用。
2、教材处理顺序教材在椭圆的定义这个内容的安排上是:先从直观上认识椭圆,再从画法中提炼出椭圆的几何特征,由此抽象概括出椭圆的定义,最后是椭圆定义的简单应用。
这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解。
教材在本节内容中只研究了中心在原点,焦点在轴上的椭圆的标准方程,让学生自己去归纳焦点在轴上的椭圆的标准方程。
这样的处理给学生提供了一次探究和交流的机会。
有利于学生对抛物线标准方程的理解,有利于学生思维能力的提高和学习兴趣的培养。
3、数学思想方法本节内容蕴含了:数形结合思想、转化化归思想等。
在推导椭圆标准方程过程中让学生体会移项再平方去根号的方法。
椭圆及其标准方程 教学设计-高二上学期数学人教A版(2019)选择性必修第一册

椭圆及其标准方程教学设计一、教学目标1.知识目标:(1)理解并掌握椭圆的定义和椭圆的标准方程;(2)能运用“先定位,后定量”的方法求解椭圆的标准方程。
2.能力目标:通过“先定位,后定量”求解方法,培养学生分析探索能力。
3.学科渗透:通过椭圆标准方程的教学,提高学生对知识的综合运用能力。
二、教材分析1.重点:椭圆的标准方程的求解方法。
2.难点:运用“先定位,后定量”求椭圆。
三、教学过程(一)复习回顾1.椭圆的定义平面内与两个定点F1,F2距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
设轨迹上任一点M到两定点F1,F2的距离和为常数2a,两定点间的距离为2c,由椭圆的定义,椭圆就是集合:M P={|MF1|+|MF2|=2a}(2a>2c=|F 1F2|)2.椭圆的标准方程焦点在x轴上和焦点在y轴上的椭圆的标准方程比较:标准方程x2a2+y 2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)不同点图形焦点坐标F1(−c,0),F2(c,0)F1(0,−c),F2(0,c)相同点定义平面内与两个定点F1,F2距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
a,b,c关系a2=b2+c2焦点位置判断分母哪个大,焦点就在哪个轴上。
(二)精准释难已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过P(52,−32),求它的标准方程。
法一:解:椭圆的焦点在x轴上,设它的标准方程为x2a2+y2b2=1(a>b>0)∵c=2,且c2=a2−b2∴a2−b2=4……①又∵椭圆经过点P(52,−32)∴(52)2a2+(−32)2b2=1 ……②xyMOxyMOxyF1F2P联立①②可求得:a 2=10,b 2=6 ∴椭圆的标准方程为x 210+y 26=1法二: 解:椭圆的焦点在x 轴上, 设它的标准方程为x 2a2+y 2b 2=1(a >b >0)由椭圆的定义知,2a =√(52+2)2+(−32)2+√(52−2)2+(−32)2∴ a =√10 又∵ c =2∴ b 2=a 2−c 2=10−4=6 ∴所求椭圆的标准方程为x 210+y 26=1(三)课堂小结求椭圆的标准方程的步骤:(1)首先要判断焦点位置,设出标准方程:先定位 (2)根据椭圆定义或待定系数法求a,b :后定量(四)课后作业写出适合下列条件的椭圆的标准方程1.a =4,b =1,焦点在x 轴上;2.a =4,c =√15,焦点在y 轴上;3.a +b =10,c =2√5.4.求满足下列条件的椭圆的标准方程:xyF 1F 2P(1)两个焦点的坐标分别是(-4,0)和(4,0),且经过点(5,0).(2)焦点在y轴上,且经过点(0,2)和(1,0).(五)教学反思对学生的指导不够,有一个同学没有没有合作对象。
高中数学 3.1《椭圆及其标准方程》教学设计 北师大版选修2-1

《椭圆及其标准方程》教学设计【教学目标】1.理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;2.理解椭圆标准方程的推导过程及化简无理方程的常用的方法;3.了解求椭圆的动点的伴随点的轨迹方程的一般方法。
【导入新课】实例引入1.当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、试举出现实生活中圆锥曲线的例子.2.探究P 41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm 长,两端各结一个套),教师准备无弹性细绳子一条(约60cm ,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔尖(动点)满足的几何条件是什么?新授课阶段1. 椭圆的定义.把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆(ellipse ).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a +=.2.椭圆标准方程的推导过程设参量b 的意义:第一、便于写出椭圆的标准方程;第二、,,a b c 的关系有明显的几何意义.具体推导过程省略。
类比:写出焦点在y 轴上,中心在原点的椭圆的标准方程()222210y x a b a b+=>>. 例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程。
分析:由椭圆的标准方程的定义及给出的条件,容易求出,,a b c .引导学生用其他方法来解。
解:设椭圆的标准方程为()222210x y a b a b +=>>,因点53,22⎛⎫- ⎪⎝⎭在椭圆上, 则22222591104464a a b b a b ⎧⎧+==⎪⎪⇒⎨⎨=⎪⎪⎩-=⎩例 2 如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析:点P 在圆224x y +=上运动,由点P 移动引起点M 的运动,则称点M 是点P 的伴随点,因点M 为线段PD 的中点,则点M 的坐标可由点P 来表示,从而能求点M 的轨迹方程。
高中数学椭圆及其标准方程教案

2。
2.1椭圆及其标准方程(一)教学目标1。
理解椭圆的定义;2.理解椭圆的标准方程的推导,在化简椭圆方程的过程中提高学生的运算能力;3.掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。
(二)教学重点与难点重点:掌握椭圆的标准方程难点:会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。
(三)教学过程问题1:前面两节课,说一说所学习过的内容?1、曲线与方程的概念?2、求曲线的方程的步骤?引例1:1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长(说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题)引例2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的21,F F 两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆 分析:(1)轨迹上的点是怎么来的?(2)在这个运动过程中,什么是不变的?答:两个定点,绳长即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 点题:今天我们学习“椭圆及其标准方程” 活动二:师生交流、进入新知,(20分钟) 1、椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距即1212|PF |||||PF F F +>;焦点:12,F F ;焦距:12||F F注意:椭圆定义中容易遗漏的两处地方: (1)两个定点-—-两点间距离确定(2)绳长—-轨迹上任意点到两定点距离和确定思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(→线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(→圆)由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)问题2:你能利用上一节学过的坐标法求出椭圆的方程吗? 取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴设),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,又设M 与21,F F 距离之和等于a 2(c a 22>)(常数){}a PF PF P P 221=+=∴221)(y c x PF ++= 又,a y c x y c x 2)()(2222=+-+++∴,化简,得)()(22222222c a a y a x c a -=+-,由定义c a 22>,022>-∴c a令222b c a=-∴代入,得222222b a y a x b =+,两边同除22b a 得12222=+b y a x 此即为椭圆的标准方程它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程其中222b c a+=问题3:书本P39页思考? 问题4:书本P40页思考?注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在y 轴上(选取方式不同,调换y x ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+b y a x 中的y x ,调换,即可得12222=+bxa y ,也是椭圆的标准方程2、椭圆标准方程:(1)焦点在焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程12222=+by a x其中222b c a+=(2)焦点在焦点在y 轴上,焦点是),0(),,0(21c F c F -,中心在坐标原点的椭圆方程12222=+bx a y其中222b c a+=(3)方程),0,0(122n m n m ny m x ≠>>=+就不能肯定焦点在哪个轴上;由于m n与的大小关系判断焦点在那个坐标轴上。
椭圆及其标准方程教学设计

椭圆及其标准方程教学设计椭圆及其标准方程教学设计1前言:新课程改革实施以来,教学模式发生了重大的改变,由以往的“一言堂”形式向多种“开放式”教学模式进行转变,在教育观念的不断转变下,对于我们的一线老师也提出了更高的要求,新形势下,要想成为一名合格的老师,就需要不断的加强自己的业务能力,使自己能够变成一名受学生尊重和喜爱的老师,从而更好的提高学生的教学成绩。
基于以上原因,本人尝试制定出椭圆及其标准方程第一课时的教学设计如下:一,教材分析本节课是《全日制普通高中课程标准实验教科书》(选修1-1)(人民教育出版社课程教材研究所中学数学教材实验研究组编著)第二章《圆锥曲线与方程》第一节《椭圆》的第一课时。
在学习本课之前,我们已经学习了直接和圆的相关内容,使学生对于曲线和方程的概念有了一定的了解,同时,对于利用坐标法来研究几何也有了一定的认识,对于数形结合思想也有了一定的了解,从根本上来讲,本节课也属于曲线方程的一个延伸,也是利用坐标法来研究几何图形的进一步加强,本节课的掌握情况的好坏,将直接影响后面双曲线和抛物线的学习。
对于学好圆锥曲线也有重要的意义。
椭圆这一节课体现出来的一些学习方法对于后面双曲线和抛物线的学习有一个重要的引导作用,但是本节课也难度较大,对于缺乏数形结合能力,不爱作图的学生来廛,学习起来是非常困难的,尤其是我所要教授的是一群普通高中的学生,更是难上加难的。
二,学习对象分析1.学习对象本节课重点讲解内容是椭圆,经过上一节课的学习,学生有了一些求点的轨迹问题的知识基础和能力,但是由于我们的学生作为普通高中的一名学生,在高中招走700名学生后,才进入到我们学校的学生来讲,他们的起点低,学习习惯不好,导致了我们的教学难度的加大,所以,从研究圆,跨越到椭圆,学生会存在一定学习上的障碍,教学过程中更要注意这方面的教学。
对于学生的抽象思维,分析能力都是一个较大的考验。
2.知识基础上课前,要对学生对于直线和圆的方程,以及曲线和方程部分知识点进行适当的回顾,将学生拉到利用坐标法来解决实际问题的过程中来。
椭圆及其标准方程一优秀教学设计精选全文完整版

可编辑修改精选全文完整版教学设计(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导13分钟1.标准方程的推导.教师引导学生得出椭圆方程,由a、b的关系判定焦点在哪一个坐标轴上。
2.教师给出表格和学生一起总结椭圆的方让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。
教师结合猜想加以引导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与8分钟,练习12分钟例1求适合下列条件的椭圆的标准方程:1.教师引导学生得学生自己写解题过程 2.学生板演 3.学生讨论4.老师出示练习题(课件)学生做练习题(1)掌握椭圆方程a、b之间的关系 (2)掌握运用椭圆定义法、待定系数法求椭圆的标准方程。
椭圆及其标准方程》教学设计

《椭圆及其标准方程》教学设计一、学习对象分析本节课是高二数学课程内容,经过前期学习,学生已具备探究有关点的轨迹问题的知识基础和学习能力。
这个阶段的学生还以抽象逻辑思维为主要发展趋势,但仍需要依赖一定具体形象的经验材料来理解抽象的逻辑关系。
本节内容对学生的分析能力要求较高。
二、教学目标1知识与技能目标1 掌握椭圆的定义(理解椭圆、椭圆的焦点和焦距的定义)及其标准方程;2 通过对椭圆标准方程的探求,进一步感受曲线方程的概念,增强运用坐标法解决几何问题的能力及运算能力,体会数形结合的数学思想;3 会根据条件写出椭圆的标准方程。
2过程与方法目标1 学生通过动手画椭圆、讨论探究椭圆定义、自主推导椭圆标准方程的过程,提高动手能力、合作学习能力和运用知识解决实际问题的能力;2 通过对实际问题分析,培养学生利用数形结合思想解决问题、将抽象转化为具体、归纳知识、逻辑思维以及建模方面的能力;3情感态度与价值观目标1 在引入椭圆概念的过程中,让学生亲自动手画图,让学生体会知识产生的全过程,帮助学生树立运动、变化的辩证唯物主义思想。
2 在椭圆定义的分析中,还可借助计算机实践操作,拓展知识面,激发学生学习数学的兴趣,通过小组积分的方式贯穿课堂,增强学生的竞争意识和合作意识。
3 通过椭圆方程的建模过程,体会数学的简洁美、对称美及其理性和严谨,帮助学生形成严谨的科学态度。
三、学习重、难点1重点:感受建立曲线方程的基本过程,掌握椭圆的定义及标准方程。
突破重点关键:运用道具演示椭圆的形成,使学生从感性认识上升到理性认识。
2难点:椭圆标准方程的建立和应用。
突破难点关键:掌握建立坐标系与应用的方法。
四、教法、学法设计1教法新课标的理念倡导“以人为本”,强调“以学生发展为核心”。
由于高三1班的重点班学生思维比较活跃,又有相应的知识基础,所以本节课主要采用探究式、启发式相结合的教学方法,并充分利用多媒体、计算机软件和自制教具辅助教学,体现多媒体快捷、形象、大容量的优势与自制教具直观、实用优势的结合。
椭圆及其标准方程优秀教学设计

椭圆及其标准方程【教学目标】一、知识目标:1.使学生理解椭圆的定义,掌握椭圆的标准方程及其推导。
2.学会椭圆及其标准方程的初步应用。
二、过程与方法目标:1.亲历知识的建构过程,培养学生归纳、推理能力,提高提出问题、分析和解决问题的能力。
2.体验探究数学问题的方法,提高学生的数学思维能力。
三、情感与态度目标:1.通过欣赏现实生活中和椭圆有关的图形,感受到数学在现实生活中的广泛应用,产生对数学的亲近感。
2.体验数学发现和创造的历程,感悟“数学美”,激发学习热情,初步形成正确的数学观,创新意识和科学精神。
【教学重难点】1.重点:(1)椭圆定义的形成过程。
(2)椭圆标准方程的推导过程。
2.难点:(1)椭圆定义和椭圆标准方程的联系(2)比较复杂的根式化简问题。
【教学过程】一、揭示概念背景,创设问题情境法国著名数学教育家G。
绍盖说:“一堆没有亲身体验或视觉形象所支持的概念定义不能开发智力,只能关闭思路。
”为了使同学们能够很好地完成本节课的探究任务,在课前,我让同学们利用课余时间搜集日常生活中的椭圆图形,并在上课开始分组进行展示。
这样做的目的是培养同学们搜集信息,处理信息的能力,能够使他们意识到数学来源于生活,必将为生活服务。
在课前展示的过程中同学们不仅体验到发现的乐趣,分享的惊喜而且必将激发对本节课内容的深入思考。
学生用事先准备好的工具画出椭圆的图形,这个亲手的实践活动至少包含两方面的重要意义。
第一、准备工具既要动手又要动脑,如何选择合适的材料来做这个工具,这就打破了教室的局限,向社会延伸,从而有效的开拓了学生发展的活动空间。
第二、在动手描画的过程中增强了学生对椭圆图形的感受力,并为学生独立抽象出椭圆的定义创设了条件(即为学生从感性认识上升到理性认识铺设了脚手架)。
随着活动空间的不断开放,学生的思维空间和想象空间也相应的得到了拓展,在这个过程中,同学们将进入到本节课的核心阶段:独立给出椭圆的定义并独立推导椭圆的标准方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《椭圆及其标准方程》教学设计
一、教学目标
学习椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。
二、教学重点、难点
(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。
(2)教学难点:椭圆标准方程的建立和推导。
三、教学过程
(一)创设情境,引入概念
1、动画演示,生活中的椭圆。
天体运动轨道是椭圆,有些镜子做成椭圆形状。
2、动画演示
思考:什么是椭圆?怎样画椭圆? (二)实验探究,形成概念
1、动手实验:学生分组动手画出椭圆。
实验探究:
保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化? 思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 2、概括椭圆定义 引导学生概括椭圆定义
椭圆定义:平面内与两个定点21,F F 距离的和等于常数(大于21F F )的点的轨迹叫椭圆。
教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。
思考:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+ 思考:
1、定义中的常数为什么要大于焦距?
2、若常数等于焦距,轨迹是线段
3、若常数小于焦距,轨迹不存在 注: 定义是判断椭圆的方法
M
2
F
1F
定义是椭圆的一个性质 (三)研讨探究,推导方程
1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是
【学情预设】学生可能会建系如下几种情况: 方案一:把F 1、F 2建在x 轴上,以F 1F 2的中点为原点; 方案二:把F 1、F 2建在x 轴上,以F 1为原点; 方案三:把F 1、F 2建在x 轴上,以F 2为原点;
(学生观察椭圆的几何特征(对称性),如何建系能使方程更简洁?) 经过比较确定方案一. 2.推导标准方程.
选取建系方案,让学生动手,尝试推导.
按方案一:以过1F 、2F 的直线为x 轴,线段12F F 的垂直平分或线为y 轴,建立平面直角坐标系.设)0(221>=c c F F ,点),(y x M 为椭圆上任意一点,
则 {}a MF MF M P 221=+=, ∴ 得
()()a y c x y c x 22
22
2=+++
+-,
(想一想:下面怎样化简?)
(1)教师为突破难点,进行引导设问:
我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?化简,得
)()(22222222c a a y a x c a -=+-.
(2)b 的引入.
由椭圆的定义可知,c a 22>, ∴220a c ->.
让点M 运动到y 轴正半轴上(如图2),由学生观察图形直观获
得a ,c 的几何意义,进而自然引进b ,此时设222c a b -=,
于
是得2
2
2
2
2
2
b a y a x b =+, 两边同时除以2
2
b a ,得到方程:()22
2210x y a b a b
+=>>(称为椭圆
的标准方程).
(3)建立焦点在y 轴上的椭圆的标准方程.
图2
要建立焦点在y 轴上的椭圆的标准方程,又不想重复上述繁琐的化简过程,如何做? 方法:按步骤列出方程,利用两方程结构的异同(结构相同,只是字母x ,y 交换了位
置),直接得到方程()22
2210y x a b a b
+=>>.
图1 图3
4.归纳概括,掌握特征.
(1)椭圆标准方程形式:它们都是二元二次方程,左边是两个分式的平方和,右边是1; (2)椭圆标准方程中三个参数a , b , c 的关系:222c a b -=)0(>>b a ; (3)椭圆焦点的位置由标准方程中分母的大小确定. (四)归纳概括,方程特征 1、观察椭圆图形及其标准方程,师生共同总结归纳
(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴; (2)椭圆标准方程形式:左边是两个分式的平方和,右边是1; (3)椭圆标准方程中三个参数a,b,c 关系:
(4)椭圆焦点的位置由标准方程中分母的大小确定; (5)求椭圆标准方程时,可运用待定系数法求出a,b 的值。
(五)尝试应用,范例教学.
例1 下列哪些是椭圆的方程,如果是,判断它的焦点在哪个坐标轴上?并指明a 、b ,说出焦点坐标.
22(1)11616x y += 22(2)12516
x y +=
22(3)9252250x y --= 22
22
(4)11
x y
m m +=+ 注意:分母哪个大,焦点就在哪个坐标轴上,反之亦然. (六)小结归纳,提高认识
师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。
(七)作业训练,巩固提高
1.P46 习题
2.1A 组第 1 题,第2题第①小题.
(八)板书设计。