高等数学模拟试题及答案
2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高数模拟习题集含参考答案

高等数学模拟题A .上册:上册期中(一)一、试解下列各题: 1.求。
2.求。
3.设处连续,在处不连续,试研究在处的连续性。
4.求在上的最大值与最小值。
二、试解下列各题: 1.判断的奇偶性。
2.[5分]设,其中,求。
3.[5分]设,求。
4.[5分]验证罗尔定理对在上的正确性。
三、试解下列各题:1.[6分]设函数由方程所确定,且,其中是可导函数,,求的值。
2.求极限。
3.求的极值。
四、设圆任意一点M (点M 在第一象限)处的切线与轴,轴分别交于A 点和B 点,试将该切线与两坐标轴所围成的三角形AOB 的面积S 表示为的函数。
1cos cos 21cos 2cos 8lim223-+--→x x x x x π242320)1()1(limx x x x --+→0)(x x x f =在)(x g 0x )()()(x g x f x F +=0x x x x f +=2)(]1,1[-)11(11ln 11)(<<-+-+-=x x x e e x f x x )]1ln 1ln(1ln[x x x y ++=10<<x y 'x xy +-=11)(n y 1074)(23--+=x x x x f ]2,1[-)(x y y =)()(22y x f y x f y +++=2)0(=y )(x f 1)4(,21)2(='='f f 0=x dxdy xx x 10)(cos lim +→22)13()(e x x e x f x +++=-222a y x =+),(y x ox oy x五、用函数连续性“”的定义,验证函数在任意点处连续。
六、求极限七、求与的公切线方程。
八、证明:当时,。
九、]一气球从距离观察员500米处离地匀速铅直上升,其速率为140米/分,当此气球上升到500米空中时,问观察员的视线的倾角增加率为多少? 参考答案:一、1.2。
高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。
A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。
A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。
A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。
A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。
A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。
高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m在区间[2,+∞)上单调递增,则实数m的取值范围是:A. m≥4B. m≤4C. m≥0D. m≤02. 已知向量a=(3,-1),b=(2,4),则向量a+b的坐标为:A. (5,3)B. (1,3)C. (5,-3)D. (1,-3)3. 函数y=sin(x)的最小正周期为:A. πB. 2πC. π/2D. 4π4. 直线l:y=2x+3与x轴的交点坐标为:A. (-3/2,0)B. (3/2,0)C. (-3,0)D. (3,0)5. 已知数列{an}满足a1=1,且an+1=2an+1,求数列{an}的通项公式:A. an=2^n-1B. an=2^nC. an=2^(n-1)+1D. an=2^(n-1)6. 已知函数f(x)=x^3-3x,求f'(x)的表达式:A. f'(x)=3x^2-3B. f'(x)=x^2-3xC. f'(x)=x^2-3D. f'(x)=3x^2-9x7. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1(a>0,b>0),若双曲线C 的一条渐近线方程为y=√2x,则双曲线C的离心率e为:A. √2B. √3C. 2D. 38. 已知三角形ABC的三边长分别为a、b、c,且满足a^2+b^2=c^2,求三角形ABC的形状:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不等边三角形9. 已知函数f(x)=x^2-6x+8,求函数f(x)的值域:A. (-∞,1]B. [1,+∞)C. (-∞,8]D. [8,+∞)10. 已知等比数列{bn}的首项b1=2,公比q=1/2,求数列{bn}的前n 项和Sn:A. Sn=2(1-(1/2)^n)/(1-1/2)B. Sn=2(1-(1/2)^n)C. Sn=2(1-(1/2)^(n-1))/(1-1/2)D. Sn=2(1-(1/2)^(n-1))二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x,求f'(1)的值。
高校数学高考模拟试题答案

高校数学高考模拟试题答案一、选择题1. (2021年全国卷Ⅰ)设函数f(x) = a|x-1| + x,若f(x)在区间[0,2]上是增函数,则实数a的取值范围是______。
解析:首先,我们需要分析函数f(x)的单调性。
当x≥1时,f(x) = ax + x - a;当x<1时,f(x) = -ax + x + a。
要使f(x)在[0,2]上是增函数,我们需要保证对于任意的0≤x₁<x₂≤2,都有f(x₁)≤f(x₂)。
对于x₁≥1,x₂≥1的情况,我们有a(x₁ - 1) + x₁ ≤ a(x₂ - 1) + x₂,化简得a ≤ x₂ - x₁。
由于x₂ - x₁的最大值为1,所以a ≤ 1。
对于x₁<1,x₂≥1的情况,我们有-a(x₁ - 1) + x₁ ≤ a(x₂ - 1) + x₂,化简得a ≥ -1。
因此,a的取值范围是[-1, 1]。
2. (2021年全国卷Ⅱ)已知等差数列{an}满足a₁ + a₄ = 10,a₂+ a₅ = 17,求a₃的值。
解析:设等差数列{an}的首项为a₁,公差为d。
根据题意,我们有以下方程组:a₁ + a₄ = a₁ + (a₁ + 3d) = 10a₂ + a₅ = (a₁ + d) + (a₁ + 4d) = 17解这个方程组,我们得到:a₁ + 3d = 10a₁ + 5d = 17将第一个方程乘以-1,然后将两个方程相加,得到:2d = 7d = 3.5将d的值代入第一个方程,得到:a₁ + 10.5 = 10a₁ = -0.5现在我们知道了首项a₁和公差d,可以求出a₃的值:a₃ = a₁ + 2d = -0.5 + 7 = 6.53. (2021年北京卷)已知函数g(x) = x² - 2x + 5,求g(x)在区间[0,3]上的最大值和最小值。
解析:首先,我们观察函数g(x) = x² - 2x + 5,这是一个二次函数,其开口向上,对称轴为x = 1。
高等数学(下)模拟试题(二)

高等数学(下)模拟试题(二)一、 一、 计算下列各题(每小题6分,共30分)1. 设y z xz xy y x z ∂∂∂∂+=,,322求。
2. 设()xy x z sin 2= 求: d z 。
3. 设y x ux u xz y x u ∂∂∂∂∂+=2222,,求。
4. 设()x x x z z xy y x f z ,,5求+=。
5.x zxyz xyz ∂∂=+求 ,02)cos( 。
二、 二、 解下列各题 (每小题6分,共24分)1.更换积分次序:()⎰⎰xxdyy x f dx 320,。
2. 求x yxy z ++=12在点P (1,2)沿点P 到点M (2,4)的方向上的方向导数。
3. 求曲线325,4,3t z t y t x ===在t = 1处的切线及法平面方程。
4. 求曲面x 2 - 3 y 2 + z 2 = -1在点P (1,1, 1)切平面方程与法线方程。
三、计算下列积分(每小题6分,共12分) 1.y dxd y x D⎰⎰+)2(D :由y = x , x= 0, y = 2 所围成 。
2. ⎰⎰⎰++V dxdydzz y x )( V :-2≤x ≤2 , 0≤y ≤1 , 0≤z ≤4 . 四、计算下列积分应用题(每小题6分,共12分)1. 一均匀物体(密度ρ为常量)占有闭区域Ω由曲面 Z=X 2+Y 2和平面Z =4所围成,求 该物体的质量M 。
2. 求物体的体积V ,该物体是柱体x 2 + y 2≤ 1被平面z=0,z=3所截得的在第一卦限的部分。
五、(8分)求微分方程0|,02=='=-x yx y e y 满足初始条件 的特解。
六、(8分)求微分方程()()022=-++dy y x dx y x的通解。
七、(6分)求一曲线,使其每点处的切线斜率为2x+y,且过点(0,0)。
高等数学(下)模拟试题(二)答案三、 一、 计算下列各题(每小题6分,共30分)1. 已知xy x y zy xy xzxy y x z 6,32,32222+=∂∂+=∂∂+=。
高数面试模拟试题及答案

高数面试模拟试题及答案一、选择题1. 在下列函数中,哪一个是周期函数?A. y = x^2B. y = sin(x)C. y = e^xD. y = ln(x)答案:B2. 极限lim(x→0) (sin(x)/x) 的值是:A. 0B. 1C. ∞D. 无定义答案:B二、填空题1. 函数 f(x) = x^3 - 2x^2 + 3x 的导数是 _______。
答案:f'(x) = 3x^2 - 4x + 32. 曲线 y = x^2 在 x = 1 处的切线斜率是 _______。
答案:2三、简答题1. 请简述什么是泰勒公式,并给出其一般形式。
答案:泰勒公式是将一个在某点可导的无穷次函数展开成无穷级数的形式。
其一般形式为:\[ f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n \]其中 \( R_n \) 是余项,表示级数与函数值之间的误差。
2. 请解释什么是连续函数,并给出一个连续函数的例子。
答案:连续函数是指在其定义域内,函数的极限值与函数值相等的函数。
即对于任意的 \( x \),都有 \( \lim_{h \to 0} f(x+h) = f(x) \)。
例如,函数 \( f(x) = x^2 \) 是一个连续函数,因为它在实数域内满足连续性的定义。
四、计算题1. 计算定积分 \( \int_0^1 x^2 dx \)。
答案:首先找到原函数 \( F(x) = \frac{1}{3}x^3 \),然后计算\( F(1) - F(0) \):\[ \int_0^1 x^2 dx = \left[ \frac{1}{3}x^3 \right]_0^1 = \frac{1}{3} - 0 = \frac{1}{3} \]2. 求函数 \( f(x) = 3x^2 - 5x + 2 \) 在区间 [1,3] 上的最大值和最小值。
2023年高考数学模拟试题(六)参考答案

2023年高考数学模拟试题(六)参考答案 一㊁选择题1.A 提示:z =(1+i)33-i=-2+2i3-i=(-2+2i )(3+i )(3-i )(3+i)=-1-32-1-32i,所以z =-1-322+1-322=2㊂2.C 提示:由x >0,l o g 2x +1ȡ0,得x ȡ12,故集合A =12,+ɕ,所以0<12xɤ22,即集合B =0,22,故A ɘB =12,22㊂3.B 提示:由题意得2c o s θ=-s i n θ,所以t a n θ=-2,而s i n 3θ+2c o s 3θs i n (π+θ)=s i n 3θ+2c o s 3θ-s i n θ=-s i n 3θ+2c o s 3θs i n θ(s i n 2θ+c o s 2θ)=-s i n 3θ+2c o s 3θs i n 3θ+s i n θc o s 2θ=-t a n 3θ+2t a n 3θ+t a n θ=-35㊂4.D 提示:由题意知2a n =a n -1+a n +1(n ȡ2),所以数列{a n }是首项为1,公差为94-1=12的等差数列,故a 9=1+8ˑ12=5,所以a 9=25㊂5.C 提示:在区间-π,π2上满足c o s X ɤ12的X 只能在区间-π,-π3ɣπ3,π2内,所以P (X ɤ2)=59㊂6.D 提示:当i =1时,S =10;当S =9时,i =2;当S =7时,i =3;当S =4时,满足题意,所以n 的最小值为5㊂7.B 提示:设圆台较小底面半径为r ,则另一底面半径为3r ,由S =π(r +3r )ˑ4=162π,可得r =2,所以圆台的高h =42-(22)2=22,所以圆台的体积为13ˑ22πˑ[(2)2+(32)2+2ˑ32]=522π3㊂8.A 提示:A 77A 22A 22A 33=210㊂9.D 提示:f (2x )=2x 2x =4x ㊃x =4f (x ),从而f (x 2-1)ȡ4f (-1-a x )⇔f (x 2-1)ȡf (-2-2a x )㊂当x >0时,f (x )=x x =x 2在[0,+ɕ)上单调递增,而f (x )为奇函数,所以f (x )在R 上单调递增㊂所以x 2-1ȡ-2-2ax 在R 上恒成立,即x 2+2a x +1ȡ0恒成立,所以Δ=4a 2-4ɤ0,解得-1ɤa ɤ1,故a 的取值范围为[-1,1]㊂图110.A 提示:将三视图还原得到三棱锥D A B C ,如图1所示,其中A B =B C =1,A D =C D =2,R =B D 2=32,所以V =43πR 3=3π2㊂11.C 提示:由双曲线m x 2-n y 2=1得渐近线方程为mnx ʃy =0,则圆心(1,0)到渐近线的距离为m n 1+m n =43-1,解得n =2m ,所以m +1n +1=m +12m +1=m+12+12m +12-12ȡ2m +12㊃12m +12-12=2-12,当且仅当2m +122=1,即m =2-12时,等号成立㊂12.B 提示:要使øA O B 最大,则A ,B两点必须在分段函数的不同部分上,不妨设A (x 1,x 1ex 1-1+1),B (x 2,y 2)(其中x 1>0,图2-1ɤx 2ɤ0),如图2,当øA O B最大时,直线O A 与y =x e x -1+1相切且A 为切点,此时有y '=(x +1)e x -1,从而k O A =x 1e x 1-1+1x 1=(x 1+1)ex 1-1,化简得x 21ex 1-1-1=0(x 1>0),令h (x )=x 2e x -1-1(x >0),易得h (x )在(0,+ɕ)上为增函数且h (1)=1,所以x 1=1,所以k O A =2;当-1ɤx ɤ0时,y =10-1-x 2,变形得x 2+(y -10)2=1(-1ɤx ɤ0,y ɤ10),则øA O B 最大时,直线O B 与圆相切,设此时直线O B 的方程为y =k x (k <0),则由0-101+k2=1得k O B =-3,所以t a n øA O B =k O B -k O A1+k O A k O B=1,故øA O B =π4㊂二㊁填空题13.3316提示:将A (1,2)代入y =a x 2,得a =4,所以抛物线C :x 2=14y ,焦点F 的坐标为0,116,准线方程为y =-116,由抛物线的定义得A F =2+116=3316㊂14.π4提示:10=2a -b =(2a -b )2=4a 2-4a ㊃b +b2=4-4㊃32c o s θ+18,解得c o s θ=22,因为θɪ[0,π],所以θ=π4㊂15.11π6 提示:由题意知π6--π3=T 4(2k +1)=π2ω(2k +1),解得ω=2k +1(k ɪZ ),由8π15ɤT 2=πω,得0<ωɤ158,所以ω=1,由f π6=0,得π6+φ=2k 1π,所以φ=2k 1π-π6(k 1ɪZ ),故φm i n =11π6㊂16.-23n -29(-2)n+29 提示:由a n +1-1=a 2n +a n -1-2a na n -1-1-1,得a n +1-1=(a n -1)2a n -1-1,所以(a n +1-1)(a n -1-1)=(a n -1)2,故{a n -1}是首项为2,公比为q 的等比数列,且a 6-1=-64=2q 5,则q =-2,所以a n -1=2(-2)n -1㊂令b n =n (a n -1),则b n =2n (-2)n -1㊂故T n =2(-2)0+4(-2)1+ +2(n -1)(-2)n -2+2n (-2)n -1;-2T n =2(-2)1+4(-2)2+ +2(n -1)(-2)n -1+2n (-2)n㊂两式相减得3T n =2(-2)0-2n (-2)n+2[(-2)1+ +(-2)n -1],化简得T n =-23n -29(-2)n+29㊂三㊁解答题17.由题得f (x )=(s i n 2ωx -c o s 2ωx )㊃(s i n 2ωx +c o s 2ωx )+23s i n ωx c o s ωx +1=s i n 2ωx -c o s 2ωx +23s i n ωx c o s ωx +1=3s i n 2ωx -c o s 2ωx +1=2s i n 2ωx -π6+1㊂所以T =2π2ω=π,所以ω=1,故f (x )=2s i n 2x -π6+1㊂由2x -π6=k π,得x =k π2+π12(k ɪZ ),故f (x )的对称中心为k π2+π12,1(k ɪZ )㊂(2)由f (A )=2s i n 2A -π6 +1=3,得s i n 2A -π6 =1,而0<A <π,故A =π3㊂由余弦定理得a 2=b 2+c 2-2b c c o s A ,即1=b 2+c 2-b c ȡ2b c -b c =b c ,所以b c ɤ1,当且仅当b =c 时等号成立㊂S әA B C =12b c s i n A ɤ12㊃1㊃32=34,故әA B C 面积的最大值为34㊂18.(1)甲㊁乙两生产车间的茎叶图如图3所示㊂以下四个结论中选两个即可:图3①乙车间生产的药品的平均重量大于甲车间生产的药品的平均重量㊂②甲车间生产的药品的重量较乙车间生产的药品的重量更分散(或:乙车间生产的药品的重量较甲车间生产的药品的重量更集中(稳定))㊂③甲车间生产的药品的重量的中位数是134毫克;乙车间生产的药品的重量的中位数是140毫克㊂④甲车间生产的药品的重量的众数是119毫克;乙车间生产的药品的重量的众数是140毫克㊂(2)由题意知一件药品合格的概率为1050=15,故X ~B 3,15,X 的所有可能取值为0,1,2,3㊂P (X =0)=C 03㊃453=64125;P (X =1)=C 13㊃15㊃45 2=48125;P (X =2)=C 23㊃15 2㊃45=12125;P (X =3)=C 33㊃15 3=1125㊂故X 分布列为表1:表1X 0123P6412548125121251125所以E (X )=3ˑ15=35,D (X )=3ˑ15ˑ45=1225㊂19.(1)在面A B C D 内分别作B E ʅA D于E ,B F ʅC D 于F ㊂因为面D A A 1D 1ʅ面A B C D 且交于A D ,所以B E ʅ面D A A 1D 1,故B E ʅD D 1㊂同理得D D 1ʅB F ㊂而B E ɘB F =B ,所以D D 1ʅ面A BCD ㊂(2)由题意知A B 2=A D 2+B D 2,所以D A ʅD B ㊂由(1)知D D 1ʅ面A B C D ,所以D A ,D B ,D D 1两两垂直㊂以D 为坐标原点,图4D A ,D B ,D D 1所在直线分别为x 轴,y 轴,z 轴,建立如图4所示的空间直角坐标系D -x yz ,设B D =1,则D (0,0,0),B (0,1,0),M 1,0,22,C 1(-1,1,2),所以B C 1ң=(-1,0,2),B D ң=(0,-1,0),B M ң=1,-1,22㊂设面B C 1M 的一个法向量为m =(x 1,y 1,z 1),则m ㊃B C 1ң=-x 1+2z 1=0,m ㊃B M ң=x 1-y 1+22z 1=0,可取m =(2,3,2)㊂同理可得面B C 1D 的一个法向量为n =(2,0,1),所以c o s <m ,n >=m ㊃nm n=105,故二面角M -B C 1-D 的正弦值为155㊂20.设直线A B 的直线为y =x +m ,A (x 1,y 1),B (x 2,y 2),将y =x +m 代入x 2+3y 2=3,得4x 2+6m x +3(m 2-1)=0,Δ=12(4-m 2)>0,得0ɤm 2<4,由韦达定理得x 1+x 2=-32m ,x 1x 2=3(m 2-1)4㊂由弦长公式得A B =1+12㊃(x 1+x 2)2-4x 1x 2=62㊃4-m 2ɤ6,当m =0时,|A B |取得最大值6㊂(2)由题意知直线C D 的斜率必存在,设直线C D 的方程为y =k x +n ,C (x 3,y 3),D (x 4,y 4),直线P C 的斜率为k P C =y 3x 3+2,则直线P C 的方程为x =x 3+2y 3㊃y -2,将其代入x 2+3y 2=3,得x 3+2y 3㊃y -2 2+3y 2-3=0,即(4x 3+7)y 2-4y 3(x 3+2)y +y 23=0,所以y A y 3=y 234x 3+7,则y A =y 34x 3+7,x A =x 3+2y 3㊃y A -2=-7x 3-124x 3+7=-74+14(4x 3+7),故A-74+14(4x 3+7),y 34x 3+7㊂同理B -74+14(4x 4+7),y 44x 4+7㊂故k A B=y 34x 3+7-y 44x 4+714(4x 3+7)-14(4x 4+7)=4y 3(4x 4+7)-4y 4(4x 3+7)(4x 4+7)-(4x 3+7)=(k x 3+n )(4x 4+7)-(k x 4+n )(4x 3+7)x 4-x 3=(4n -7k )(x 4-x 3)x 4-x 3=4n -7k =1,所以n =74k +14,所以直线C D 的方程为y =k ㊃x +74+14,故直线C D 过定点-74,14 ㊂21.(1)当a =1时,f (0)=0,f'(x )=e x-1c o s 2x,所以f '(0)=0,故所求切线方程为y =0㊂(2)注意到f (0)=0,f '(x )=e x-a c o s 2x=e xc o s 2x -a c o s 2x,令h (x )=e x c o s 2x -a -π2<x <π2,当a ɤ0时,h (x )ȡ0,所以f (x )在-π2,π2上单调递增,而f (0)=0,所以f (x )在-π2,π2上只有一个零点,不符合题意(舍去)㊂当a >0时,h '(x )=e xc o s 2x -2e x㊃s i n x c o s x =e xc o s 2x (1-2t a n x ),由h '(x )>0得-π2<x <x 0;由h '(x )<0得x 0<x<π2,其中0<x 0<π2且t a n x 0=12㊂故h (x )在-π2,x 0上单调递增,在x 0,π2上单调递减㊂而h -π2 =hπ2 <0,所以h (x 0)一定大于0,即0<a <e x 0c o s 2x 0=45e x其中45e x>1㊂所以∃x 1ɪ-π2,x 0,∃x 2ɪx 0,π2 ,使得h (x 1)=h (x 2)=0,且f (x )在-π2,x 1上单调递减,在(x 1,x 2)上单调递增,在x 2,π2 上单调递减㊂而当x ң-π2时,f (x )ң+ɕ;当x ңπ2时,f (x )ң-ɕ㊂又f (0)=0,所以0ɪ(x 1,x 2),故f '(0)=1-a >0,所以0<a <1㊂22.(1)直线l 的普通方程为y =3x ,故极坐标方程为θ=π3(ρɪR )㊂曲线C 的直角坐标方程为(x -2)2+y 2=9,即x 2+y 2-4x -5=0,故曲线C 的极坐标方程为ρ2-4ρc o s θ-5=0㊂(2)将θ=π3代入ρ2-4ρc o s θ-5=0,得ρ2-2ρ-5=0,ρA ㊁B =1ʃ6,所以A B =ρA -ρB =26㊂由题知点P 的直角坐标为(3,1),所以点P 到直线l 的距离d =3㊃3-12=1㊂故S әP A B =12A B ㊃d =12㊃26㊃1=6㊂23.(1)f (x )=x -1+x +5+x +5ȡ(x -1)-(x +5)+x +5=6+x +5ȡ6,当且仅当x =-5时取等号,所以f (x )的最小值为6,故m =6㊂(2)由(1)知a +3b +2c =6,即(a +2b +1)+(b +2c )=5,所以1a +2b +1+4b +2c =15[(a +2b +1)+(b +2c )]㊃1a +2b +1+4b +2c=15㊃5+4(a +2b +1)b +2c +b +2c a +2b +1 ȡ15㊃5+24(a +2b +1)b +2c ㊃b +2c a +2b +1=95㊂(责任编辑 王福华)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35、下列函数中不具有极值点的是(c)
A. B. .
36、已知 在 处的导数值为 ,则 (b)
A. B. C. D.
37、设 是可导函数,则 为(d)
. C. D.
38、若函数 和 在区间 内各点的导数相等,则这两个函数在该区间内(d)
.相等C.仅相差一个常数D.均为常数
二、填空题
解:
17、求由方程 所确定的隐函数的导数 .
解:
18、设 求 在 内的表达式.
解:
19、求极限: .
解:
20、计算不定积分:
解:
21、计算二重积分 是由抛物线 和直线 ( )围成的区域
解:
22、设 而 , 求 .
解:
四、综合题与证明题
1、函数 在点 处是否连续是否可导
2、求函数 的极值.
解:
3、证明:当 时 .
13、不定积分 .
14、设 的一个原函数为 ,则微分 .
15、极限 =.
16、导数 .
17、设 ,则 .
18、在区间 上由曲线 与直线 , 所围成的图形的面是
.
19、曲线 在点 处的切线方程为.
20、已知 ,则 .
21、极限 =
22、已知 ,则常数 .
23、不定积分 .
24、设 的一个原函数为 ,则微分 .
29、若 ,则 等于(b)
、微分方程 的通解是(b)
、函数 的反函数是(c)
A. B.
C. D.
32、当 时,下列函数中为 的高阶无穷小的是(a)
、若函数 在点 处可导,则 在点 处(c)
A.可导B.不可导
C.连续但未必可导D.不连续
34、当 时, 和 都是无穷小.当 时下列可能不是无穷小的是(d)
解:
9、讨论 在 , , 处的连续性与可导性
解:
10、确定函数 (其中 )的单调区间.
解:
;
11、证明:当 时 .
证明:
12、一房地产公司有50套公寓要出租当月租金定为1000元时公寓会全部租出去当月租金每增加50元时就会多一套公寓租不出去而租出去的公寓每月需花费100元的维修费试问房租定为多少可获最大收入
证明:
4、要造一圆柱形油罐体积为 问底半径 和高 等于多少时才能使表面积最小这时底直径与高的比是多少
解:
5、设 讨论 在 处的连续性与可导性
解:
,
6、求函数 的极值.
解:
7、证明:当 时 .
证明:
8、某地区防空洞的截面拟建成矩形加半圆(如图)截面的面积为5m2问底宽x为多少时才能使截面的周长最小从而使建造时所用的材料最省
.
.
24、当 时,若 与 是等价无穷小,则 =(b)
A. B. C. D.
25、函数 在区间 上满足罗尔定理的 是(a)
A. B. .
26、设函数 ,则 (c)
A. B. C. D.
27、定积分 是(a)
A.一个常数B. 的一个原函数
C.一个函数族D.一个非负常数
28、已知 ,则高阶导数 (c)
A. B. C. D.1源自极限 =2、已知 ,则常数 .
3、不定积分 =.
4、设 的一个原函数为 ,则微分 .
5、设 ,则 .
6、导数 .
7、曲线 的拐点是.
8、由曲线 , 及直线 所围成的图形的面积是.
9、已知曲线 上任一点切线的斜率为 并且曲线经过点 则此曲线的方程为.
10、已知 ,则 .
11、设 ,则 .
12、已知 ,则常数 .
25、若 在 上连续,且 ,则 .
26、导数 .
27、函数 的水平渐近线方程是.
28、由曲线 与直线 所围成的图形的面积是.
29、已知 ,则 =.
30、已知两向量 , 平行,则数量积 .
31、极限
32、已知 ,则常数 .
33、不定积分 .
34、设函数 ,则微分 .
35、设函数 在实数域内连续,则 .
解:
13、函数 在点x1处是否可导为什么
解:
14、确定函数 的单调区间.
解:
解:
8、计算不定积分: .
解:
9、计算二重积分 其中 是由 , , ( )所围成的区域
解:
10、设 ,其中 ,求 .
解:
11、求由方程 所确定的隐函数的导数 .
解:,
12、设 .求 在[0,2]上的表达式.
解:
13、求极限: .
解:
14、计算不定积分: .
解:
15、计算二重积分 是圆域
解:
16、设 ,其中 ,求 .
17、定积分 (c)
. C. D.
18、已知 ,则高阶导数 在 处的值为(a)
A. B. C. D. .
19、设 为连续的偶函数,则定积分 等于(c)
、微分方程 满足初始条件 的特解是(c)
.
.
21、当 时,下列函数中有极限的是(C)
A. B. C. D.
22、设函数 ,若 ,则常数 等于(a)
、若 , ,则下列极限成立的是(b)
11、函数 的定义域是(d)
、函数 在 处可导,则 在 处(d)
A.极限不一定存在B.不一定连续C.可.不一定可微
13、极限 (c)
不存在D.
14、下列变量中,当 时与 等价的无穷小量是()
A. B. C. D.
15、设函数 可导,则 (c)
A. B. .
16、函数 的水平渐近线方程是(c)
A. B. C. D.
36、导数 .
37、曲线 的铅直渐近线的方程为.
38、曲线 与 所围成的图形的面积是.
三、计算题
1、求极限: .
解: = /2x=
2、计算不定积分:
解:
3、计算二重积分 D是由直线 及抛物线 围成的区域
解:
4、设 而 .求
解:
5、求由方程 确定的隐函数的导数 .
解:
6、计算定积分: .
解:
7、求极限: .
武汉大学网络教育入学考试
专升本高等数学模拟试题
一、单项选择题
1、在实数范围内,下列函数中为有界函数的是(b)
A. B. C. D.
2、函数 的间断点是(c)
无间断点
3、设 在 处不连续,则 在 处(b)
A.一定可导B.必不可导C.可能可导D.无极限
4、当 时,下列变量中为无穷大量的是(D)
A. B. C. D.
5、设函数 ,则 在 处的导数 (d)
A. B. .不存在.
6、设 ,则 (a)
. .
7、曲线 的垂直渐近线方程是(d)
. C. 或 D.不存在
8、设 为可导函数,且 ,则 (c)
A. B. C. D.
9、微分方程 的通解是(d)
、级数 的收敛性结论是(a)
A.发散B.条件收敛C.绝对收敛D.无法判定