函数的对称性
函数的对称性与奇偶性

函数的对称性与奇偶性对于函数而言,它的对称性和奇偶性是一种重要的性质,可以帮助我们更好地理解和分析函数的特点。
在数学中,对称性指的是函数在某种变换下保持不变的性质,而奇偶性则是函数在自身的对称轴上的性质。
本文将重点讨论函数的对称性和奇偶性。
1. 函数的对称性函数的对称性是指在某种变换下,函数的图像能够保持不变。
常见的函数对称性包括中心对称和轴对称。
1.1 中心对称性中心对称性是指函数的图像以某个点为对称中心,对称轴上的任意两点关于对称中心对称。
形式化地说,对于函数f(x),如果对于任意的x,有f(-x) = f(x),则函数f(x)具有中心对称性。
例如,函数f(x) = x^2是一个具有中心对称性的函数。
我们可以将其图像想象成一个抛物线,以原点为对称中心,任意一点关于原点的对称点的函数值是相等的。
1.2 轴对称性轴对称性是指函数的图像以某条直线为对称轴,对称轴上的任意两点关于对称轴对称。
形式化地说,对于函数f(x),如果对于任意的x,有f(-x) = f(x),则函数f(x)具有轴对称性。
举个例子,函数f(x) = sin(x)是一个具有轴对称性的函数。
我们可以将其图像想象成一条波浪线,其对称轴为x轴,任意一点关于x轴的对称点的函数值是相等的。
2. 函数的奇偶性函数的奇偶性是指函数在自身的对称轴上的性质。
奇函数和偶函数是两种常见的奇偶性。
2.1 奇函数奇函数是指函数在自身的原点上具有对称性,即对于任意的x,有f(-x) = -f(x)。
奇函数的图像关于原点对称。
举个例子,函数f(x) = x^3是一个奇函数。
我们可以观察到,任意一点关于原点的对称点的函数值是相等的,而且函数的图像关于原点对称。
2.2 偶函数偶函数是指函数在自身的对称轴上具有对称性,即对于任意的x,有f(-x) = f(x)。
偶函数的图像关于对称轴对称。
例如,函数f(x) = x^2是一个偶函数。
我们可以观察到,任意一点关于y轴的对称点的函数值是相等的,而且函数的图像关于y轴对称。
函数的对称性

函数的对称性
(内容需原创)
1. 函数的对称性是指一个函数的值在某一点或几个点取到最大值或最小值的性质。
2. 函数的对称性是一种比较容易发现的函数性质。
掌握函数的对称性有助于提升函数分解、求导和求解数学问题的能力。
3. 常见的函数对称性有:
(1) 奇函数的对称性:如果它以某一点经过或以其为中心对称,则称其为奇函数。
例如,三次多项式函数y=ax^3+bx^2+cx+d,它以x = 0 为中心,应用自变量的变换x→-x,函数变化f(x)→-f(x),可知y=ax^3+bx^2+cx+d也是一个奇函数。
(2)偶函数的对称性:如果以某一点经过左右对称,则称其为偶函数。
例如,二次多项式函数y=ax^2+bx+c,它以 x = 0 中心对称,若将自变量x变换x→-x,函数变化f(x)→f(x),可知y=ax^2+bx+c也是一个偶函数。
(3) 关于y轴对称性:如果函数的每一对对称点,在y轴中对称,则称其为y轴对称性。
例如,三次多项式函数y= ax^3+bx^2+cx+d,它的每一对对称点(x1,y1)(x2,y2),在y轴中也是对称的,即(-x1,y1)(-x2,y2),因此y=ax^3+bx^2+cx+d也具有y轴对称性。
4. 位移与缩放函数作为其他对称性。
位移函数可以理解为在某一段函数上进行位移,缩放函数可以理解为改变某一段函数的显示大小。
5. 函数对称性可用已知特征函数作为依据来发现,其变换规律可以用三角函数,指数函数以及幂函数等来描述。
6. 对函数的对称性有所了解,能够从宏观和微观的角度更好的理解函数的定义及其变化规律,并有效的运用它们解决数学问题。
一个函数的对称性

一个函数的对称性(一)关于轴对称1、若f(x)=f(-x)恒成立,则函数f(x)的图像关于y 轴(直线x=0)对称2、若f(x)=f(2a-x)恒成立,则函数f(x)的图像关于直线x=a 对称3、若f(a+x)=f(b-x) 恒成立,则函数f(x)的图像关于直线x=2b a + 对称证明:在y=f(x)的图像上任取一点()y x 00,,则有)(00x y f =()y x 00,关于2b a x +=的对称点为()y x b a 00,-+∵f(a+x)=f(b-x) 恒成立 y x x x f b b f b a f 0000)())(()(==--=-+∴()y x b a 00,-+也是y=f(x)图像上的点∵()y x 00,是任意一点∴y=f(x)的图像关于2b a x +=对称特例:(1)a=0,b=0时,f(x)=f(-x), 则函数f(x)的图像关于直线x=0对称. (2) b=a时,f(a+x)=f(a-x), 则函数f(x)的图像关于直线x=a对称.注意:(1)以上结论可以直接用,(2)形式特征:x的系数互为相反数.(二)关于中心对称1、若f(-x)=-f(x)恒成立,则函数f(x)的图像关于原点(0,0)对称。
2、若f(a-x)=-f(a+x) 恒成立,则函数f(x)的图像关于点(a,0)对称。
3、若f(a-x)=c-f(b+x) 恒成立,则函数f(x)的图像关于点(2,2c b a +)对称。
证明:在y=f(x)的图像上任取一点()y x 00,,则有)(00x y f =()y x 00,关于⎪⎭⎫ ⎝⎛+2,2c b a 的对称点为()y x c b a 00,--+∵f(a-x)=c-f(b+x) 恒成立, ∴ yx x x x c f c b b f c b a f b a f 00000)()())(()(-=-=-+-=--=-+ ∴()y x c b a 00,--+也在y=f(x)的图像上∴y=f(x)的图像关于⎪⎭⎫ ⎝⎛+2,2c b a 对称特例:a=0,b=0,c=0, f(-x)=-f(x)恒成立,则函数f(x)的图像关于原点(0,0)对称。
函数周期性对称性

一、对称性:1、函数y=f(x)关于x=a对称⇔f(a+x)=f(a-x).f(a+x)=f(a-x)也可以写成f(x)=f(2a-x)或f(-x)=f(2a+x).若写成:f(a+x)=f(b-x),则函数f(x)关于直线x=(a+b)/2对称。
2、函数y=f(x)关于点(a,b)对称⇔f(a+x)+f(a-x)=2b.f(a+x)+f(a-x)=2b也可以写成f(2a+x)+f(-x)=2b或f(2a-x)+f(x)=2b.若写成:f(a+x)+f(b-x)=c,则函数f(x)关于点(2ba+,2c)对称。
3、函数y=f(x)关于y=b对称:假设函数关于y=b对称,即关于任意一个x值,都有两个y值与其对应,这显然不符合函数的定义,故函数自身不可能关于y=b对称。
但在曲线c(x,y)=0,则有可能会出现关于y=b对称,比如圆。
4、两个函数的图像对称性(1)、y=f(x)与y=f(-x)关于x轴对称。
(2)、y=f(x)与y=f(-x)关于y轴对称。
(3)、y=f(x)与y=f(2a-x)关于x=a对称。
(4)、y=f(x)与y=2a-f(x)关于y=a对称。
(5)、y=f(x)与y=2b-f(2a-x)关于点(a,b)对称。
(6)、y=f(a-x)与y=f(x-b)关于直线2ba x +=对称。
二、函数的周期性1、(定义)若f(x+T)=f(x) (T不等于0)⇔f(x)是周期函数,T是它的一个周期。
说明:nT也是f(x)的周期。
2、(1)f(x+T)=f(x) ⇔y=f(x)的周期为T。
(2)f(x+a)=f(b+x) (a<b) ⇔y=f(x)的周期为T=b-a。
(3)f(x+a)=f(x-a) ⇔y=f(x)的周期分为:偶函数T=2a;奇函数T=4a。
(4)f(a+x)=-f(x) ⇔y=f(x)的周期为T=2a。
(5)f(a+x)=c/f(x) (c为常数) ⇔y=f(x)的周期为T=2a。
函数的对称性

函数的对称性函数的对称性是指函数的图形在一条对称轴上的对称表现,或者说任意函数的定义域内的变化模式有着一定的对称特征。
通俗地讲,当给定一个函数,可以通过将它的图形翻转沿着某条对称轴的方式去考察其对称性,而是否存在某种对称性则会取决于函数的形式及其参数,也就是说它们会决定函数的对称轴甚至其非对称情况。
对称性非常重要,因为它有助于记忆和理解函数。
举个例子来说,如果你有一个函数f,它的定义域内具有左右对称性,那么你可以通过在x=0处切割它们,为此可以将函数中的x称为对称轴,这样就可以很容易地推断出它的行为规律。
而此外,如果一个函数的定义域内没有对称的规律,它可能不是很容易理解。
人们可以用三种方式来表达函数的对称性:反比例、反射和旋转。
反比例方式指的是在定义域内以反比例多少的方式进行调整,即以相同的数字翻转,使得变化的规律完全一致,但是具体的数字却不同。
反射方式指的是把一个函数的所有点的x坐标的值取反,使表达式(f(-x))成为另一个函数(f(x))的对称图形。
而旋转方式则是指以y轴或者x轴中心点旋转,使每个点的坐标的值发生变化,从而形成对称的函数图形。
另外,函数的对称性还受把某个参数称为平移向量或旋转角度所影响。
对于平移向量来说,可以将函数内部的某些坐标(x,y)向左右或上下方移动,使其变得更加对称,形成相对简单的函数图形。
而旋转角度则是指以一个定义域内某个点为中心,使整个函数的图像旋转一定的角度,使函数的变化模式更加简单。
总而言之,函数的对称性是一个重要的概念,它不仅可以帮助我们理解函数的表现规律,还可以帮助我们把函数的参数和变量更好地对应起来。
各种不同的变换会使函数的定义域内的变化模式发生改变,这同样也影响了函数的对称性,所以理解函数的对称性也是重要的,也是一个要注意的问题。
函数对称性

函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。
例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。
函数的对称性公式推导1.对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例.对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a原函数与反函数的对称轴是y=x.而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R.f(x)=|X|他的对称轴则是X=0,还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了.如f(x-3)=x-3。
令t=x-3,则f(t)=t。
可见原方程是由初等函数向右移动了3个单位。
同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)2,至于周期性首先也的从一般形式说起f(x)=f(x+T)注意此公式里面的X都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键.同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinX,T=2π(T=2π/W)但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T =π.y1=(sinx)^2=(1-cos2x)/2上面的2个方程T=π(T=2π/W)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T =π所以它的周期为T=π而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3对称函数在对称函数中,函数的输出值不随输入变数的排列而改变。
函数的对称性

函数的对称性知识梳理一、对称性的概念及常见函数的对称性1、对称性的概念①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数;⑨正弦型函数sin()y A x ωϕ=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数;⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。
前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。
⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c=- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c-。
二、抽象函数的对称性【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。
】1、函数)(x f y =图象本身的对称性(自对称问题)(1)轴对称①)(x f y =的图象关于直线a x =对称 ⇔)()(x a f x a f -=+ ⇔)2()(x a f x f -=⇔)2()(x a f x f +=-②)()(x b f x a f -=+ ⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称. 特别地,函数)(x f y =的图像关于y 轴对称的充要条件是()()f x f x =-.(2)中心对称①)(x f y =的图象关于点),(b a 对称⇔b x a f x a f 2)()(=-++ ⇔b x a f x f 2)2()(=-+⇔b x a f x f 2)2()(=++-。
函数对称性5个结论的推导

函数对称性5个结论的推导1.奇函数的推导:奇函数是指函数关于原点对称。
设函数f(x)是奇函数,那么有f(x)=-f(-x)。
为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=-f(x)。
这表明,当自变量的符号发生变化时,函数值也会发生变化,并保持相反的正负号。
例如,f(2)=-f(-2),f(3)=-f(-3)等等。
因此,奇函数关于原点对称。
2.偶函数的推导:偶函数是指函数关于y轴对称。
设函数f(x)是偶函数,那么有f(x)=f(-x)。
为了推导这个结论,我们考虑将x代替为-x,得到f(-x)=f(x)。
这表明,当自变量的符号发生变化时,函数值保持不变。
例如,f(2)=f(-2),f(3)=f(-3)等等。
因此,偶函数关于y轴对称。
3.半个周期对称的推导:半个周期对称是指函数的两个相邻的波峰或波谷关于y轴对称。
设函数f(x)是半个周期对称,那么有f(x)=f(x+T/2),其中T表示函数的周期。
为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/2得到f(x+T/2)=f(x+T/2+T)=f(x+T)=f(x),即f(x)=f(x+T/2)。
这表明,函数在每个周期的半个周期上关于y轴对称。
4.四分之一周期对称的推导:四分之一周期对称是指函数的四个相邻的波峰或波谷关于y轴对称。
设函数f(x)是四分之一周期对称,那么有f(x)=f(x+T/4),其中T表示函数的周期。
为了推导这个结论,我们考虑函数的周期性,即f(x+T)=f(x),代入x=x+T/4得到f(x+T/4)=f(x+T/4+T)=f(x+T)=f(x),即f(x)=f(x+T/4)。
这表明,函数在每个周期的四分之一周期上关于y轴对称。
5.中心对称的推导:中心对称是指函数关于一些点对称,该点称为中心。
设函数f(x)是中心对称,那么有f(x)=f(2a-x),其中a表示中心点的横坐标。
为了推导这个结论,我们考虑将自变量x替换成2a-x,得到f(2a-x)=f(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的对称性知识梳理一、对称性的概念及常见函数的对称性 1、对称性的概念①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
2、常见函数的对称性(所有函数自变量可取有意义的所有值)①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ωϕ=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数;⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。
前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。
⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c=-(由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c-。
二、抽象函数的对称性【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。
】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称①)(x f y =的图象关于直线a x =对称 ⇔)()(x a f x a f -=+ ⇔)2()(x a f x f -=⇔)2()(x a f x f +=-②)()(x b f x a f -=+ ⇔)(x f y =的图象关于直线22)()(ba xb x a x +=-++=对称. 特别地,函数)(x f y =的图像关于y 轴对称的充要条件是()()f x f x =-. (2)中心对称①)(x f y =的图象关于点),(b a 对称⇔b x a f x a f 2)()(=-++ ⇔b x a f x f 2)2()(=-+⇔b x a f x f 2)2()(=++-。
②c x b f x a f 2)()(=-++ ⇔)(x f y =的图象关于点),2(c ba +对称. 特别地,函数)(x f y =的图像关于原点(0,0)对称的充要条件是()()0f x f x +-=.(3)对称性与周期性之间的联系①若函数()f x 既关于直线x a =对称,又关于直线x b =对称()a b ≠,则函数()f x 关于无数条直线对称,相邻对称轴的距离为b a -;且函数()f x 为周期函数,周期2T b a =-;特别地:若)(x f y =是偶函数,其图像又关于直线x a =对称,则()f x 是周期为2a 的周期函数;②若函数()f x 既关于点(,0)a 对称,又关于点(,0)b 对称()a b ≠,则函数()f x 关于无数个点对称,相邻对称中心的距离为b a -;且函数()f x 为周期函数,周期2T b a =-;③若函数()f x 既关于直线x a =对称,又关于点(,0)b 对称()a b ≠,则函数()f x 关于无数个点和直线对称,相邻对称轴和中心的距离为b a -,相邻对称轴或中心的距离为2b a -;且函数()f x 为周期函数,周期4T b a =-。
特别地:若)(x f y =是奇函数,其图像又关于直线x a =对称,则()f x 是周期为a 4的周期函数。
典例精讲关于直线对称例1. (★★)已知二次函数)0()(2≠+=a bx ax x f 满足条件)3()5(-=-x f x f 且方程x x f =)(有等根,则)(x f = .例2.(★★)已知函数)(x f 对一切实数x 满足条件)3()1(x f x f +=-,已知2≥x 时,x x x f -=2)(, 求2<x 时)(x f 的解析式.巩固练习(自对称)1.(★★)已知函数()f x 定义域为R ,且对于任意实数x 满足(2)(6)f x f x -=-,当02x ≤≤时,2()235f x x x x =++++,则(1)(3)f f = .2. (★★)设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减, 且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( ) .A (1.5)(3.5)(6.5)f f f << .B (3.5)(1.5)(6.5)f f f <<.C (6.5)(3.5)(1.5)f f f << .D (3.5)(6.5)(1.5)f f f <<3. (★★)设函数)(x f 是定义在R 上的偶函数,它的图象关于直线2x =对称,已知[]2,2-∈x 时,1)(2+-=x x f ,求[]2,6--∈x 时,)(x f 的解析式.例3. (★★)已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()xf x e x R =∈ B . )0(ln 2ln )2(>⋅=x x x fC .()22()xf x e x R =∈ D .()2ln ln 2(0)f x x x =+>例4. (★★)已知函数2()3f x x x =++,函数()g x 与()f x 的图像关于轴03x =对称,求函数()g x 在区间[]34,上的最值.巩固练习1.(★★)若函数)(x g y =图像与函数)1()1(2≤-=x x y 的图像关于直线x y =对称,则(4)g =_;2.在同一直角坐标系中,函数()y g x =的图像与xy e =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =-,则a 的值是( )A .e -;B .1e -;C .1e; D .e .3.若函数)(x f 的图像与对数函数x y 4log =的图像关于直线0=+y x 对称,则)(x f 的解析式为4.(★★)函数()101xy aa =+<<的反函数的图象大致是(A ) (B ) (C ) (D )关于点对称例5.(★★)已知函数()y f x =满足:(2)()4f x f x -+=,则函数()y f x =的图象( ) A .关于点(1,1)M 对称 B .关于点(0,1)M 对称 C .关于点(1,0)M 对称 D .关于点(1,2)M 对称例6.(★★)设1>a ,函数)(x f 的图像与函数2|2|24--⋅--=x x a a y 的图像关于点)2,1(A 对称.求函数)(x f 的解析式.练习1.(★★★)()f x 是定义在R 上的以3为周期的奇函数,且(2)0f =,则方程()0f x =在区间(0,6)内解的个数的最小值是( ) A .7 B .3 C .4 D .52. (★★)已知函数f(x)=ax a x -+-1的反函数的图象的对称中心是(1,21),则函数g(x)=)2(log 2x x a -的单调递增区间是 ;函数对称性与周期性的联系例7.(★★)若函数)(x f 在R 上是奇函数,且在()01,-上是增函数,且)()2(x f x f -=+.①求)(x f 的周期;②证明)(x f 的图象关于点(2,0)k 中心对称;关于直线21x k =+轴对称, ()k Z ∈; ③讨论)(x f 在(1,2)上的单调性;练习1.(★★)设)(x f 是定义在R 上的奇函数,)(x f y =的图象关于直线21=x ,则=++++)5()4()3()2()1(f f f f f .2.(★★)已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为( )(A)-1 (B) 0 (C) 1 (D)23.(★★)设)(x f 是定义在R 上的偶函数,且)1()1(x f x f -=+,当01≤≤-x 时,x x f 21)(-=,则=)6.8(f ___________练习1. 函数(1)y f x =-与函数()1y f x =-的图象关于关于__________对称。
2. 设函数()y f x =的定义域为R ,且满足()(1)1f x f x -=-,则()y f x =的图象关于__________对称。
3. 设()y f x =的定义域为R ,且对任意x R ∈ ,有(12)(2)f x f x -=,则(2)y f x =图象关于__________对称,()y f x =关于__________对称。
4. 已知函数()y f x =对一切实数x 满足()(4)2f x f x +=-,且方程()0f x =有5个实根,则这5个实根之和为( ) A 、5 B 、10 C 、15 D 、185. 函数()y f x =定义域为R ,且恒满足()(2)2f x f x +=-和()(6)6f x f x +=-,当26x ≤≤时,1()22f x x =-,求()f x 解析式。
总结现在,总结一下本节课的收获吧? 函数图像的对称性1、(1) 一个图关于点对称:(Ⅰ)奇函数关于原点对称(Ⅱ) c x b f x a f 2)()(=-++ ⇔)(x f y =的图象关于点(,)2a bc +对称 (2) 一个图关于直线对称:(Ⅰ)偶函数关于y 轴对称(Ⅱ) 22()()(0)f a x f b x a b +=-+≠⇔关于直线2a bx +=对称 (3) 两个图关于点对称(Ⅰ)()y f x =关于原点对称的函数:,x x y y →-→-,即 ()y f x -=-(Ⅱ)()y f x =关于(,)a b 对称的函数:2,2x a x y b y →-→- 即2(2)b y f a x -=-(4)两个图关于直线对称:函数()y f a x =+与()y f b x =-图象关于直线()()0a x b x +--=对称即直线2b ax -=对称。