晶体结构的对称性解读
晶体的对称性

对称性与人类思维方式的联系
对称性思维方式是人类认知世界的一 种重要方式。人们习惯于将事物进行 对称性的分类、比较和思考,从而更 好地理解和把握事物的本质和内在规 律。
VS
对称性思维方式在科学研究和工程技 术中也发挥着重要作用。科学家们利 用对称性原理探索自然界的奥秘,解 决各种复杂的科学问题。工程师们则 利用对称性设计各种结构,提高产品 的稳定性和可靠性。
晶体的对称性
• 对称性的基本概念 • 晶体中的对称元素 • 对称性和晶体结构 • 对称性在化学中的运用 • 对称性与生物学的关系 • 对称性的哲学思考
01
对称性的基本概念
Hale Waihona Puke 称性的定义对称性是指一个物体或图形在某种变 换下保持不变的性质。在晶体学中, 对称性是指晶体在空间变换下保持不 变的性质。
对称性可以通过对称操作来描述,对 称操作是指将晶体进行刚性旋转、平 移、反演等变换后仍能恢复原状的操 作。
对称性的分类
晶体可以根据其对称性进行分类,常 见的晶体分类包括立方晶系、四方晶 系、六方晶系等。
VS
不同晶系的晶体具有不同的对称性, 晶体的对称性与其内部原子或分子的 排列方式密切相关。
对称操作的数学表达
对称操作可以用数学矩阵来表示,通过矩阵变换可以描述晶体的对称性。
对称操作的数学表达包括旋转矩阵、平移矩阵、反演矩阵等,这些矩阵可以用来描述晶体在空间中的 变换。
02
晶体中的对称元素
点对称元素
定义
01
点对称元素是晶体中以某一点为中心的对称操作,包括旋转、
反演、反映等。
描述
02
点对称元素在晶体中起着关键作用,它们决定了晶体的空间群
对称性在生物医学中的应用
晶体结构的对称性

滑移面—滑移反映操作:由反应与平移组成的复 合对称操作。根据滑移方向的不同分为3类。第 一类轴线滑移面a(或b,c):如图虚线所示,对应的 操作为反映后,再沿a(或b,c)轴方向平移a/2(或 b/2,c/2);第二类对角 5 线滑移面n:如图B所 示。实点和虚点分别 4 a 3 是位于纸面的上方和 下方,且距离相等处。 对应的操作使反映后 a 2 沿a轴方向移动a/2,再 沿b轴方向移动b/2,即 1' 1 b 反映后又平移a/2+b/2
分子对称性与警惕宏观对称性对照表
分子对称性 晶体宏观对称性
对称操作及 其符号 旋转L(a) 反映M 倒反I 对称元素及其 对称操作及其 对称元素及 符号 符号 其符号 旋转 对称轴C 旋转轴n 对称面s
n
反映 反演 旋转反映
反映面或镜 面m 对称中心i 反轴
对称中心i 象转轴Sn
旋转倒反 L(a)I
1.2 晶体结构的对称性
1.2.1 晶体的对称元素和对称操作
晶体结构最基本的特征是具有空间点阵结构。 晶体的点阵结构使晶体的对称性和分子的对称性 有差别。分子结构的对称性是点对称性,只有4种 类型的对称元素和对称操作。 (1)旋转轴—旋转操作; (2)镜面—反映操作; (3)对称中心—反演操作; (4)反轴—旋转反映操作。 晶体的点阵结构,包括平移的对称操作。一方面 使晶体结构的对称性在上述点对称性的基础上还 增加下列3种类型的对称元素和对称操作。
对同一晶体,在划分平行六面体时,由于选择 向量的大小和方向不同,有许多划分方法,也就 能找到多种不同形状的晶胞。这些晶胞基本分为 二类:素晶胞和复晶胞。素晶胞包含的内容实质 上就是结构基元。若不考虑其他因素,任何晶体 均可划分为素晶胞。如图: 晶胞的基本要素:一个是晶胞的大小和形状, 可用晶胞参数(a,b,c,a,b,g)表示;另一个是晶 胞中原子的位置,通常用分数坐标(x,y,z)表示。 晶胞参数的定义与空间点阵的参数完全相同。 根据a,b,c,选择晶体的坐标轴X,Y,Z,使它们分别 和向量a,b,c平行。因此将a,b,c表示的方向也叫 晶轴。
1-3 晶体对称性

2
1 2 3 4 6 2 2 6 4 6
示
平行 斜插纸 纸面 面
二、宏观对称性的组合关系
1. 如果晶体中有两个或两个以上的镜面相交,则每两 个镜面的交线必定是一个对称轴,而对称轴的转角比 定时镜面夹角的二倍。
镜面夹角 180° 90° 60° 45° 30°
旋转轴转 角
360°
180°
120°
90°
Th
Td
O
Oh
晶类(点群)符号 国际符号(全) 国际符号(缩)
1 I(1)
1 I(1)
m
m
2
2
2/m
2/m
3
3
3
3
3m
3m
32
32
32/m
3m
2mm
mm
222
222
2/m2/m2/m
mmm
23
23
2/m3
m3
43m
43m
432
43
4/m32/m
m3m
全对称要素组合
I m(2)
2 2mI
3 3(3I) 33m 332 3323m(3323mI) 23m
三、平移群、布拉菲点阵 例:四方晶系
C→P
F→I
4
晶系 三斜 单斜
菱形
正交
立方
最低对称要素 无
一根二次旋转轴2 或旋转-反演轴2
一根三次旋转轴3 或旋转-反演轴3
三根相互垂直的旋 转轴32或旋转-反 演轴32
四根三次旋转轴43
熊夫列斯符号
C1 Ci(S2) Cs(C1h)
C2 C2h C3 C3i(S6) C3V D3 D3d C2V D2(V) D2h(Vh) T
晶体对称性

晶体对称性晶体对称性是晶体学研究的一个重要组成部分,它是晶体结构的关键,可以解释晶体的外观、性质以及界面问题。
其中,最常见的是空间群,它用数学表示法确定变换的形式。
接下来,让我们来更多地了解晶体对称性:一、空间群1. 什么是空间群:空间群是一种变换群,也是对称性理论的基础,可以描述物体在特定坐标系中的集合子空间上的空间操作。
举个例子,如果一个物体只可以在空间系中做180°旋转,那么它就只具有一种(即旋转)拓扑群。
2. 空间群划分:空间群可以根据对称性来划分,主要包括有限对称群、无限对称群和单调对称群三类。
其中,有限对称群表示法子群的形状、大小或空间构造不变;无限对称群指的是无限种变换,其轴心、空间点或空间构造不变;而单调的对称群是单一的元素组成的,在该空间群中任何对称性都不变。
二、对称性1. 什么是对称性:对称性是空间群的基础,一般来说,它表示物体在某种坐标下有特定形状和空间操作的属性,也可以用数学表示法来表达这种特征。
2. 对称性的类型:对称性的类型可以分为四大类,分别是正交对称性、立体对称性、平面对称性和点对称性。
其中,正交对称性主要涉及空间中的空间坐标变换,立体对称性是指物体在立体坐标系下的操作,而平面对称性是指物体在平面坐标系下的操作,而点对称性则是指物体在特定空间构造下的操作。
三、晶体对称性1. 晶体对称性是什么:晶体对称性是晶体学研究的一个重要组成部分,它涉及到晶体结构的外观、性质以及界面问题的解释。
2. 晶体对称性的应用:晶体对称性可以用来研究和设计多种材料,如金属、半导体、有机分子晶体、生物晶体等,它们是将材料化学性质同物理性质关联起来,从而更好地理解材料的特性。
此外,晶体对称性也可用于分类、指导结构分析以及材料的设计和合成等。
四、总结从上文可以看出,晶体对称性是一个非常重要的概念,它不仅仅可以用来描述物体的形状、大小和空间结构,而且可以应用于许多不同的领域,如材料的研究与设计等。
4、晶体的对称性

(c) n度旋转反演轴
§1.6晶体的对称性
晶体经绕轴作n度旋转与中心反演的复合操作后与自身 重合则称其具有n度旋转反演轴对称。
晶体由于受周期性的制约,也只可能有2、3、4、与6度 旋转反演轴,分别用数字符号 2346 表示。
第 26 页
§1.6晶体的对称性
n 度旋转反演轴的对称性(操作的总效果一样)。
x~ ' x'
x2' 2 x3' 2 x12 x~A~Ax x~x
x22
x32
x~
'x'
x1'
x
' 2
x1'
x3' x2'
x3'
x~ ' 为转置矩阵,即行列互换所得矩阵。因此要求
第5页
即A为正交矩阵。
A ~ A I A ~ A1
第 45 页
§1.7 晶体结构的分类 我们已经知道布喇菲格子可以由
的格矢表示。
Rn n1a1 n2a2 n3a3
基矢a、b、c之间的关系,即其长度的异同和彼此间夹角 决定了不同的布喇菲格子的类型。
第 46 页
§1.7 晶体结构的分类
前面我们已经看到晶体在宏观对称操作作用下,其空 间格子必相应地变动。
分别为
0,60,90,120,180
第 21 页
§1.6晶体的对称性
即,晶体绕固定轴转动对称操作的转角只可能是
i 2
n
而n 必须是1、2、3、4、和6, i为任意整数。 常将这一类转动对称轴称作n度旋转轴,晶体周期性结构限制了只能
晶体的对称性

点群的Schönflies符号:
主轴:Cn、Dn、Sn、T和O Cn:n次旋转轴; Sn : n次旋转-反映轴; Dn:n次旋转轴加上一个与之垂直的二次轴 T: 四面体群; O: 八面体群。
脚标:h、v、d h:垂直于n次轴(主轴)的水平面为对称面; v:含n次轴(主轴)在内的竖直对称面; d:垂直于主轴的两个二次轴的平分面为对称面。
用的几何变换(旋转和反射)都是正交变换——保持
两点距离不变的变换: ⎛ x ' ⎞ ⎛ a11 a12 a13 ⎞ ⎛ x ⎞
数学上可以写作:
⎜ ⎜⎜⎝
y z
' '
⎟ ⎟⎟⎠
=
⎜ ⎜⎜⎝
a21 a31
a22 a32
a23 a33
⎟⎟⎟⎠i⎜⎜⎜⎝
y z
⎟ ⎟⎟⎠
其中 Aij 为正交矩阵
从解析几何知道,符合正交 变换的是:绕固定轴的转动 (Rotation about an axis)
准晶态结构特点:具有长程取向序,没有长程平移对 称性。
其实准晶可以看作是具有平移对称性的六维超空间在三维真实 空间的投影
黄昆书 47-48 陈长乐书 20-22
1974年Penrose提出的数学游戏
五次对称的黄金分割无理数
边长有两种取值:1, 1+ 5 = 1.618
2
二十面体AlPdMn表面的STM图像
D2、C2V、D2h
C3、S6、D3 C3V、D3d
C4、S4、C4h、D4 C4V、D2d、D4h C6、C3h、C6h、 D6、C6V、D3h、
D6h T、Th、Td
O、Oh
P、C P、C、I、
F R P、I
H
晶体的结构及其对称性

原子半径:
r
3
V
atom
4 3 a 3 4
3 a 4
V
bcc
a
3
Body centered cubic lattice
原子数: 堆积密度:
8
1 1 2 8
atom
f V
2
V
bcc
3 8
具有此结构的金属原子:碱金属Li、Na、K、Rb、Cs;难熔金 属W、Mo、Nb、Ta等。
的平移对称性。
• 基元按点阵排布得到晶体结构: <点阵>+<基元>=<晶体结构>
三、基矢和元胞 对于一个给定的点阵,总可以选择三个不共面的基本平移矢量������1 、������2 、������3
(称为点阵的基矢),使任意一个结点
3
������������ =������1 ������������ +������2 ������������ +������3 ������������ =
关于常见晶体结构的一些定义: • 配位数:每个原子周围的最近邻原子数 • 堆积密度:原子球的体积与其所占据的有效空间体积之比
(1)简单立方(sc)晶体结构
配位数:6
a
3
原子半径: r 2
V
atom
4 3
a 2
V
原子数: 堆积密度:
sc
a
3
Simple cubic lattice
• 面心立方(fcc)晶体结构
配位数:12
原子半径:
r
3
4 2 V fcc V atom 3 4 a 1 1 8 6 4 原子数: 8 2
结构化学晶体结构的对称性和基本定理

点击按钮观察动画.注意:反映滑移操作中
的“反映”是虚操作,可想象而难以实际表现, 故动画 中用幻影逗号的移动来模拟反映,请勿误解!
8.2.2 晶胞
设想把点阵放回晶体中去, 将把晶体切分成并置的平行六面 体小晶块,每个空间格子对应一 个小晶块. 这种小晶块就是晶胞, 是代表晶体结构的最小单元.
晶胞参数
NaCl型晶体
原子的分数坐标: A: 0 0 0
0 1/2 1/2 1/2 0 1/2 1/2 1/2 0 B: 1/2 0 0
0 1/2 0 0 0 1/2 1/2 1/2 1/2 结构基元: A-B (每个晶胞中有4个结构基元)
CsCl型晶体
原子的分数坐标: A: 0 0 0 B: 1/2 1/2 1/2
为什么要考虑带心格子?
立方面心格子,若按左图取素格子只能表现三方对称性;若取右图 所示的复格子就表现出立方对称性(格子选取方式不能改变点阵结构的对 称性,但点阵固有的较高对称性在素格子上可能被掩盖):
14种布拉维格子之一:立方简单(cP)
14种布拉维格子二:立方体心(cI)
14种布拉维格子三:立方面心(cF)
晶胞参数:
a、b、c α、β、γ
晶
胞
两
要
(1)晶胞的大小、型式
素
晶胞的大小可由晶胞参数确定,晶胞的型式是
指素晶胞或复晶胞.
(2)晶胞的内容
晶胞中原子的种类和位置. 表示原子位置要用 分数坐标.
分数坐标
晶胞中原子P 的位置用向量OP=xa+yb+zc代表. x、y、z
就是分数坐标,它们永远不会大于1.
14种布拉维格子之八:正交简单(oP)
14种布拉维格子之九:正交体心(oI)