数值分析:第一章 绪论

合集下载

数值分析课程第五版课后习题答案

数值分析课程第五版课后习题答案

*
[解] = (0.031 × 385.6) 1 × 10 − 4 + (1.1021 × 385.6) 1 × 10 −3 + (1.1021 × 0.031) 1 × 10 −3 ; 2 2 2 −3 −3 −3 = 0.59768 × 10 + 212.48488 × 10 + 0.01708255 × 10 = 213.09964255 × 10 −3 = 0.21309964255
ε * (R* ) 1 1 1 从而 ε * ( R * ) = 1% × R * ,故 ε r* ( R * ) = 。 = 1% × = * 3 300 3 R
6 、设 Y0 = 28 ,按递推公式 Yn = Yn −1 − 1 783 (n = 1,2, ) 计算到 Y100 ,若取 100
783 ≈ 27.982 (五位有效数字, )试问计算 Y100 将有多大误差? [解]令 Yn 表示 Yn 的近似值, e * (Yn ) = Yn − Yn ,则 e * (Y0 ) = 0 ,并且由 1 1 × 27.982 , Yn = Yn −1 − × 783 可知, 100 100 1 × (27.982 − 783 ) ,即 Yn − Yn = Yn −1 − Yn −1 − 100 1 2 从 e * (Yn ) = e * (Yn −1 ) − × (27.982 − 783 ) = e * (Yn − 2 ) − × (27.982 − 783 ) = , 100 100 Yn = Yn −1 − 而 e * (Y100 ) = e * (Y0 ) − (27.982 − 783 ) = 783 − 27.982 ,
而 783 − 27.982 ≤
1 1 × 10 −3 ,所以 ε * (Y100 ) = × 10 −3 。 2 2

《数值分析》第1章 引言

《数值分析》第1章 引言
362880
( 1.2)
可见结果是相当精确的.实际上结果的六位数字都是正确的.
2 算法常表现为一个连续过程的离散化
例2 计算积分值
1
I
1
dx
0 1 x
编辑ppt
结束
将[0,1]分为4等分,分别计算4个小曲边梯形的面积的 近似值,然后加起来作为积分的近似值(如图1-1).记被积 函数为 f(x) ,即 f (x) 1
数值分析是计算数学的一个主要部分,方法解决科 学研究或工程技术问题,一般按如下途径进行:
实际问题
模型设计
算法设计
程序设计
上机计算
编辑ppt
问题的解 结束
其中算法设计是数值分析课程的主要内容.
数值分析课程研究常见的基本数学问题的数值解法.包含 了数值代数(线性方程组的解法、非线性方程的解法、矩阵求 逆、矩阵特征值计算等)、数值逼近、数值微分与数值积分、 常微分方程及偏微分方程的数值解法等.它的基本理论和研究 方法建立在数学理论基础之上,研究对象是数学问题,因此 它是数学的分支之一.
误差限:*|e*|的一个上 . 界
例如,毫 76米 5x尺 0.5
在工程中常记为:x= x*± *.
如 l=10.2±0.05mm ,R=1500±100Ω
编辑ppt
2、相对误差与相对误差限 误差不能完全刻画近似值的 精度.如测量百米跑道产生10cm的误差与测量一个课桌长度 产生1cm的误差,我们不能简单地认为后者更精确,还应考 虑被测值的大小.下面给出定义:
误差分析是一门比较艰深的专门学科.在数值分析中主要 讨论截断误差及舍入误差.但一个训练有素的计算工作者, 当发现计算结果与实际不符时,应当能诊断出误差的来源, 并采取相应的措施加以改进,直至建议对模型进行修改.

数值分析教材

数值分析教材

第一章绪论与误差第一节数值分析研究对象及特点一、数值分析课的地位:数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支。

它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

用计算机解决科学技术和工程问题的步骤:实际问题→建立数学模型→研究计算方法→程序设计→上机计算→求出结果。

例如:⑴ 某一地区的地形图,用空中航测方法,空中连续拍照。

⑵ 为形成三维地形图,建立了一个大型超定线性方程组。

⑶ 采用最小二乘方法求解该方程组的最小二乘解, 然后再整体平滑。

⑷ 编程序,形成一个大型程序,上机进行计算。

二、数值分析课的主要内容:计算机只能进行加减乘除四则运算和一些简单的函数计算(即使是函数也是通过数值分析方法处理,转化为四则运算而形成了的一个小型软件包)。

1.数值代数:求解线性和非线性方程的解法, 分直接方法和间接方法。

2.插值和数值逼近。

3.数值微分和数值积分。

4.常微分方程和偏微分方程数值解法。

三、数值分析具有的特点1. 面向计算机,要根据计算机的特点提供切实可行的有效算法,即算法只能包含加、减、乘、除和逻辑运算,这些运算是计算机能直接处理的运算。

2. 有可靠的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和数值稳定性,还要对误差进行分析。

3. 要有好的计算复杂性。

时间复杂性好是指节省时间,空间复杂性好是指节省存储量,这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。

4. 要有数值试验,即任何一个算法除了从理论上要满足上述三点外还要通过数值试验证明是行之有效的。

四、对算法所要考虑的问题:1. 计算速度1 例如:求解一个20阶线性方程组,用加减消元法需3000次乘法运算,而用克莱姆法则要进行次运算,如用每秒1亿次乘法运算的计算机要30万年。

2. 存储量。

大型问题有必要考虑。

3. 数值稳定性。

在大量计算中,舍入误差是积累还是能控制,这与数值稳定性算法有关。

例一元二次方程其精确解为如用求根公式:以及字长为8位的计算器求解有:则:,那么: 的值与精确解有天壤之别。

数值分析

数值分析
误差:e( x1 x2 ) x1 e( x2 *) x2 e( x1 ) x1 x2 x1 x2 x1 e( x2 *) x2 e( x1 ) e( x1 )e( x2 *) 误差限: ( x x ) x ( x2 *) x2 ( x )
* * 1 2 * 1 * * 1 * * * * * * * * * * *
到x *的第一位非零数字共有 n位,就说x * 有n位有效数字.

x* 10m (a1 a2 101 an 10( n1) ) 1 x x * 10mn1 2
(2.1)
其中a1 0 . 并且 (2.2)
例1
• 按四舍五入写出下述各数具有5位有效数字的近似 数: 187.9325 0.037 855 51 8.000 033 2.718 281 8
加法和减法结果的误差
(x
* 1
x2 ) ( x1 x2 )
* 1
*
(x
x1 ) ( x2 x2 )
*
*
e( x ) e( x2 )
* 1
误差限: (x x ) (x ) (x )
* 1 * 2 * 1 * 2
乘法的结果误差
x x x1 x2 x x ( x x1 x )(x2 x2 x2 ) x1 x2 ( x1 e( x1 ))(x2 e( x2 )) x x x x x e( x2 ) x2 e( x ) e( x )e( x2 ) x e ( x2 ) x2 e ( x ) e ( x ) e ( x 2 )
例2 重力加速度
若以m/s2为单位, g≈9.80m/s2, 1 m n 1 1 * 10 g 9.80 102 , 2 2 * 1 按(2.1), m 0, n 3. 绝对误差限 1 102. 2 若以km/s2为单位, g≈0.00980m/s2, 1 g 0.00980 105 , 2 * 1 按(2.1), m 3, n 3. 绝对误差限 2 105. 2 而相对误差限相同:

数值分析引论习题与答案(易大义版)

数值分析引论习题与答案(易大义版)

数值分析引论课后习题与答案易大义版第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式(1.2.2)(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)(2)4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限.解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。

线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3)由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

数值分析--第1章 绪论

数值分析--第1章 绪论

数值分析--第1章绪论第一章绪论上世纪中叶诞生的计算机给科学、工程技术和人类的社会生活带来一场新的革命。

它使科学计算平行于理论分析和实验研究,成为人类探索未知科学领域和进行大型工程设计的第三种方法和手段。

在独创性工作的先行性研究中,科学计算更有突出的作用。

在今天,熟练地运用电子计算机进行科学计算,已成为科学工作者的一项基本技能。

然而,科学计算并不是计算机本身的自然产物,而是数学与计算机结合的结果,它的核心内容是以现代化的计算机及数学软件为工具,以数学模型为基础进行模拟研究。

近年来,它同时也成为数学科学本身发展的源泉和途径之一。

1 数值分析的研究对象与特点数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

一般地说,用计算机解决科学计算问题,首先需要针对实际问题提炼出相应的数学模型,然后为解决数学模型设计出数值计算方法,经过程序设计之后上机计算,求出数值结果,再由实验来检验。

概括为实际问题数学模型计算方法程序设计计算结果由实际问题的提出到上机求得问题的解答的整个过程都可看作是应用数学的任务。

如果细分的话,由实际问题应用有关科学知识和数学理论建立数学模型这一过程,通常作为应用数学的任务,而根据数学模型提出求解的数值计算方法直到编出程序上机计算出结果,这一过程则是计算数学的任务,即数值分析研究的对象。

因此,数值分析是寻求数学问题近似解的方法、过程及其理论的一个数学分支。

它以纯数学作为基础,但却不完全像纯数学那样只研究数学本身的理论,而是着重研究数学问题求解的数值方法及与此有关的理论,包括方法的收敛性,稳定性及误差分析;还要根据计算机的特点研究计算时间最省(或计算费用最省)的计算方法。

有的方法在理论上虽然还不够完善与严密,但通过对比分析,实际计算和实践检验等手段,被证明是行之有效的方法也可采用。

因此数值分析既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际试验的高度技术性的特点,是一门与使用计算机密切结合的实用性很强的数学课程。

第1章数值分析-绪论

第1章数值分析-绪论

实际运算 Er (a) (x a) / a
r / a
例5 a=3.14是π的近似值。
E(a) 3.14 0.002
Er
(a)
0.002
0.002 3.14
6.36942104
三、有效数字 例如 3.14159265...
取3位,a=3.14,δ≤0.002 取5位,a=3.1416,δ≤0.000008
a 10m 0.a1a2...an
a1是1到9中的一个整数, a2,…,an为0到9中的任
意整数。m为整数,

E(a) x a 1 10mn 2
成立,
ห้องสมุดไป่ตู้
则称a近似 x 有n位有效数字。
【注】 近似数的有效数字不但给出了近似值的大小, 而且还指出了它的绝对误差限。
数值分析——绪论
例6 设 x 0.002567, a 0.00256 102 0.256 则 x a 0.00005 1 104
2
因为m=-2,所以n=2, 即a有2位有效数字。
若 a 0.00257 102 0.257

x a 0.000003 0.000005 1 105 2
因为m=-2,所以n=3, 即a有3位有效数字。
例7 设x =8.00001,则a=8.0000具有5位有效数字。
例如,用毫米刻度的米尺测量一长度 x , 读出和该长度接近的刻度 a, a 是 x
的近似值,它的误差限是0.5mm.如读出的长度 是765mm,则
x 765 0.5 764.5 x 765.5
数值分析——绪论
对于一般情形 x a 即
a x a ,有时记为 x=a
例4 绝对误差的局限性例子。

数值分析第五版_李庆扬__课后习题答案

数值分析第五版_李庆扬__课后习题答案

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。

解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少?解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=10099Y Y ∴=-9998Y Y =9897Y Y =……10Y Y =-依次代入后,有1000100Y Y =-即1000Y Y =27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络设计与计算:搜索引擎的设计
航空航天工程:神州飞船系列
数值计算方法的意义、内容与方法
20 世纪最伟大的科学技术发明---计算机 计算机是对人脑的模拟,它强化了人的思维智能;
计算机的发展和应用,已不仅仅是一种科学技术 现象,而且成了一种政治、军事、经济和社会现象; 没有软件的支持,超级计算机只是一堆废铁而已;
图 7.8
(x x3)2 ( y y3 )2 (z z3 )2 (t3-t) c 0
(x x4 )2 ( y y4 )2 (z z4 )2 (t4 -t) c 0
(x x5 )2 ( y y5 )2 (z z5 )2 (t5 -t) c 0
(x x6 )2 ( y y6 )2 (z z6 )2 (t6 -t) c 0
计算机辅助设计:波音777应用三维立 体建模,数字化设计与有限元计算的 第一架喷气客机。
医学与生物工程:CT、核磁共振与 Radon 变换;至病基因与药物设计;人 造生物材料的彷真响应;传染病动力学 模型。
电子系统自动化设计: 大规模集成电路的设计与逻辑检测。
材料设计: 性能设计的大规模计算与模拟:设计用 于生产新的高热值、高压材料中的化学 蒸发沉淀反应器。
答曰:上禾一秉九斗四分斗之一。中禾 一秉四斗四分斗之一。下禾一秉二斗四 分斗之三。-------《九章算术》
a11 a12 a1n x1 b1
a21
ห้องสมุดไป่ตู้
an1
a22
an2
a2n
ann
x2
b2
xn bn
Axb
线性方程组的求解!
2、天体力学中的Kepler方程
这个问题就是要求由函数f(x)=sin x 给定的曲线 从x=0到x=48英寸间的弧长L.
由微积分学我们知道,所求的弧长可表示为:
L 48 1 ( f ' (x)) 2 dx 48 1 (cos x)2 dx
0
0
上述积分称为第二类椭圆积分,它不能用普通 方法来计算.
数值积分!
7. 蝴蝶效应
洛伦兹吸引子(Lorenz attractor)是由MIT大学的气象学家E dward Lorenz在1963年给出的,他给出第一个混沌现象——蝴 蝶效应。
图1 蝴蝶效应示意图
洛伦兹方程是大气流体动力学模型的一个简化的常微分方程组:
dx dt
x
y
dy
dt
rx
y
xz
dz dt
bz
xy
该方程组来源于模拟大气对流,该模型除了在天气预报中有显 著的应用之外,还可以用于研究空气污染和全球侯变化。洛伦 兹借助于这个模型,将大气流体运动的强度x与水平和垂直方
软件的核心就是算法。 算法犹如乐谱, 软件犹如CD盘片, 而硬件如同CD唱机。
诺贝尔奖得主,计算物理学家 Wilson提出
向的温度变化y和z联系了起来。参数 称为普兰特数,r是规范 化的瑞利数,b 和几何形状相关。洛伦兹方程是非线性方程组,
无法求出解析解,必须使用数值方法求解上述微分方程组。洛
伦兹用数值解绘制结果图1,并发现了混沌现象。
常(偏)微分方程数值解!
现代科学计算在工程计算中的应用
天气预报: 计算能力的发展将把海洋、大气和生态系统 的综合知识融合成一个气象变化模型。
根据这些数据,希望合理地估计出其它深度(如500米, 600米,1000米…)处的水温.
插值法!
5、人口预测
下面给出的是中国1900 年到2000年的人口数, 我们的目标是预测未来 的人口数(数据量较大
时)
y 1t 3 2t 2 3t 4
s (t 1979) / 30
y 1s3 2s2 3s 4
车辆与道路工程设计与模拟: 车辆与道路相互作用综合系统设计。
信息与通信工程:GPS卫星导航
燃烧与爆炸工程: 燃烧对环境的影响;计算流体力学 与爆炸工程。 存储与物流系统: 工农业发展使得产品的存储、交流和时效 性极大提高;废物和垃圾问题成为城市生 活的重大问题。规划计算和系统分析成为 常用计算方法。
§1 Introduction
数值分析 能够做什么?
应用问题举例
1、一个两千年前的例子
今有上禾三秉,中禾二秉,下禾一秉,
实三3十x九斗;2 y z 39 上禾二秉,中禾三秉,下禾一秉,
2x 3y z 34 实三十四斗; 上禾一秉,中禾二秉,下禾三秉, 实二十六斗。
问上x、中、2下y禾实一3秉z各几何2?6
数据拟合!
1950 1960 1970 1980 1990 2000
55196 66207 82992 98705 114333 126743
6、铝制波纹瓦的长度问题
建筑上用的一种铝制波纹瓦是用一种机器 将一块平整的铝板压制而成的.
假若要求波纹瓦长4英尺,每个波纹的高度(从 中心线)为1英寸,且每个波纹以近似2π英寸为 一个周期. 求制做一块波纹瓦所需铝板的长度 L.
f1(x1, x2 ,
f
2
(
x1,
x2
,
fn (x1, x2 ,
xn ) 0 xn ) 0
xn ) 0
F(x) 0
记为
其中,F : D Rn Rn, x (x1, x2 ,
, xn )T
非线性方程组的求解!
4、已经测得在某处海洋不同深度处的水温如下:
深度(M) 466 741 950 1422 1634 水温(oC)7.04 4.28 3.40 2.54 2.13
x sin x t 0,0 1
x是行星运动的轨道,它是时间t 的 函数.
非线性方程求根!
3、全球定位系统(Global Positioning System, GPS)
全球定位系统: 在地球的任何一 个位置,至少可 以同时收到4颗 以上卫星发射的
信号
8
S6
S5
(x, y, z表,t示) 地球上一个
6
接收点R的当前位置,
Height
4
S3
卫星Si的位置为
2
S4
(xi , yi , z,i ,则ti 得) 到下列
S1
非线性方程组
0
R
10
S2 5
8
4
6
(x x1)2 ( y y1)2 (z z1)2 (t1-t) c 0
2 N-S positions 0 0
(x x2 )2 ( y y2 )2 (z z2 )2 (t2 -t) c 0
相关文档
最新文档