九年级下学期数学第二次月考试卷分析

合集下载

初三数学月考学生反思总结7篇

初三数学月考学生反思总结7篇

初三数学月考学生反思总结7篇初三数学月考学生反思总结7篇如何把初三数学月考学生反思总结做到重点突出呢?在日常生活中,我们要有一流的课堂教学能力,反思自己,必须要让自己抽身出来看事件或者场景,看一段历程当中的自己。

下面是小编为大家整理的关于初三数学月考学生反思总结,如果喜欢可以分享给身边的朋友喔!初三数学月考学生反思总结【篇1】1、基本概念、基本技能的教学还应加强本次考试基础知识部分比重偏大,从答卷情况上看,基础知识部分很多同学还存在着对知识点掌握不全面、不准确的情况,在各道题上都有表现。

从本次考试中暴露出的问题有:部分学生对比例的意义理解不清,圆柱的表面积体积整体计算能力不强,计算不够熟练,计算准确率偏低,从总体上看学生掌握的情况最不好,不仅成绩低的学生失分,甚至高分段的学生在这部分也有失分。

2、审题能力、分析能力有待提高好象每次做试卷分析在说完基础知识方面的问题后,都要强调一下审题,本次考试也不例外。

没有做到“认真细心”这4字。

虽然我们教师对每次考试前都强调一些关于答题时的注意事项,审题时要注意看清问题,不要把要求看错。

3、学生的一些习惯不规范作为小学生,有很多习惯应该养成,在本次考试的试卷上,好几个学生数字抄错。

这些看似小毛病,但可能在考试时可能就会成为学生失分的原因。

我们应该未雨绸缪,让学生养成一个好的习惯。

针对这些问题,在以后的教学中要有针对性的做好以下几点:1、“要抓质量,先抓习惯”。

平时在教学中,注意抓好学生的书写、审题与检查等良好的学习习惯。

2、脚踏实地打好基础对于基础知识、基本技能的教学一定要注重知识点的全面性、准确性、系统性。

在教学中一定要注意知识点的讲解必须全面,不放过每一个知识点,而且讲解必须准确、无误;在教学中要注重引导学生将知识形成一个系统,这样便于学生理解、记忆;还要注重培养学生的语言表达能力,文字表述要准确、切中要害。

特别指出的是:我班学生计算的基本功严重低下,计算能力差,计算的熟练度低,已成为提高数学成绩的“绊脚石”。

数学月考总结反思(精选10篇)

数学月考总结反思(精选10篇)

数学月考总结反思(精选10篇)新高一月考结束,看到不少学生数学成绩出现了严重的滑坡。

其中也包括中考的数学尖子生,这些学生感到很困惑:数学尽管投入了大量的时间和精力,但成绩十分的不理想,高中数学太难了!最近走访了一些数学行家,他们认为造成这样的原因,主要是初中数学和高中数学存在着巨大的差异,而部分学生又没有为此做好充分的准备,从而导致初高中的衔接不好。

那么,初高中的数学究竟存在着怎样的差异呢?首先是知识内容的差异。

初中数学知识少、难度低。

高中数学知识广泛,具有较强的抽象性和理论性,尤其是在高一,开始碰到的就是理论性、抽象性很强的集合、函数等概念,使一些初中数学基础很好的学生也难以适应。

其次是学法上的差异。

初中是义务制教育阶段,只要记忆概念、公式及例题类型,不需要独立思考和对规律进行归纳总结,一般都可以取得好成绩;高中数学学习要求勤于思考,善于归纳总结规律,注意应用,掌握数学思想方法,做到举一反三,触类旁通,提倡自主学习和研究性学习。

养成良好的数学学习习惯,才会使自己的学习感到有序而轻松。

第三是教法上的差异。

初中数学教学要求较低,教学进度较慢,对于一些重点、难点,教师可以有充裕的时间反复讲解、多次演练,从而各个击破;高中数学教学教材内涵丰富,题目难度加深,知识的重点和难点不可能像初中那样通过反复强调来排难释疑。

教学往往通过设导、设问、设陷、设变,启发引导,开拓思路,然后由学生自己思考、去解答,侧重对思想方法的渗透和思维品质的培养。

第四是思维要求的差异。

初中数学的思维方法更趋向于形象和合情,而高中数学的思维方法更趋向于抽象和理性,对数学思想、数学方法的要求较高,要求学生能从多角度、多方面思考问题,在创新能力、应用意识上有更高的要求。

初中数学一般要求学生按定量来分析问题,这样的思维过程,只能片面地、局限地解决问题。

在高中数学学习中,将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。

一、总体情况:二、试卷特点评析:数学的基础知识、基本技能和基本的思想方法是发展能力、提高素养的重要载体。

考试总结和反思试卷分析

考试总结和反思试卷分析

考试总结和反思试卷分析(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如规章制度、岗位职责、会议纪要、应急预案、合同协议、条据文书、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as rules and regulations, job responsibilities, meeting minutes, emergency plans, contract agreements, document documents, planning plans, teaching materials, essay summaries, and other sample texts. If you want to learn about different sample formats and writing methods, please pay attention!考试总结和反思试卷分析个人考试总结和反思试卷分析7篇很多人都对自己的考试成绩自信满满,但最后出来的考试结果却总能让大家惊讶。

数学月考总结(15篇)

数学月考总结(15篇)

数学月考总结数学月考总结(15篇)数学月考总结1这次考试,我的成绩并不令我满意,回顾以往的学习,可能还是在方法和理解上存在问题。

为了提高数学成绩,以后我会从以下几个方面努力:首先,培养自己的细心、耐心,认真审题,读懂题目中的已知条件,隐含条件并充分利用;其次,上课认真听讲,掌握老师所讲的解题方法,以一推十,在遇到类似问题能够完全掌握;下课认真巩固,多做题,遇到不懂的地方,多问老师和同学,做到学一道题,会一类题;最后,我会充分总结这次考试的经验教训,争取下次不犯类似的错误。

数学月考总结2一、试题特点试卷较全面的考查了第一、二章所学习的内容,试题知识分布合理、难易适中,突出了对基础知识、主干知识的考查,符合新课标的教学理念,主要表现在:1、基本概念的考查上灵活、严谨、深刻,主要试题有(1、3、11)题,通过这些试题测试,可反映出学生对基本概念理解的准确程度及领悟能力。

2、基本运算的考查上,算法及变形能力的考查常规、基本,试题难易适中,主要试题有(2、4、6、8、14、18、19、21、22)题。

考查了,求值、变形、待定系数法及定性和定量的分析等初中常见的运算问题。

3、在思想方法的考查上,试题内容基本、综合层次分明,题型形式上,新颖、灵活、开放。

较全面考查了学生对所学知识的综合领悟能力及学生的数学思维品质。

二、从学生试题解答中,反映出教学中应注意的问题。

1、分层教学过程中,要把握为教学尺度,教学过程要有针对性。

从试卷的选择题、填空题的情况看学生优劣不等,这说明学生在基础知识的掌握上已经两极分化,对普通生而言,必须强化基础知识的教学,不要使学生在基本知识的形成上出现较大差距,要根据学生的情况,有针对性地进行教学。

2、重视初中生运算能力的培养。

从学生答题中可以看到计算题的失分率较高,许多重点生比普通学生的计算题得分率还低,而试题也没有要求较高的运算能力,这说明学生的运算能力很差。

而学生的运算能力是数学中的重要能力,因此有必要在教学时重视对学生运算方向的训练,传授一些基本的算法、算理,强调运算的准确性。

甘肃省酒泉市肃州区酒泉市第二中学2022-2023学年九年级下学期3月月考数学试题(含答案解析)

甘肃省酒泉市肃州区酒泉市第二中学2022-2023学年九年级下学期3月月考数学试题(含答案解析)

甘肃省酒泉市肃州区酒泉市第二中学2022-2023学年九年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图案中,不是轴对称图形的是()A .B .C .D .2.据报道,2022年11月29日23时08分,神舟十五号载人飞船在甘肃酒泉发射升空,与天和核心舱在距离地面393000米的太空轨道进行交会对接,用科学记数法表示我国空间站运行的轨道高度393000米为()A .439.310⨯B .53.9310⨯C .3.93100000⨯D .60.39310⨯3.下面四组线段中,四条线段不.成比例的是()A .a =3,b =6,c =2,d =4B .a =1,bc,d C .a =4,b =6,c =5,d =10D .a =2,b c d =4.下列二次根式是最简二次根式的是()AB C D 5.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为()A .30°B .45°C .60°D .75°6.若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是()A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)7.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是()A .1k <-B .1k >C .1k <且0k ≠D .1k >-且0k ≠8.如图,四边形ABCD 是O 的内接四边形,70B ∠=︒,则D ∠的度数是()A .110°B .90°C .70°D .50°9.不等式组10521x x ->⎧⎨-≥⎩的解集在数轴上表示正确的是()A .B .C .D .10.(2013年四川广安3分)已知二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.下列结论:①abc >0,②2a +b =0,③b 2﹣4ac <0,④4a +2b +c >0其中正确的是()A .①③B .只有②C .②④D .③④二、填空题11.若23a b =,则a bb -=_____.12.一元二次方程21202x x -=的根是________13.因式分解2a b b -的正确结果是________14.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为_____.15.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.16.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是_______17.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为______________m .18.如图,双曲线m y x =与ny x=在第一象限内的图象依次是m 和,n 设点P 在图象m 上,PC 垂直于x 轴于点C ,交图象n 于点A ,PD 垂直于y 轴于D 点,交图象n 于点B ,则四边形PAOB 的面积为_______三、解答题19.计算:2|+(﹣1)﹣120.解方程:()()221221x x +=+21.先化简,再求值22(1)b aa b a b÷---,其中2a =,1b =-22.如图,△ABC 中,∠C =90°,∠A =30°.(1)用尺规作图作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明)(2)连接BD ,求证:DE =CD .23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.24.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.25.如图,在平面直角坐标系xoy 中,函数()4y=x 0x>的图象与一次函数y=kx -k 的图象的交点为A (m ,2).(1)求一次函数的解析式;(2)设一次函数y=kx -k 的图象与y 轴交于点B ,若P 是x 轴上一点,且满足△PAB 的面积是4,直接写出点P 的坐标.26.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A 、B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量,如图,测得45DAC ∠=︒,60DBC ∠=︒,若132AB =米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果可带根号)27.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.28.如图,在平面直角坐标系中,抛物线经过点A (0,4),B (1,0),C (5,0),其对称轴与x 轴交于点M .(1)求此抛物线的解析式和对称轴;(2)在此抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案:1.A【详解】试题分析:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合.因此,A 、不是轴对称图形,故本选项正确;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误.故选A .考点:轴对称图形.2.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值是易错点,由于393000有6位,所以可以确定615n =-=.【详解】解:5393000 3.9310=⨯.故选:B .【点睛】此题考查科学记数法表示绝对值较大的数的方法,准确确定a 与n 值是关键.3.C【分析】若a ,b ,c ,d 成比例,即有::a b c d =.只要代入验证即可.【详解】A.3:62:4=,则::a b c d =,故a ,b ,c ,d 成比例,不符合题意;B.=::a b c d =,故a ,b ,c ,d 成比例,不符合题意;C.四条线段中,任意两条的比都不相等,因而不成比例,符合题意;2=::a b c d =,故a ,b ,c ,d 成比例,不符合题意;故选:C .【点睛】本题主要考查了成比例的定义,并且注意叙述线段成比例时,各个线段的顺序.4.C【详解】试题解析:A B ;D 因此这三个选项都不是最简二次根式,故选C .点睛:根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.C【详解】试题分析:过点D 作DE ∥a ,∵四边形ABCD 是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a ∥b ,∴DE ∥a ∥b ,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C .考点:1矩形;2平行线的性质.6.C【分析】先利用反比例函数(0)ky k x=≠的图象经过点(2,3)-,求出k 的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】解:∵反比例函数(0)ky k x=≠的图象经过点(2,3)-,∴k =2×(﹣3)=﹣6,∵(﹣2)×(﹣3)=6≠﹣6,(﹣3)×(﹣2)=6≠﹣6,1×(﹣6)=﹣6,,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(0)ky k x=≠的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .熟练掌握反比例函数的性质是解题的关键.7.D【分析】根据一元二次方程有两个不相等的实数根得到∆>0,即4+4k>0,且0k ≠,计算可得答案.【详解】解:∵一元二次方程2210kx x +-=有两个不相等的实数根,∴∆>0,即4+4k >0,且0k ≠,解得1k >-且0k ≠,故选:D .【点睛】此题考查了已知一元二次方程根的情况求参数,正确掌握一元二次方程根的三种情况是解题的关键.8.A【分析】先根据圆内接四边形的对角互补得出180D B ∠+∠=︒,即可解答.【详解】解: 四边形ABCD 是O 的内接四边形,180D B ∴∠+∠=︒,18070110D ∴∠=︒-︒=︒,故选:A .【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.C【分析】根据解不等式组的方法,可得不等式组的解集,根据不等式组的解集在数轴上的表示方法,可得答案.【详解】解:10521x x ->⎧⎨-≥⎩①②,解①得,1x >,解②得,2x ≤,∴不等式组的解集为12x <≤,把解集表示在数轴上,故选:C .【点睛】本题考查了一元一次不等式组的解法以及在数轴上表示不等式的解集,是基础知识比较简单.10.C【详解】∵抛物线的开口向上,∴a >0.∵b2a->0,∴b <0.∵抛物线与y 轴交于正半轴,∴c >0.∴abc <0,①错误.∵对称轴为直线x =1,∴b2a-=1,即2a +b =0,②正确.∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,③错误.;∵对称轴为直线x =1,∴x =2与x =0时的函数值相等,而x =0时对应的函数值为正数.∴4a +2b +c >0,④正确.综上所述,其中正确的有②④.故选C .11.13-【分析】根据23a b =,得到23a b =,代入式子计算即可.【详解】∵23a b =,∴23a b =,∴2133b ba b b b --==-,故答案为:13-.【点睛】此题考查代数式的求值,掌握等式的性质变形得到23a b =是解题的关键.12.10x =,24x =【分析】利用因式分解法求解.【详解】解:21202x x -=,∴()1402x x -=,∴0x =或40x -=,解得:10x =,24x =.故答案为:10x =,24x =.【点睛】本题考查的是解一元二次方程,解题的关键是掌握因式分解法.13.()()11b a a +-【分析】先提公因式b ,再利用平方差公式分解即可.【详解】解:2a b b -()21b a =-()()11b a a =+-故答案为;()()11b a a +-.【点睛】此题主要考查了分解因式,关键是掌握提公因式法和公式法的运用.14.13【分析】如图,作AD BC ⊥,垂足为D ,由图可知tan ADACB CD∠=,计算求解即可.【详解】解:如图,作AD BC ⊥,垂足为D由图可知21tan 63AD ACB CD ∠===故答案为:13.【点睛】本题考查了正切.解题的关键在构造直角三角形求正切值.15.12【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,再根据菱形的面积等于对角线乘积的一半求出面积解答.【详解】∵菱形的两条对角线的长分别为6和8,∴菱形的面积=12×6×8=24,∵O 是菱形两条对角线的交点,∴阴影部分的面积=12×24=12.故答案是:12.【点睛】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.16.12##0.5【分析】由从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;直接利用概率公式求解即可求得答案.【详解】解: 从长度分别为2,4,6,7的四条线段中随机取三条,可能的结果为:2,4,6;2,4,7;2,6,7;4,6,7共4种,能构成三角形的是2,6,7;4,6,7;∴能构成三角形的概率是:2142=.故答案为:12.【点睛】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.15【详解】解:根据同时同地物高与影长成正比.设旗杆高度为x 米,由题意得,1.8325x=,解得x=15.故答案为15.18.m n -##n m-+【分析】根据反比例函数系数k 的几何意义得到PCOD m S =矩形,12AOC BOD S n S ==△△,然后利用四边形PAOB 的面积AOC BOD PCOD S S S =--△△矩形进行计算.【详解】解:PC x ⊥ 轴,PD y ⊥轴,PCOD S m ∴=矩形,12AOC BOD S n S ==△△,∴四边形PAOB 的面积1122AOC BOD PCOD n S S S m n n m =--=--=-△△矩形.故答案为:m n -.【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数ky x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值||k .19.3.【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【详解】2|+(﹣1)﹣1=221﹣(﹣2)=21=3.【点睛】本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.x 1=-12,x 2=12.【分析】利用因式分解方法解此方程,具体先移项,再提组间公因式,转化成两个一元一次方程即可解答.【详解】解:()()221221x x +=+()()22121-2=0x x ++,()2122)=0-1x x ++(,2x+1=0或2x-1=0,解得:x 1=-12,x 2=12【点睛】本题考查用因式分解法解一元二次方程,解题关键是能把一元二次方程转化成两个一元一次方程,题目比较好,难度适中.21.1a b+,1【分析】根据分式的减法和除法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:原式()()baa b a b a b a b a b -⎛⎫=÷-+---⎝⎭()()ba b a b a b b-=⨯+-1a b=+当2a =,1b =-时,原式1121==-【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(1)作图见解析;(2)证明见解析.【详解】【分析】(1)分别以A 、B 为圆心,以大于12AB 的长度为半径画弧,过两弧的交点作直线,交AC 于点D ,AB 于点E ,直线DE 就是所要作的AB 边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD ,再根据等边对等角的性质求出∠DBA=∠A=30°,然后求出∠DBC=30°,从而得到BD 平分∠ABC ,再根据角平分线的性质即可得.【详解】(1)如图,DE 为所作;(2)如图,∵DE 垂直平分AB ,∴DA=DB ,∴∠DBA=∠A=30°,∵∠ABC=90°﹣∠A=60°,∴∠CBD=30°,即BD 平分∠ABC ,而DE⊥AB,DC⊥BC,∴DE=DC.【点睛】本题考查了线段垂直平分线的作法、线段垂直平分线上的点到线段两端点的距离相等的性质、角平分线的性质,熟练掌握作图方法以及相关性质是解题的关键.23.(1)13(2)13【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【详解】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是31. 93=(2)列表如下:A B C D E FA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为101. 303=【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.(1)120,30%;(2)作图见解析;(3)450.【分析】(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、“一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.【详解】解:(1)18÷15%=120人;36÷120=30%;(2)120×45%=54人,补全统计图如下:(3)1800×1218120+=450人.考点:条形统计图;扇形统计图;用样本估计总体.25.(1)y=2x -2;(2)(3,0),(-1,0).【分析】(1)将A 点坐标代入()4y=x 0x>求出m 的值为2,再将(2,2)代入y=kx -k ,求出k 的值,即可得到一次函数的解析式:(2)将三角形以x 轴为分界线,分为两个三角形计算,再把它们相加.【详解】解:(1)将A (m ,2)代入()4y=x 0x>得,m=2,则A 点坐标为A (2,2).将A (2,2)代入y=kx -k 得,2k -k=2,解得k=2.∴一次函数解析式为y=2x -2;(2)∵一次函数y=2x -2与x 轴的交点为C (1,0),与y 轴的交点为B (0,-2),∴112CP 2CP 422⋅⋅+⋅⋅=,解得CP=2.∴P 点坐标为(3,0),(-1,0).【点睛】本题考查反比例函数与一次函数的交点问题,曲线上点的坐标与方程的关系.26.()198+米【分析】过点D 作DE AC ⊥,垂足为E ,设BE x =,根据AE DE =,列出方程即可解决问题.【详解】解:过点D 作DE AC ⊥,垂足为E ,设BE x =,在Rt DEB △中,tan DEDBE BE∠=,60DBC ∠=︒ ,tan 60DE x ∴=︒=.又45DAC ∠=︒ ,AE DE ∴=.132x ∴+=,∴解得66x =+,198DE ∴==(米).∴观景亭D 到南滨河路AC 的距离约为()198米.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.27.(1)证明见解析;(2)3.【分析】(1)根据矩形ABCD 的性质,判定△BOE ≌△DOF (ASA ),进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.【详解】(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133,∵∴OB=12∵BD ⊥EF ,∴3,∴EF=2EO=3.【点睛】本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键28.(1)y=()2416355x --,抛物线的对称轴是x=3;(2)存在;P 点坐标为(3,85).(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.N (52,-3)【详解】(1)根据已知条件可设抛物线的解析式为y =a (x -1)(x -5).把点A (0,4)代入上式,解得a =45.∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165.∴抛物线的对称轴是直线x =3.(2)存在,P 点的坐标是(3,85).如图1,连接AC 交对称轴于点P ,连接BP ,AB .∵点B 与点C 关于对称轴对称,∴PB =PC .∴AB +AP +PB =AB +AP +PC =AB +AC .∴此时△PAB 的周长最小.设直线AC 的解析式为y =kx +b .把A (0,4),C (5,0)代入y =kx +b ,得4,{50.b k b =+=解得4,{54.k b =-=∴y =-45x +4.∵点P 的横坐标为3,∴y =-45×3+4=85.∴P (3,85).(3)在直线AC 下方的抛物线上存在点N ,使△NAC 的面积最大.如图2,设N 点的横坐标为tt ,此时点N (t ,45t 2-245t +4)(0<t <5).过点N 作y 轴的平行线,分别交x 轴,AC 于点F ,G ,过点A 作AD ⊥NG ,垂足为D .由(2)可知直线AC的解析式为y=-45x+4.把x=t代入y=-45x+4,得y=-45t+4.∴G(t,-45t+4).∴NG=-45t+4-(45t2-245t+4)=-45t2+4t.∵AD+CF=OC=5,∴S△NAC=S△ANG+S△CGN=12NG·AD+12NG·CF=12NG·OC=12×(-45t2+4t)×5=-2t2+10t=-2(t-52)2+252.∵当t=52时,△NAC面积的最大值为252.由t=52,得y=45×(52)2-245×52+4=-3.∴N(52,-3).。

月考试卷分析总结

月考试卷分析总结

月考试卷分析总结月考试卷分析总结总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它可以有效锻炼我们的语言组织能力,不如静下心来好好写写总结吧。

那么总结要注意有什么内容呢?下面是小编整理的月考试卷分析总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

月考试卷分析总结1为检验开学以来我校教师阶段性教学情况,使教师全面了解学生学习效果,以便在今后的教育教学工作中及时调整工作思路,做到教学高效,我校由教务处牵头,于2014年3月18日-3月21日,对七-九年级进行了本学期的第一次月考,现在对本次考试进行一下全面总结。

一、组织考试与阅卷情况本次考试,除5名学生因病未参加考试外,其它同学都按时参加了考试。

考试组织严密,教务处统一安排了考务,由于教学条件的限制,七、八年级于18-19日进行检测,在同一考场互相交叉,前后不同班、左右不同年级;九年级20—21日单独进行检测;每个考场考生单人单桌,桌兜朝前,并设两名监考教师。

为保证考试成绩的真实有效,教务处强调了考试纪律及监考教师的职责,频繁巡考,加大对考试纪律的检查,,坚决杜绝学生违纪行为的发生。

阅卷采取分年级分科流水作业,确保教师对同一题的评分标准一致,固定时间、固定地点,保证了批卷过程严谨、认真。

二、成绩分析。

(一)、成绩汇总(二)、成绩对比1、从平均分看,七年级最高的是9、10班,413.99分,最低的是5、6班,390.18分,极差为23.81分,其它三套分别在399-401之间。

八年级最高的是1、2班,481.72分,最低的是5、6班,438.26分,极差为43.46分,其它二套在459-464之间,与同年级第一名相差是比校大的。

九年级最高的是5、6班,343.39分,最低的是3、4班,315.65分,极差为27.24分。

这样从三个年级综合来看,极差最大的是八年级,其次是九年级,最小的是七年级。

九年级第二次月考数学试题

O B A第4题图DCO 第5题图CB AO第6题图CBA九年级第二次月考(数学)一 精心选一选(每小题3分,共30分)1.若一元二次方程ax 2+bx +c =0有一根为0,则下列结论正确的是( )A.a =0B.b =0C.c =0D.c ≠0 2.一元二次方程x 2-2x -1=0的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根3.抛物线y =(x -1)2+5的对称轴是( ) (A )直线x =1 (B )直线x =5 (C )直线x =-1 (D )直线x =-54、如图4,⊙O 的直径AB 垂直于弦CD 于点P ,且点P 是半径OB 的中点,CD =6cm ,则直径AB 的长是( )。

A 、cm B 、4cm C 、2cm D 、4cm5、如图5,点A 、B 、C 在⊙O 上,AO ∥BC ,∠OAC =20°,则∠AOB 的度数是( )。

A 、10°B 、20°C 、40°D 、70°6、如图6,△ABC 三顶点在⊙O 上,∠C =45°,AB =4,则⊙O 的半径是( )。

A 、B 、2C 、4D 、27.抛物线y =-5x 2-4x +7与y 轴的交点坐标为( )(A )(7,0) (B )(-7,0) (C )(0,7) (D )(0,-7) 8.抛物线y =2x 2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) (A )y =2(x -1)2-2 (B )y =2(x +1)2-2 (C )y =2(x +1)2+2 (D )y =2(x -1)2+29、如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心O.若∠B=25°,则∠C=( )A.20°B.25°C.40°D.50°10.下列图象中,当ab >0时,函数y =ax 2与y =ax +b 的图象是( )二、细心填一填(每小题4分,共32分)11.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为________.12.抛物线 y =-2(x +1)2+3的顶点坐标是 .13.如果一条抛物线的形状与y =-2x 2+2的形状相同,且顶点坐标是(4,-2),则它的解析式是 .14、如图,菱形ABCD 通过旋转得到菱形EFCG ,其中∠ADC: ∠DCB=3:1,∠DCF=15°,在这个旋转过程中,旋转中心是 ,旋转角度是xy O xy O xy O xyOyxCAOBO 第15题图D C B A 第17题图MBAO D EC BAO GEF BACD15、如图,在半圆中,A 、B 是半圆的三等分点,若半圆的半径为5cm ,则弦AB 长 。

月考后,总结反思很重要!务必做好试卷分析(内附成绩分析表模板)

月考后,总结反思很重要!务必做好试卷分析(内附成绩分析表模板)试卷分析有策略所谓考后试卷分析,是指考试后订正试卷中出现的错误,分析考试的收获以及考试暴露出的问题,然后归类,逐一进行对照并制订出自我提高的措施与方法。

一般试卷分析要讲究以下四个策略:1.从逐题分析到整体分析从每一道错题入手,分析错误的知识原因、能力原因、解题习惯原因等。

分析思路是:①这道题考查的知识点是什么?②知识点的内容是什么?③这道题是怎样运用这一知识点解决问题的?④这道题的解题过程是什么?⑤这道题还有其他的解法吗?在此基础上,学生就可以进行整体分析,拿出一个总体结论。

通常情况下,学生考试丢分的原因大体有三种,即知识不清、问题情景不清和表述不清。

“知识不清”,就是在考试之前没有把知识学清楚,丢分发生在考试之前,与考试发挥没有关系。

“问题情景不清”,就是审题不清,没有把问题看明白,或是不能把问题看明白。

这是一个审题能力、审题习惯问题。

“表述不清”,指的是虽然知识具备、审题清楚,问题能够解决,但表述凌乱、词不达意。

上述问题逐步由低级发展到高级。

研究这三者所造成的丢分比例,用数字说话,也就能够得到整体结论,找到整体方向了。

2.从数字分析到性质分析要点有三:①统计各科因各种原因的丢分数值。

如计算失误失分、审题不清失分、考虑不周失分、公式记错失分、概念不清失分等。

②找出最不该丢的5~10分。

这些分数是最有希望获得的,找出来很有必要。

在后续学习中,努力找回这些分数可望可即。

如果真正做到这些,那么不同学科累计在一起,总分提高也就很可观了。

③任何一处失分,有可能是偶然性失分,也有可能是必然性失分,学生要学会透过现象看本质,找到失分的真正原因。

3.从口头分析到书面分析从潜意识的存在到口头表达是一次进步,从口头表达到书面表达又是一次进步。

书面表达是考后试卷分析的最高级形式。

建议学生在考试后写出书面的试卷分析。

这个分析是反观自己的一面镜子,是以后进步的重要阶梯。

数学月考后的反思(通用6篇)

在⽇常⽣活中,我们要有⼀流的课堂教学能⼒,所谓反思就是能够迅速从⼀个场景和事态中抽⾝出来,看⾃⼰在前⼀个场景和事态中⾃⼰的表现。

那么⼤家知道正规的反思怎么写吗?下⾯是店铺整理的数学⽉考后的反思(通⽤6篇),供⼤家参考借鉴,希望可以帮助到有需要的朋友。

数学⽉考后的反思1 这次的考试让我有了很多的改变,这⼀点是⽏庸置疑的,我是希望能够让⾃⼰清楚数学成绩还是要做的更加到位才是,通过⽉考让我看到了⾃⼰⾝上的缺点在哪⾥,这次考试我真的是没有考好,不应该让这次数学考试的情况继续恶化,我现在也⾮常的羞愧,这段时间也⼀直在玩,对于学习也是没有花太多的时间,我也感觉到了我⾝上的变化,对⾃⼰的学习不上⼼,就是对⾃⼰不负责,这真的是⾮常的不好看,我不愿意在持续下去,通过这次⽉考,我需要把过去的⼀些不好的习惯纠正。

想了想主要还是在学习上⾯的话的时间不够多,这是我的过错,⽤这样的状态去考试,⾮常不合适,上课的时候我也没有认真的听讲,现在在学习当中我也是不合理的,对于⽼师的教导我确实不够认真,这次考试的我的表现还是不够好的,作为⼀名⾼三的学⽣现在时间是⽆⽐重要的,这⼀点没有任何的质疑,⾼三的这⼀年我也感觉确实是要认真的⼀点,每⼀次考试都关系着我今后的学习情况,考试对于我来说⾮常重要,我必须要保持好⼼态,在这⼀点上⾯必须要清楚才⾏,我⼀定会在接下来的学习当中处好⾃⼰的本职⼯作,提⾼数学成绩,我很是纠结,在其它科⽬的考试上⾯都是不错的,但是这段时间,我每次听数学课的时候真的做的不好。

意识到这⼀点,我需要有⼀个好的⼼态,不管是在什么阶段都应该认真听讲,每⼀次的课堂都是很宝贵的,我需要让⾃⼰的提⾼数学成绩,⾼三的学习⾮常紧张,我以后不能再像这次这样了,要对⾃⼰严格⼀点,必须要证明⾃⼰是可以的,下⼀次的⽉考我肯定会认真起来,利⽤好⾃⼰时间,在学校每天的时间现在是⽆⽐珍贵,我需要把成绩提⾼上来,这次⽉考数学考砸是对我的⼀个警⽰,我会重视的。

重庆市第八中学2023-2024学年九年级下学期月考数学试题

重庆市第八中学2023-2024学年九年级下学期月考数学试题一、单选题1.实数5-的相反数是( )A .5B .5-C .15D .15- 2.下列几何体中,其俯视图与主视图完全相同的是( )A .B .C .D . 3.下列各式中,计算结果等于9a 的是( )A .36+a aB .36a a ⋅C .10a a -D .182÷a a 4.如图,把一块含有45︒角的直角三角板的两个顶点分别放在直尺的一组对边上,如果225∠=︒,那么1∠的度数是( )A .30︒B .25︒C .20︒D .15︒5.如图,是由一些小棒搭成的图案,按照这种方式摆下去,摆第9个图案所用小棒的数量为( )A .33B .36C .37D .416.五一假期,小明去游乐园游玩,坐上了他向往已久的摩天轮.摩天轮上,小明离地面的高度h (米)和他坐上摩天轮后旋转的时间t (分钟)之间的部分函数关系如图所示,则下列说法错误的是( )A .摩天轮旋转一周需要6分钟B .小明出发后的第3分钟和第9分钟,离地面的高度相同C .小明离地面的最大高度为42米D .小明出发后经过6分钟,离地面的高度为3米7.如图,以点O 为位似中心,把ABC V 放大2倍得到A B C '''V .下列说法错误的是( )A .ABC ABC '''∽△△B .:1:2AO AA '=C .AB A B ''∥D .直线CC '经过点O8.如图,AB 是O e 的直径,延长AB 至,C CD 切O e 于点D ,过点D 作DE AB ∥交O e 于点E ,连接BE .若12,15AB ABE =∠=︒,则BC 的长为( )A .3B .C .6D .69.如图,E 是正方形ABCD 的边CD 上的一点,连接AE ,点F 为AE 的中点,过点F 作AE的垂线分别交AD ,BC 于点M ,N ,连接AN ,若36AB DE ==,则A M N △的面积为( )A .8B .10C .12D .2010.依次排列的两个整式2a b -+,23a b -将第1个整式乘2再减去第2个整式,称为第1次操作,得到第3个整式65a b -+;将第2个整式乘2再减去第3个整式,称为第2次操作,得到第4个整式1011a b -;将第3个整式乘2再减去第4个整式,称为第3次操作,得到第5个整式2221a b -+;⋯,以此类推,下列4个说法,其中正确的结论有( )个. ①第6个整式为4243a b -+;②第n 个整式中a 系数与b 系数的和为1;③若2024a b ==,则前n 个整式之和为2024n .④第n 次与第1n +次操作后得到的两个整式中a 与b 所有系数的绝对值之和为32n +;A .0B .1C .2D .3二、填空题11.太阳中心的温度可达15500000℃,数据15500000用科学记数法表示为.12.计算1133-⎛⎫= ⎪⎝⎭. 13.现有三张正面分别标有数字1-,0,2的卡片,它们除数字不同外其余完全相同,将卡片背面朝上洗匀后,从中随机抽取一张,将卡片上的数字记为a ,放回洗匀后再随机抽取一张,将卡片上的数字记为b ,则满足0⋅=a b 的概率为.14.如图,点M 是反比例函数()0k y x x=<图像上的一点,过点M 作MN x ⊥轴于点N ,点P 在y 轴上,若MNP △的面积是2,则k =.15.如图,在等腰梯形ABCD 中,AD BC ∥,AB CD =,45A ∠=︒,6AD =,2BC =,以点C 为圆心,CB 长为半径画弧交CD 于点E ,则图中阴影部分面积为.16.如图所示,在ABC V 中,2AC AB =,BAC ∠的平分线交BC 于点D ,若3AB =,5CD =,则在ABC V 的周长为.17.若关于x 的不等式组153613x x x a ++⎧>⎪⎨⎪+≥+⎩的解集为3x >,关于y 的分式方程12233a y y --=--有非负整数解,则符合条件的所有整数a 的和为.18.一个四位正整数M ,各个数位均不为零,如果千位数字与个位数字之和的两倍等于百位数字与十位数字之和的三倍,且各个数位数字之和为20,则称M 为“第二十数”,那么百位数字和十位数字之和为,并规定()F M 等于M 的千位数字与百位数字之和的两倍与十位数字与个位数字之和的和,且()F M 为完全平方数;对于另一个“第二十数”N ,()G N 等于N 的前两个数字组成的两位数与后两个数字所组成的两位数的和,且()5G N 是一个整数,则N M -的最大值是.三、解答题19.计算:(1)()()232x x y x y -+- (2)22411369a a a a -⎛⎫-÷ ⎪+++⎝⎭ 20.如图,在ABCD Y 中,CE BC ⊥分别交AD ,BD 于点E ,F .(1)用尺规完成以下基本作图:过点A 作BC 的垂线,分别交BD ,BC 于点G ,H ,连接AF ,CG ;(保留作图痕迹,不写作法和结论)(2)根据(1)中所作图形,小南发现四边形AGCF 是平行四边形,并给出了证明,请你补全证明过程.证明:∵四边形ABCD 是平行四边形.∴AB CD =,①,∴ABG CDF ∠=∠.∵AH BC ⊥,CE BC ⊥,∴AHB ECB ∠=∠=②度,∴AG CF ∥,∴BGA EFB ∠=∠.又∵③,∴BGA DFC ∠=∠,在△ABG 和△CDF 中,ABG CDE BGA DFC AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABG CDF AAS ∆∆≌. ∴④,又∵AG CF ∥,∴四边形AGCF 是平行四边形.21.学校开展校本知识竞赛活动,现从八年级和九年级参与竞赛的学生中各随机选出20名同学的成绩进行分析(单位:分,满分100分),将学生竞赛成绩分为,,,A B C D 四个等级,分别是::70A x <,7080809090100Bx C x D x ≤<≤<≤≤∶,∶,∶. 下面给出了部分信息:其中,八年级学生的竞赛成绩为:66,75,76,78,79,81,82,83,84,86,86,86,88,90,91,92,94,95,96,96;九年级等级C的学生成绩为:81,82,83,86,87,88,88.两组数据的平均数、中位数、众数如表所示:根据以上信息,解答下列问题(1)填空:a=______,b=______,m=______;(2)根据以上数据,你认为在此次知识竞赛中,哪个年级的成绩更好?请说明理由(一条理由即可);(3)若八年级有600名学生参赛,九年级有800名学生参赛,请估计两个年级参赛学生中成绩优秀(大于或等于90分)的学生共有多少人?22.某工厂加工生产大,小两种型号的齿轮,每名工人每天只能生产一种型号的齿轮.一名熟练工每天生产的小齿轮数量是大齿轮的43,并且生产240个大齿轮所用的时间比生产同样数量的小齿轮要多用10天(1)求一名熟练工每天可以生产多少个大齿轮;(2)该工厂原有15名熟练工,由于订单激增,工厂需要招聘一批新工人,已知新工人每人每天可以生产3个大齿轮或5个小齿轮,工厂决定派3名熟练工带领一部分新工人一起生产大齿轮,其余工人全部生产小齿轮.已知2个大齿轮与3个小齿轮刚好配套.若一共招聘了28名新工人,问安排多少名新工人生产大齿轮,才能使得该工厂每天生产的大,小齿轮刚好配套?23.如图1,在等腰ABC V 中,10AB AC ==,16BC =,D 为底边BC 的中点,点P 从A 点出发以每秒1个单位长度的速度向终点B 运动,动点Q 从C 点出发,以每秒2个单位长度的速度;沿着C A B →→的路线运动,设运动时间为t ,连接AD ,DP ,DQ ,记ADP △的面积为1y ,记CDQ V的面积为2y ,请解答下列问题:(1)请直接写出1y ,2y 与t 之间的函数关系式以及对应的t 的取值范围;并在如图2所示的平面直角坐标系中分别画出1y ,2y 的函数图象;(2)观察2y 的函数图象,写出函数2y 的一条性质;(3)根据图象,直接写出当12y y ≥时,t 的取值范围.24.如图是体育公园步道示意图.从A 处和得点B 在北偏东45︒,测得点C 在北偏东75︒,在点C 处测得点B 在北偏西45︒,1800AB =米.(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P ,测得45APQ ∠=︒,小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.(结果精确到0.1)(参考1.414≈ 1.732≈2.449)25.如图,抛物线()20y ax bx c a =++≠与x 轴交于点()2,0A -,点()3,0B ,交y 轴于点()0,3C .(1)求抛物线的解析式.(2)如图1,点P 在直线BC 上方抛物线上运动,过点P 作PE BC ⊥,PF x ⊥轴于点F ,求12AF +的最大值,以及此时点P 的坐标. (3)将原抛物线沿x 轴向右平移1个单位长度,新抛物线与y 轴交于点C ',点B 的对应点为B ',点N 是第一象限中新抛物线上一点,且点N 到y 轴的距离等于点A 到y 轴的距离的一半,问在平移后的抛物线上是否存在点M ,使得MNB C B N '''∠=∠,请写出所有符合条件的点M 的横坐标,并写出其中一个的求解过程.26.如图,将ABC V 的边AC 绕点C 逆时针旋转α 0°<α<360°至CD ,直线CD ,AB 交于点E ,连接AD ,直线AD ,BC 交于点F .(1)如图1,当ACB α<∠时,若45F ∠=︒,5AB AC ==,4CE =,求BC 的长;(2)如图2,当A C B α<∠时,若2BEC F ∠=∠,BAF BCD F ∠+∠=∠,猜想线段AD 与BF 之间存在的数量关系,并证明你的猜想;(3)如图3,当180180ACB α︒<<︒+∠时,若60BEC ∠=︒,6AB AC ==,点P 在线段AD 上且满足32AP CF=,G,H分别为线段CP,AP上两点,连接GH,将ACP△沿GH折叠使得点P的对应点P'落在AC上,连接PP',与折痕GH交于点O,请直接写出CP最小时,点O到AC的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期数学第二次月考质量分析
一、试卷总体分析
本次考试试卷内容是一个学期来所学的知识,紧扣书本和平时所练习的内容,中
等题较多。我们想通过这次练习,让大部分学生能在数学上找到成就感,激发他们的
学习兴趣、热情,让更多的学生喜欢数学。这份试卷整体上表现了试题重视基础,知
识覆盖面广,突出重点知识考查;试题考查内容适度综合,重视考查综合运用知识解决
问题的能力;重视数学思想方法的考查;试题情景设计贴近时代、贴近生活,采用文字、
图形、图表等多种方式呈现试题条件;几何难度降低。 本次月考考试时间120分钟,
满分150分,全年级平均分104.85分,优秀人数235人,优秀率31.42﹪,及格人数
597人,及格率79.81﹪。
二、学生解决问题过程中存在的问题:
① 对初中数学中的概念、法则、性质、公式、的理解、存储、提取、应用均
存在明显的差距。不理解概念的实质,不理解知识形成产生过程,死记硬背,因而不
能在一定的数学情境中正确运用概念,不能正确辨明数学关系,导致运算、推理发生
错误。例如选择题的第8题,30%的同学内心和外心的概念混淆造成的错误。
②运算技能偏低,训练不到位,由此造成的失分现象严重。计算上产生的错误几
乎遍及所有涉及到计算的问题。我们的考生的确存在一批运算上的“低能儿”,运算
能力差是造成他们数学成绩偏低的主要原因之一。例如第23题第一小题求函数的解析
式,大部分同学计算错误,导致求错解析式。
③在推理论证过程中不能合乎逻辑地、准确地表述自己的思想,出现层次不清、
几何逻辑不严密、语言表述混乱、数形结合思想的应用不灵活等现象。例如第18题的
几何解答过程书写几何的逻辑不严密,因果关系不清。
④解题不规范,审题不清等,也是导致失分的重要原因之一。如填空题第15题该
有单位的未加单位,解答题第19题求小明和小亮至少有一人入选的概率,很多同学审
题不清都求错掉,第20题很多同学方程列出来却借不正确等。
三、今后努力方向:
在今后的教学中争取做到:
1、依“纲”靠“本”,注重基础。学业考试试题,包括最后的综合题,都注重对
基础知识、基本技能、基本思想方法和基本活动经验的考查。在教学中,我们必须切
实抓好基本概念及其性质、基本技能和基本思想方法的教学,让学生真正理解和掌握,
并形成合理的网络结构。
2、强化过程意识,注意数学概念、公式、定理、法则的提出过程,重视知识的形
成、发展过程,解题思路的探索过程,解题方法和规律的概括过程,使学生在学习期
间不是简单地背下一些公式、定理,而要展开思维,弄清楚其背景和来源,真正理解
所学知识,同时学习分析、解决问题的方法,并且发展科学精神和创新意识。因此,
教学中要加强过程教学,真正做到结论和过程并重。
3、转变观念,培养能力。学业考试试题对“双基”的考查,是将数学作为一个整
体,进行多方位的全面考查,要求学生能够灵活、准确地运用数学知识和数学思想方
法分析问题和解决问题。所以能力培养应落实在平时教学过程中。另外,还要注重培
养学生的“实验”和“猜想”能力,因为数学不仅是思维科学,也是实验科学。数学
推理不仅包括演绎推理,还包括合情推理。
4、重视教学方法的改进,坚持“启发式”和“讨论式”,以问题作为教学的出发
点,多设计、提出适合学生发展水平的具有一定探究性的问题,创设问题情境,使学
生面对适度的困难,开展尝试和探究,让学生经历“再发现”和“再创造”的过程。
还要充分发挥课本例题教学示范作用,适当运用变式,逐步设置障碍,以不断增加创
造性因素。
5、加强数学语言的教学,数学语言包括文字语言、符号语言、图形语言,它是数
学思维和数学交流的工具。在教学过程中,不仅要培养学生能够进行各种数学语言的
转化,还要培养学生会用数学语言准确、简洁地表达自己的观点和思想。另外还要培
养学生对数学图像、图表的理解和应用能力。
6.更多地关注数学思想方法的培养,特别是加强学生分类讨论的数学思想方法的
培养。数学基础知识和基本技能所反映出来的数学思想方法是数学知识的精髓,在课
堂教学中,数学思想方法的教学应渗透在教学全过程中,使学生不仅学好概念、定理、
法则等内容,而且能领悟其中的数学思想方法,并通过不断积累,逐渐内化为自己的
经验,形成解决问题的自觉意识。
在后面的工作中,我们备课组成员继续齐心协力,合作教学,加强成员之间的互
相学习,努力缩小班级之间的差距,共同前行。

相关文档
最新文档