函数对称性、周期性和奇偶性规律总结
(完整版)函数奇偶性、对称性、周期性知识点总结,推荐文档

抽象函数的对称性、奇偶性与周期性常用结论一.概念:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得()f x x T ()()f x T f x +=恒成立,则称函数具有周期性,叫做的一个周期,则(()f x T ()f x kT )也是的周期,所有周期中的最小正数叫的最小正周期。
,0k Z k ∈≠()f x ()f x 分段函数的周期:设是周期函数,在任意一个周期内的图像为C:)(x f y =),(x f y =。
把个单位即按向量[]a b T b a x -=∈,,)()(a b K KT x x f y -==轴平移沿在其他周期的图像:)()0,(x f y kT a ==平移,即得。
[]b kT a kT x kT x f y ++∈-=,),(2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若。
为偶函数则称)()()(x f y x f x f ==-分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。
2、()y f x =与()y f x =-关于Y 轴对称。
证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。
注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y -换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。
()(())()g x f x f x -=--=3、()y f x =与(2)y f a x =-关于直线x a = 对称。
证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y -∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。
注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。
4、)(x f y =与)(2x f a y -=关于直线a y =对称。
证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y -∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称.注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。
函数的对称性与周期性奇偶性导数关系

1函数的周期性与对称性(奇偶性)一.概念1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A --②成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-=③成中心对称。
关于点与(函数),(0)2,2(0),b a y b x a F y x F =--= “横纵坐标和为常数,平均数为中心”。
(2)轴对称:①点(,)(2,)x=A x y B a x y a -与关于对称;()(2)x=y f x y f a x a ==-函数与关于对称;,)0(2,)0x=F x y F a x y a =-=函数(与关于对称。
“横纵坐标和为常数,平均数为中心”。
“横纵坐标和为常数,纵坐标相等,横纵坐标平均数为对称轴”。
(同理可得关于y=b 对称)②对称轴方程为:0=++C By Ax 。
))(2,)(2(),(),(2222//B A C By Ax B y B A C By Ax A x B y x B y x A +++-+++-=与点关于直 线成轴对称;0=++C By Ax函数))(2()(2)(2222B A C By Ax A x f B A C By Ax B y x f y +++-=+++-=与关于直线 0=++C By Ax 成轴对称。
函数奇偶性、对称性与周期性有关结论

函数奇偶性、对称性与周期性奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。
一、几个重要的结论(一)函数)(x f y =图象本身的对称性(自身对称)2、)2()(x a f x f -=⇔)(x f y =的图象关于直线a x =对称。
3、)2()(x a f x f +=-⇔)(x f y =的图象关于直线a x =对称。
4、)()(x b f x a f -=+⇔)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。
5、b x a f x a f 2)()(=-++⇔)(x f y =的图象关于点),(b a 对称。
6、b x a f x f 2)2()(=-+⇔)(x f y =的图象关于点),(b a 对称。
7、b x a f x f 2)2()(=++-⇔)(x f y =的图象关于点),(b a 对称。
8、c x b f x a f 2)()(=-++⇔)(x f y =的图象关于点),2(c b a +对称。
(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。
2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。
6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。
7、函数)(x f y =与)(x f y --=图象关于原点对称(三)函数的周期性1、)()(x f T x f =+⇔)(x f y =的周期为T2、)()(b x b f a x f ++=+)(b a <⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2= 6、)(1)(1)(x f x f a x f +-=+⇔)(x f y =的周期为a T 3= 7、1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 3= 8、)(1)(1)(x f x f a x f -+=+⇔)(x f y =的周期为a T 4= 9、)()()2(x f a x f a x f -+=+⇔)(x f y =的周期为a T 6=10、)(x f y =有两条对称轴a x =和b x =()b a <⇔)(x f y =周期)(2a b T -=11、)(x f y =有两个对称中心)0,(a 和)0,(b ⇔)(x f y =周期)(2a b T -=12、)(x f y =有一条对称轴a x =和一个对称中心)0,(b ⇔)(x f y =周期)(4a b T -=13、奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y =周期a T 4=。
2020届高中数学:函数的奇偶性与周期性、对称性知识点总结

2020届高中数学:函数的奇偶性与周期性、对称性知识点总结1.奇、偶函数的概念(1)偶函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做偶函数.(2)奇函数一般地,如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做奇函数.2.奇、偶函数的图象特征偶函数的图象关于 对称;奇函数的图象关于 对称.3.具有奇偶性函数的定义域的特点具有奇偶性函数的定义域关于 ,即“定义域关于 ”是“一个函数具有奇偶性”的 条件.4.周期函数的概念(1)周期、周期函数对于函数f (x ),如果存在一个 T ,使得当x 取定义域内的 值时,都有 ,那么函数f (x )就叫做周期函数.T 叫做这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个___的正数,那么这个最小正数就叫做f (x )的最小正周期.5.函数奇偶性与单调性之间的关系(1)若函数f (x )为奇函数,且在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上为 ;(2)若函数f (x )为偶函数,且在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上为 .6.奇、偶函数的“运算”(共同定义域上)奇±奇= ,偶±偶= ,奇×奇= ,偶×偶= ,奇×偶= .7.函数的对称性如果函数f (x ),x ∈D ,满足∀x ∈D ,恒有f (a +x )=f (b -x ),那么函数的图象有对称轴x =a +b 2;如果函数f (x ),x ∈D ,满足∀x ∈D ,恒有f (a -x )=-f (b +x ),那么函数的图象有对称中心⎝⎛⎭⎫a +b 2,0.8.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)(a<b),那么函数f(x)是周期函数,且周期T=2(b-a).(3)如果函数f(x),x∈D在定义域内有一条对称轴x=a和一个对称中心B(b,0)(a≠b),那么函数f(x)是周期函数,且周期T=4|b-a|.答案1.(1)f(-x)=f(x)(2)f(-x)=-f(x)2.y轴原点3.原点对称原点对称必要不充分4.(1)非零常数每一个f(x+T)=f(x)(2)最小5.(1)增(减)函数(2)减(增)函数6.奇偶偶偶奇。
函数奇偶性对称性周期性知识点总结

函数奇偶性对称性周期性知识点总结函数的奇偶性、对称性和周期性是数学中经常研究的重要性质。
它们描述了函数的特征和性质,对于理解函数的行为和解决问题都具有重要意义。
下面将分别对这三个概念进行总结。
一、函数的奇偶性1.奇函数:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数为奇函数。
即函数在原点关于y轴对称。
奇函数的特点:-奇函数的图像关于原点(0,0)对称。
-当函数的定义域包括0时,即使x等于0,函数值仍然等于0。
常见的奇函数有:- 正弦函数sin(x)。
-奇数次幂的多项式函数,如x^3、x^5等。
2.偶函数:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数为偶函数。
即函数在原点关于x轴对称。
偶函数的特点:-偶函数的图像关于x轴对称。
-当函数的定义域包括0时,对于任意的x,f(0)=f(-x)=f(x)。
常见的偶函数有:- 余弦函数cos(x)。
-偶数次幂的多项式函数,如x^2、x^4等。
3.奇偶性的判断方法:-对于已知函数,可以通过代数运算证明是否满足奇偶性的定义。
-函数图像的轴对称性可以直接判断奇偶性。
-对于周期函数,可以利用周期性的性质判断奇偶性。
二、函数的对称性1.关于y轴对称:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数关于y轴对称。
即函数的图像左右对称。
2.关于x轴对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于x轴对称。
即函数的图像上下对称。
3.关于原点对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于原点对称。
即函数的图像关于原点对称。
三、函数的周期性1.周期函数:如果存在一个正实数T,对于函数f(x),对于任意的x,都有f(x+T)=f(x),那么称该函数为周期函数,T为函数的周期。
周期函数的特点:-周期函数在一个周期内的函数值是相同的。
函数对称性、周期性和奇偶性的规律总结大全

函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、 对称性定义(略),请用图形来理解。
3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式)()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(函数对称性、周期性和奇偶性关岭民中数学组(一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f(2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-2、奇偶性的拓展 : 同一函数的对称性(1)函数的轴对称:函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+>)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。
∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f -=∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f +=-(2)函数的点对称:·函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称 证明:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+- 可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称 得证。
说明: 关于点),(b a 对称要求横坐标之和为2a ,纵坐标之和为2b ,如())a x a x +-与( 之和为 2a 。
>(3)函数)(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。
但在曲线c(x,y)=0,则有可能会出现关于b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。
(4)复合函数的奇偶性的性质定理:性质1、复数函数y =f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。
复合函数y =f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。
性质2、复合函数y =f(x +a)为偶函数,则f(x +a)=f(-x +a);复合函数y =f(x +a)为奇函数,则f(-x +a)=-f(a +x)。
性质3、复合函数y =f(x +a)为偶函数,则y =f(x)关于直线x =a 轴对称。
复合函数y =f(x +a)为奇函数,则y =f(x)关于点(a,0)中心对称。
"总结:x 的系数一个为1,一个为-1,相加除以2,可得对称轴方程总结:x 的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。
总结:x 的系数同为为1,具有周期性。
(二)、两个函数的图象对称性1、()y f x =与()y f x =-关于X 轴对称。
证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y -∵11(,)x y 与11(,)x y -关于X 轴对称,∴11()y f x =与()y f x =-关于X 轴对称. 注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。
~2、()y f x =与()y f x =-关于Y 轴对称。
证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。
注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y -换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。
()(())()g x f x f x -=--=3、()y f x =与(2)y f a x =-关于直线x a = 对称。
证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y -—∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。
注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。
4、)(x f y =与)(2x f a y -=关于直线a y =对称。
证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y -∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称.注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。
5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。
》证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --∵11(,)x y 与11(2,2)a x b y --关于点(a,b)对称,∴)2(2)(x a f b y x f y --==与关于点(a,b)对称.注:换种说法:)(x f y =与()2(2)y g x b f a x ==--若满足b x a g x f 2)2()(=-+,即它们关于点(a,b)对称。
(2)2(2(2))2()g a x b f a a x b f x -=---=-6、)(x a f y -=与()y f x b =-关于直线2b a x +=对称。
证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f a x =-经过点11(,)a x y -,()y f b x =-经过点11(,)b x y +,∵11(,)a x y -与11(,)b x y +关于直线2b a x +=对称, ∴)(x a f y -=与()y f x b =-关于直线2b a x +=对称。
三、总规律:定义在R上的函数()x f y =,在对称性、周期性和奇偶性这三条性质中,只要有两条存在,则第三条一定存在。
一、 *二、 同一函数的周期性、对称性问题(即函数自身)(一)、函数的周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
1、周期性:(1)函数)(x f y =满足如下关系式,则T x f 2)(的周期为A 、)()(x f T x f -=+B 、)(1)()(1)(x f T x f x f T x f -=+=+或 C 、)(1)(1)2(x f x f T x f -+=+或)(1)(1)2(x f x f T x f +-=+(等式右边加负号亦成立)D 、其他情形(2)函数)(x f y =满足)()(x a f x a f -=+且)()(x b f x b f -=+,则可推出 ')](2[)]2([)]2([)2()(a b x f b x a b f b x a b f x a f x f -+=---=--+=-=即可以 得到)(x f y =的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x 轴两条直线对称,则函数一定是周期函数”(3)如果奇函数满足)()(x f T x f -=+则可以推出其周期是2T ,且可以推出对称 轴为kT T x 22+=)(z k ∈,根据)2()(T x f x f +=可以找出其对称中心为 )0(kT ,)(z k ∈(以上0≠T ))如果偶函数满足)()(x f T x f -=+则亦可以推出周期是2T ,且可以推出对称中心为)0,22(kT T +)(z k ∈,根据)2()(T x f x f +=可以推出对称轴为kT T x 2+=)(z k ∈ (以上0≠T )(4)如果奇函数)(x f y =满足)()(x T f x T f -=+(0≠T ),则函数)(x f y =是 以4T 为周期的周期性函数。
如果偶函数)(x f y =满足)()(x T f x T f -=+ (0≠T ),则函数)(x f y =是以2T 为周期的周期性函数。
定理1:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f -=+)((其 中b a ≠),则函数()x f y =以()b a -2为周期.定理2:若函数()x f 在R 上满足()x a f x a f --=+)(,且()x b f x b f --=+)( (其中b a ≠),则函数()x f y =以()b a -2为周期.》定理3:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f --=+)((其 中b a ≠),则函数()x f y =以()b a -4为周期.定理4:若函数f(x)的图像关于直线x=a 和x=b 都对称,则f(x)是周期函数,2(b-a )是它的一个周期(未必是最小正周期)。