(完整word)高考专题函数对称性

合集下载

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。

高考高频考点14对称性

高考高频考点14对称性

第14讲 对称性知识与方法1.奇、偶函数的对称性(1)奇函数:图象关于原点对称; (2)偶函数:图象关于y 轴对称. 2.函数图象自身的对称性(1)对称轴:()()()f a x f b x f x +−−⇔的对称轴为2a b x +=;(2)对称中心:()()()=f a x f b x c f x ++−⇔的对称中心为,22a b c +⎛⎫⎪⎝⎭. 3.两个函数图象之间的对称关系(1)()()2x a y f x y f a x ==⎯⎯⎯⎯⎯⎯→=−关于直线对称; (2)()()2a y f x y a f x ==⎯⎯⎯⎯⎯⎯→=−关于直线y 对称; (3)()()(),22a b y f x y b f a x =⎯⎯⎯⎯⎯⎯→=−−关于点对称. 题组一1.(★★)()412x x f x −=的图象关于( )A.原点对称B.直线y x =对称C.直线y x =−对称D.y 轴对称【解析】()()4141=2222222x x x x x xx x x f x f x −−−=−=−⇒−=−()()=f x f x −⇒为奇函数,其图像关于原点对称.【答案】A 2.(★★)函数()412x x f x +=的图象( )A.关于原点对称B.关于直线y x =对称C.关于x 轴对称D.关于y 轴对称【解析】()()()()2222xxxxf x f x f x f x −−=+⇒−=+=⇒是偶函数,图像关于y 轴对称.【答案】D题组二3.(★★★)函数()y f x =的图象与函数()()2log 0g x x x =>的图象关于原点对称,则()f x 的表达式为( ) A.()()210log f x x x=> B.()()()210log f x x x =<−C.()()2log 0f x x x =−>D.()()()2log 0f x x x =−−<【解析】设(),x y 在函数()f x 的图象上,则(),x y 关于原点的对称点(),x y −−在函数()g x 的图像上,所以()2log y x −=−,故()2log y x =−−,即()()2log f x x =−−()0x <.【答案】D【提炼】①设点(求谁设谁);②转移点到已知解析式;③代入点.本题也可直接套用知识与方法中的第3条. 4.(★★★)如果函数()y f x =的图象与函数32y x =−的图象关于坐标原点对称,则()y f x =的表达式为( ) A.23y x =− B.23y x =+ C.23y x =−+D.23y x =−−【解析】设(),x y 在函数()f x 的图象上,(),x y 关于原点的对称点(),x y −−在函数()=32g x x −的图像上,所以()=32y x −−−,整理得23y x =−−,故()23f x x =−−.解法2:套用知识与方法第3点,与32y x =−的图象关于原点对称的函数为()32y x =−−−⎡⎤⎣⎦,即23y x =−−. 【答案】D 5.(★★★)与曲线11y x =−关于原点对称的曲线为( )A.11y x=+ B.11y x =−+ C.11y x =− D.11y x=−−【解析】设点(),x y 在函数()f x 的图象上,点(),x y 关于原点的对称点(),x y −−在函数()1=1g x x −的图像上,所以11y x −=−−,整理得11y x =+.【答案】A6.(★★★)下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是( ) A.()ln 1y x =−B.()ln 2y x =−C.()ln 1y x =+D.()ln 2y x =+【解析】特值法.点()3,ln 3在ln y x =图象上⇒点()3,ln 3关于直线1x =的对称点()1,ln 3−在所求函数图象上⇒选B.解法2:①取点:设欲求的图象上一点(),P x y ;②转移点:(),P x y 关于1x =的对称点为()2,P x y '−;③代入点:将()2,P x y '−代入ln y x =得()ln 2y x =−.【答案】B【提炼】相关点法:①设点(求谁设谁);②转移点到已知解析式;③代入点. 7.(★★★)已知函数()()ln ln 2f x x x =+−,则( ) A.()f x 在()0,2单调递增 B.()f x 在()0,2单调递减C.()y f x =的图象关于直线1x =对称D.()y f x =的图象关于点()1,0对称【解析】()()()ln ln 2=ln 2f x x x x x =+−−⎡⎤⎣⎦,设()2u x x =−,则()ln f x u =. 当()0,1x ∈时,()2u x x =−,ln y u =,由同增异减准则知()f x 在()0,1上递增; 当()1,2x ∈时,()2u x x =−,ln y u=,由同增异减准则知()f x 在()1,2上递减,故A项和B 项错误.()()()()()()2ln 2+ln 22=ln 2ln f x x x x x f x f x −=−−−−+=⇒⎡⎤⎣⎦的图象关于直线1x =对称,故C 项正确.(也可直接通过计算发现1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得出C 项正确,D 项错误).【答案】C题组三8.(★★★★)已知函数()f x ()x ∈R 满足()()=2f x f x − .若函数223y x x =−−与()y f x =图象的交点为()11,x y ,()22,x y ,…,(),m m x y ,则1mi i x ==∑( )A.0B.mC.2mD.4m【解析】()()()=2f x f x f x −⇒的图象关于直线1x =对称,作出函数223y x x =−−的图象如图1,由图可知图象也关于直线1x =对称,故两个函数图象的交点必然也关于直线1x =对称,图2给出了一个实例,不妨设12m x x x <<<,记12=m S x x x +++①,则11=m m S x x x −+++②.将式①和式②相加得()()()121122222m m m S x x x x x x m −=++++++=+++=,所以S m =.【答案】B【提炼】根据对称性判断两个函数具有相同的对称轴,故“交点的横坐标之和”=交点个数×对称轴.这一结论可用上面的倒序相加法推导. 9.(★★★★)已知函数()f x ()x ∈R 满足()()=2f x f x −− .若函数1x y x+=与()y f x =图象的交点为()11,x y ,()22,x y ,…,(),m m x y ,则()1mi i i x y =+=∑( )A.0B.mC.2mD.4m【解析】()()()()()=22f x f x f x f x f x −−⇒−+=⇒的图象关于点()0,1对称,函数11=1x y x x+=+的图象也关于点()0,1对称,故两函数图象的交点也关于点()0,1对称,不妨设12m x x x <<<,记112=m S x x x +++①,212m S y y y =+++②,则111=m m S x x x −+++③,211m m S y y y −=+++④,将式①和式③相加,得()()()112111200000m m m S x x x x x x S −=++++++=+++=⇒=;将式②和式④相加,得 ()()()21211222222m m m S y y y y y y m S m −=++++++=+++=⇒=,所以()()()1212121mi i m m i x y x x x y y y S S m =∑+=+++++++=+=.【答案】B【提炼】根据对称性判断两个函数的交点关于点(0,1)中心对称,故“交点的横坐标之和”=交点个数×对称中心的横坐标,“交点的横坐标之和”=交点个数×对称中心的纵坐标.这一结论的推导,可以用上面的倒序相加法。

高三函数对称性知识点总结

高三函数对称性知识点总结

高三函数对称性知识点总结在高三数学中,函数是一个重要的概念和知识点。

在函数的学习中,函数的对称性是一个关键的概念。

了解和掌握函数的对称性是解题的基础,本文将对高三函数的对称性知识点进行总结。

函数的对称性可以分为平面对称和轴对称两种情况。

平面对称是指函数图像关于某个平面对称,而轴对称则是指函数图像关于某个轴对称。

接下来将分别从平面对称和轴对称两个方面来介绍高三函数的对称性知识点。

平面对称性是函数图像相对于某个平面的对称性。

当函数的图像关于$x$轴或$y$轴对称时,即可说函数具有平面对称性。

平面对称的函数具有以下特点:1. 关于$x$轴对称:当函数图像关于$x$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。

这种情况下,若$P$为函数图像上的任意一点,则$P$关于$x$轴对称的点也在函数图像上。

2. 关于$y$轴对称:当函数图像关于$y$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。

这种情况下,若$P$为函数图像上的任意一点,则$P$关于$y$轴对称的点也在函数图像上。

轴对称性是函数图像相对于某个轴的对称性。

当函数的图像关于$x$轴、$y$轴或者直线$x=a$对称时,即可说函数具有轴对称性。

轴对称的函数具有以下特点:1. 关于$x$轴对称:当函数图像关于$x$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。

这种情况下,若$(x,y)$为函数图像上的任意一点,则$(x,-y)$也在函数图像上。

2. 关于$y$轴对称:当函数图像关于$y$轴对称时,即函数的对于$x$的取值为$x$,对应的函数值为$y$,那么对于函数的对称点$x$,其对应的函数值$y$相等。

这种情况下,若$(x,y)$为函数图像上的任意一点,则$(-x,y)$也在函数图像上。

函数对称性公式大总结

函数对称性公式大总结

函数对称性公式大总结1. 引言在数学中,函数对称性是一个重要的概念,它描述了函数在某种变换下保持不变的性质。

函数对称性有多种形式,如轴对称性、中心对称性等。

本文将对函数对称性的一些常见公式进行总结,并提供示例说明。

2. 轴对称函数公式2.1 轴对称性的定义轴对称是指函数图像对于某一条直线对称,即函数图像在这条直线两侧对称。

设函数为 f(x),对称轴为 x = a,则函数 f(x) 在对称轴两侧的函数值相等,即 f(a + h) = f(a - h)。

2.2 轴对称函数公式•偶函数:若函数 f(x) 满足 f(-x) = f(x),则称 f(x) 为偶函数。

•奇函数:若函数 f(x) 满足 f(-x) = -f(x),则称 f(x) 为奇函数。

偶函数和奇函数都具有轴对称性,其中以偶函数更为常见。

3. 中心对称函数公式3.1 中心对称性的定义中心对称是指函数图像对于某一点对称,即函数图像关于这一点对称。

设函数为 f(x),对称中心为 (a, b),则函数 f(x) 在对称中心两侧的函数值相等,即 f(a + h) = f(a - h)。

3.2 中心对称函数公式•对数函数:对数函数 y = loga(x) 关于 y 轴对称,其中 a > 0,且a ≠ 1。

•幂函数:幂函数 y = ax^n 关于 y 轴对称,其中a ≠ 0,且 n 为任意整数。

•正弦函数和余弦函数:正弦函数 y = sin(x) 和余弦函数 y = cos(x) 关于原点对称。

4. 复合对称函数公式4.1 复合对称性的定义复合对称是指函数图像同时具有轴对称性和中心对称性。

函数 f(x) 在具有轴对称性的直线上的每一个点,同时也是具有中心对称性的点。

4.2 复合对称函数公式•奇次幂函数:奇次幂函数y = ax^(2n+1) 具有轴对称性和中心对称性,其中a ≠ 0,n 为任意整数。

5. 示例说明5.1 示例 1:偶函数考虑函数 f(x) = x^2,我们可以看到该函数关于 y 轴对称,即 f(x) = f(-x)。

函数对称性知识点归纳总结

函数对称性知识点归纳总结

函数对称性知识点归纳总结一、函数的对称性概念1.1 函数的定义在数学中,函数是一种将输入值映射到输出值的关系。

它通常表示为f(x),其中x是输入值,f(x)是输出值。

函数可以用数学公式、图表、图形等方式来表示。

1.2 函数的对称性函数的对称性是指在某种变换下,函数图像保持不变的性质。

这种变换可以是关于坐标轴的对称、关于原点的对称、关于直线或平面的对称等。

函数的对称性可以分为以下几种:- 偶函数:如果对任意的x,有f(x) = f(-x),那么函数f(x)是关于y轴对称的,称为偶函数。

偶函数的图像在y轴对称。

- 奇函数:如果对任意的x,有f(x) = -f(-x),那么函数f(x)是关于原点对称的,称为奇函数。

奇函数的图像关于原点对称。

- 周期函数:如果存在一个正数T,使得对任意的x,有f(x+T) = f(x),那么函数f(x)是周期函数。

周期函数的图像在某一段距离上重复。

1.3 示例以函数f(x) = x^2为例,它是一个偶函数。

因为对任意的x,有f(x) = x^2 = (-x)^2 = f(-x),所以函数图像关于y轴对称。

又如函数f(x) = sin(x),它是一个奇函数。

因为对任意的x,有f(x) = sin(x) = -sin(-x) = -f(-x),所以函数图像关于原点对称。

二、函数对称性的判定与应用2.1 函数对称性的判定在判断一个函数是否具有对称性时,可以通过以下方法进行判定:- 偶函数:验证函数f(x)是否满足f(x) = f(-x)即可判断是否为偶函数。

- 奇函数:验证函数f(x)是否满足f(x) = -f(-x)即可判断是否为奇函数。

- 周期函数:通过周期函数的定义,验证函数f(x)是否满足f(x+T) = f(x)即可判断是否为周期函数。

2.2 函数对称性的应用函数对称性在数学分析、物理学、工程学等领域中有着广泛的应用。

以下是函数对称性的一些应用场景:- 在积分计算中,利用函数的对称性可以简化积分的计算。

高三函数对称性知识点汇总

高三函数对称性知识点汇总

高三函数对称性知识点汇总函数是数学中的重要概念,在高三数学学习中,函数的对称性是一个重要的知识点。

本文将对高三函数对称性的相关知识进行汇总,并介绍不同函数的对称性及其特点。

函数的对称性是指函数图像在某种变换下保持不变的性质。

在高三函数学习中,常见的函数对称性有以下几种:关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称。

一、关于x轴对称若函数图像在x轴两侧关于x轴对称,即对于函数中的每一个点(x, y),都存在另一个点(x, -y)也在函数图像上,则称函数关于x轴对称。

对于一个函数关于x轴对称的特点有:1. 函数的解析式中只含有偶次项,或不包含奇次项。

2. 函数图像关于y轴对称。

若函数图像在y轴两侧关于y轴对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, y)也在函数图像上,则称函数关于y 轴对称。

对于一个函数关于y轴对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。

2. 函数图像关于x轴对称。

三、关于原点对称若函数图像关于原点对称,即对于函数中的每一个点(x, y),都存在另一个点(-x, -y)也在函数图像上,则称函数关于原点对称。

对于一个函数关于原点对称的特点有:1. 函数的解析式中只含有偶次幂的x,或不包含x。

2. 函数图像关于原点对称。

当函数图像在直线L两侧对称时,我们称函数关于直线L对称。

对于关于直线对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。

2. 函数图像上关于直线L对称。

五、关于点对称若函数图像在点P两侧对称时,我们称函数关于点P对称。

对于关于点对称的函数,其特点有:1. 函数的解析式中含有x与常数的乘积,并且在函数中不含有形如|x|的项。

2. 函数图像关于点P对称。

综上所述,高三数学中的函数对称性知识点主要包括关于x轴对称、关于y轴对称、关于原点对称、关于直线对称、关于点对称等几种形式。

完整版)常见函数对称性和周期性

完整版)常见函数对称性和周期性

完整版)常见函数对称性和周期性二、函数对称性的重要结论一)函数y=f(x)的图像本身的对称性(自身对称)若f(x+a)=±f(x+b),则f(x)具有周期性;若f(a+x)=±f(b-x),则f(x)具有对称性。

即,“内同表示周期性,内反表示对称性”。

1、f(a+x)=f(b-x)⟺y=f(x)的图像关于直线x=(a+b)/2对称。

推论1:f(a+x)=f(a-x)⟺y=f(x)的图像关于直线x=a对称。

推论2、f(x)=f(2a-x)⟺y=f(x)的图像关于直线x=a对称。

推论3、f(-x)=f(2a+x)⟺y=f(x)的图像关于直线x=a对称。

2、f(a+x)+f(b-x)=2c⟺y=f(x)的图像关于点(a+b/2,c)对称。

推论1、f(a+x)+f(a-x)=2b⟺y=f(x)的图像关于点(a,b)对称。

推论2、f(x)+f(2a-x)=2b⟺y=f(x)的图像关于点(a,b)对称。

推论3、f(-x)+f(2a+x)=2b⟺y=f(x)的图像关于点(a,b)对称。

二)两个函数的图像对称性(相互对称)1、偶函数y=f(x)与y=f(-x)的图像关于Y轴对称。

2、奇函数y=f(x)与y=-f(-x)的图像关于原点对称。

3、函数y=f(x)与y=-f(x)的图像关于X轴对称。

4、互为反函数y=f(x)与函数y=f^-1(x)的图像关于直线y=x对称。

5、函数y=f(a+x)与y=f(b-x)的图像关于直线x=(b-a)/2对称。

推论1: 函数y=f(a+x)与y=f(a-x)的图像关于直线x=a对称。

推论2: 函数y=f(x)与y=f(2a-x)的图像关于直线x=a对称。

推论3: 函数y=f(-x)与y=f(2a+x)的图像关于直线x=-a对称。

三、函数周期性的重要结论1、f(x±T)=f(x)(T≠0)⟺y=f(x)的周期为T,kT(k∈Z)也是函数的周期。

2、f(x+a)=f(x+b)⟺y=f(x)的周期为T=b-a。

高三函数对称性知识点总结

高三函数对称性知识点总结

高三函数对称性知识点总结在高中数学的学习过程中,函数是一个非常重要的概念。

而函数的对称性是函数图像在坐标轴上的对称特性,它是一种具有很高抽象性的数学思维,对于理解和解决数学问题具有重要意义。

在高三数学学习中,函数的对称性是一个非常重要的知识点,也是数学建模和解题中常用的技巧之一。

下面将对高三函数对称性的知识点进行总结。

一、函数的对称性1. 关于x轴的对称性当函数图像与x轴对称时,称函数具有关于x轴的对称性。

即对于函数图像上任意一点(x, y),都有对应的点(x, -y)也在函数图像上。

2. 关于y轴的对称性当函数图像与y轴对称时,称函数具有关于y轴的对称性。

即对于函数图像上任意一点(x, y),都有对应的点(-x, y)也在函数图像上。

3. 关于原点的对称性当函数图像与原点对称时,称函数具有关于原点的对称性。

即对于函数图像上任意一点(x, y),都有对应的点(-x, -y)也在函数图像上。

4. 奇函数如果函数f(-x) = -f(x),那么称函数f(x)为奇函数。

奇函数的图像关于原点对称,且通过原点。

5. 偶函数如果函数f(-x) = f(x),那么称函数f(x)为偶函数。

偶函数的图像关于y轴对称,且通过y 轴。

6. 周期函数如果函数f(x + T) = f(x),其中T为正实数,那么称函数f(x)为周期函数。

周期函数的图像在一个周期内具有对称性。

二、对称性在数学建模中的应用1. 对称性可以简化问题在数学建模中,对称性可以帮助我们简化问题,减少计算量和分析难度。

通过对称性的特点,我们可以找到函数图像上的对称点,从而减少求解方程的步骤。

2. 对称性可以加快求解过程利用函数的对称性,在求解函数的零点、极值点和拐点时,可以通过对称点的关系,快速地确定函数的特征点,从而加快求解过程。

3. 对称性可以提高模型的精度在数学建模中,对称性可以帮助我们合理地选择函数模型,提高模型的精度和可靠性。

三、对称性在解题中的应用举例1. 求函数图像与坐标轴的交点在函数图像与坐标轴相交的点的求解中,利用函数的对称性可以帮助我们简化求解过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数对称性
一知识点精讲:
I 函数)(x f y =图象本身的对称性(自身对称)
1、)()(x b f x a f -=+⇔)(x f y =图象关于直线2
2)()(b a x b x a x +=-++=对称 证明:函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线a b x +=的对称点为
(Q a b +∴点Q 推论1推论2推论32、f ((Q a b +∴点Q 推论1推论2推论3II 1、y 2、y 345.函数证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于直线2b a x -=
的对称点为
00(,)Q b a x y --,000[()]()f b b a x f a x y ---=+=
∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2
b a x -=
的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2
b a x -=对称. 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称
推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称
推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称
6若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点(
,0)2
b a -对称. 证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于点(,0)2
b a -的对称点为
00(,)Q b a x y ---,000[()]()f b b a x f a x y ----=-+=-
∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2
b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 二典例解析:
11x
(log 2f 解析:)(x f -(log f 234 5 解析:的,故6、设y )2(x f =解析:)2(x f 是由2
1=x ,=x 7个实根之和为解析:)(x f y =的图象关于直线3=x 对称,故五个实根,有两对关于直线3=x 对称,它们的和为12,还有一个根就是3。

故这5个实根之和为15,正确答案为15
8、设函数)(x f y =的定义域为R ,则下列命题中,
①若)(x f y =是偶函数,则)2(+=x f y 图象关于y 轴对称;
②若)2(+=x f y 是偶函数,则)(x f y =图象关于直线2=x 对称;
③若)2()2(x f x f -=-,则函数)(x f y =图象关于直线2=x 对称;
④)2(-=x f y 与)2(x f y -=图象关于直线2=x 对称,
其中正确命题序号为_______。

解析:①错)2(+=x f y 关于直线2-=x 对称,②对③错若)2()2(x f x f -=-,则函数)(x f y =图象关于直线0=x 对称;④对正确答案为②④。

相关文档
最新文档