Canny算子的三个最优准则

合集下载

Canny边缘检测器.ppt

Canny边缘检测器.ppt

对NMS结果进行二值化
• 对上述得到的N(x,y)使用阈值进行二值化 • 使用大的阈值,得到:
– 少量的边缘点 – 许多空隙
• 使用小的阈值,得到:
– 大量的边缘点 – 大量的错误检测
使用双阈值检测边缘
• 两个阈值T1,T2: T2 >> T1
–由T1得到E1(x,y),低阈值边缘图:更大的误检测率 –由T2得到E2(x,y),高阈值边缘图:更加可靠
Canny算子:流程
原始图像
原始图像经过Gauss平滑
Canny算子:流程
梯度幅值图像
梯度幅值经过非极大值抑制
Canny算子:流程
低阈值边缘图像
高阈值边缘图像
Canny输出边缘图像
使用Canny算子需要注意的问题
• Canny算子的优点:
– 参数较少 – 计算效率 – 得到的边缘连续完整
• 参数的选择:
Canny边缘检测器
• 也许是最常用的边缘检测方法 • 一个优化的方案
– 噪声抑制 – 边缘增强 – 边缘定位
CanБайду номын сангаасy边缘检测算法
• 算法基本过程:
计算图像梯度
幅值大小M(x,y) 方向Theta(x,y)
梯度非极大值抑制
NMS: Non-Maxima Suppression
双阈值提取边缘点
计算图像梯度:高斯函数的一阶导数
• 高斯函数的一阶导数(Derivative of Gaussian) • 可以很近似地满足以下三条边缘检测最优准则:
–好的边缘检测结果:Good detection 对边缘的响应大于对噪声的响应
–好的定位性能:Good localization 其最大值应接近边缘的实际位置

Canny算子的三个最优准则

Canny算子的三个最优准则

Canny 算子的三个最优准则如下所示:
(1)信噪比准则 信噪比准则的主要作用是提高边缘检测的正确性,使得错检或者漏检的边缘错误率下降,其公式如下:
SNR = (4-8)
其中,SNR 表示信噪比,()f x 表示滤波器脉冲于边界[],w w -的响应,()G x 代表图像边缘信号,0n 代表噪声()n x 的高斯噪声响应的均方根。

SNR 与检测效果成正比。

(2)最优定位准则
最优定位准则的目的是使标记得出的边缘尽可能地接近图像真正的边缘,从而提高定位的精度,其公式如下:
Localization = (4-9)
其中Localization 代表定位精度,高精度的定位必须满足上式。

自适应阈值Canny边缘检测算法研究

自适应阈值Canny边缘检测算法研究

自适应阈值Canny边缘检测算法研究作者:徐亮吴海涛孔银昌来源:《软件导刊》2013年第08期摘要:对Canny边缘检测算法进行了对比研究,分析了传统Canny算法存在的缺陷,提出了一种改进的自适应阈值Canny边缘检测算法。

首先利用具有边缘保留功能的双边滤波器滤除噪声,然后运用基于梯度幅值的类间方差最大化算法(OSTU)来确定Canny算子的高低阈值,最后进行边缘检测与连接。

实验结果表明,该改进算法很好地解决了传统Canny算法存在的缺陷,而且对光照的变化和场景变化具有很强的自适应能力,进一步扩展了Canny算法的应用范围。

关键词关键词:Canny算子;自适应阈值;边缘检测;双边滤波中图分类号:TP312 文献标识码:A 文章编号文章编号:16727800(2013)0080062020 引言边缘检测是图像分析与计算机视觉领域一直研究的热点,传统的边缘检测算子如Roberts、Sobel、Prewitt、Kirsch、LOG、Canny等,由于算法自身存在着种种不足,在实际应用中效果并不十分理想。

1986年,John Canny提出了最佳边缘检测算子的3个准则,并推导出了一个最优边缘检测算子的近似实现——Canny算法[1]。

Canny算子具有比较好的检测效果,并得到了广泛的应用,但是在应用Canny进行边缘检测时,一方面,应用高斯滤波器对原图像进行滤波后,在一定程度上对噪声起到了抑制作用,却也对图像的边缘信息进行了平滑,使得边缘信息丢失;另一方面,在进行边缘点的选取时,需要人工设定高低两个阈值,当光照或场景发生变化时,需要人工来改变此双阈值,这使得Canny算法不具有自适应性。

针对Canny算法存在的上述问题,许多学者提出了自己的改进算法。

针对采用高斯滤波器可能造成原图像的边缘信息丢失问题,文献[2]提出采用中值滤波代替高斯平滑滤波,并对混有椒盐噪声的图像进行处理,取得了比较好的效果;文献[3]提出自适应空间域平滑方式清除图像的椒盐噪声,达到了较好的去噪效果。

改进的Canny图像边缘检测算法分析

改进的Canny图像边缘检测算法分析

网络天地171改进的Canny 图像边缘检测算法分析◆王 娟1 边缘检测的过程边缘检测主要用于解决图像边缘的真假,边缘的定向定位。

以此来初步分析图像和识别图像。

想要做好边缘检测,需要遵循以下五个方面的过程进行检测分析:(1)首先要明确的了解图像检测时图像的特性变化形式,运用合适的检测方法。

(2)根据特殊情况需求,利用多算子综合计算方法。

提取多范围的变化特性,以便检测图像上的所有特性变化。

(3)由于噪声的影响,使检测有一定的局限性。

检测时需要尽可能的滤除噪音。

还需要考虑到噪音的条件检测,进一步检测参数变化。

(4)尽可能用多种方法进行组合。

例如在检测时,先找到边缘,然后利用函数近似的放法,利用内插获得高精度定位。

(5)检测时,首先对原图像进行平滑处理,然后再进行边缘检测。

一方面可以有效地抑制噪音,另一方面也可以对边缘进行精准定位。

2 传统Canny 算子的基本工作原理由于系统固有的低筒滤波对实际的图像进行平滑,以至于边缘不明显。

所以,这就需要边缘检测通过寻找出图像局部具有最大梯度值的一些像素点。

同时由于摄影机以及周围环境的干扰,因此图片边缘检测必须满足两个条件:①逼近必须能够抑制噪音效应;②必须尽量精准的确定边缘的位置。

以高定位精准、高信噪比、单一边缘响应位判断标准。

Canny 算子的基本流程:输入原始图像→转为灰度图像→ 高斯平滑→ 梯度计算→ 非极大值抑制→ 双阈值检测→ 连接边缘→ 输出边缘图像。

作为一阶微分滤波器的Canny 算子属于边缘检测,有三大显著优点:1、最优过零点定位准则2、多峰值响应准则3、最大信噪比准则。

Canny 算子基本的工作原理首先便是利用高斯平滑滤波器对图像进行平滑处理,目的是为了去除噪音的影响,然后通过计算梯度差值,来完成领域局部强度值。

利用高阈值和低阈值以及双阈值的计算方法对图像边缘进行检测已达到增强边缘的效果。

3 Canny 算子的实现步骤Canny 算子在整体运算的过程中,其需要结合多个运算步骤进行整体的运算。

edge_detection_边缘检测

edge_detection_边缘检测

边缘检测-edge detection1.问题描述边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。

图像属性中的显著变化通常反映了属性的重要事件和变化。

这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化(iv)场景照明变化。

边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。

边缘检测的评价是指对边缘检测结果或者边缘检测算法的评价。

诚然,不同的实际应用对边缘检测结果的要求存在差异,但大多数因满足以下要求:1)正确检测出边缘2)准确定位边缘3)边缘连续4)单边响应,即检测出的边缘是但像素的2.应用场合图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。

有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一类和基于零穿越的一类。

基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。

基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

3.研究历史和现状边缘检测作为图像处理的一个底层技术,是一个古老又年轻的课题,有着悠久的历史。

早在1959年,B.Julez就提到过边缘检测,随后,L.G.Robert于1965年对边缘检测进行系统的研究。

3.1一阶微分算子一阶微分算子是最原始,最基本的边缘检测方法,它的理论依据是边缘是图像中灰度发生急剧变化的地方,而图像的提督刻画了灰度的变化速率。

因此,通过一阶微分算子可以增强图像中的灰度变化区域,然后对增强的区域进一步判断边缘。

在点(x,y)的梯度为一个矢量,定义为:梯度模值为:梯度方向为:根据以上理论,人们提出了许多算法,经典的有:Robert算子,Sobel算子等等,这些一阶微分算子的区别在于算子梯度的方向,以及在这些方向上用离散化数值逼近连续导数的方式和将这些近似值合成梯度的方式不同。

Sobel边缘检测算子

Sobel边缘检测算子

经典边缘检测算子比较一各种经典边缘检测算子原理简介图像的边缘对人的视觉具有重要的意义,一般而言,当人们看一个有边缘的物体时,首先感觉到的便是边缘。

灰度或结构等信息的突变处称为边缘。

边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。

需要指出的是,检测出的边缘并不等同于实际目标的真实边缘。

由于图像数据时二维的,而实际物体是三维的,从三维到二维的投影必然会造成信息的丢失,再加上成像过程中的光照不均和噪声等因素的影响,使得有边缘的地方不一定能被检测出来,而检测出的边缘也不一定代表实际边缘。

图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈。

边缘上的这种变化可以用微分算子检测出来,通常用一阶或两阶导数来检测边缘,如下图所以。

不同的是一阶导数认为最大值对应边缘位置,而二阶导数则以过零点对应边缘位置。

(a )图像灰度变化(b )一阶导数(c )二阶导数基于一阶导数的边缘检测算子包括Roberts 算子、Sobel 算子、Prewitt 算子等,在算法实现过程中,通过22⨯(Roberts 算子)或者33⨯模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。

拉普拉斯边缘检测算子是基于二阶导数的边缘检测算子,该算子对噪声敏感。

一种改进方式是先对图像进行平滑处理,然后再应用二阶导数的边缘检测算子,其代表是LOG 算子。

前边介绍的边缘检测算子法是基于微分方法的,其依据是图像的边缘对应一阶导数的极大值点和二阶导数的过零点。

Canny 算子是另外一类边缘检测算子,它不是通过微分算子检测边缘,而是在满足一定约束条件下推导出的边缘检测最优化算子。

1 Roberts (罗伯特)边缘检测算子景物的边缘总是以图像中强度的突变形式出现的,所以景物边缘包含着大量的信息。

由于景物的边缘具有十分复杂的形态,因此,最常用的边缘检测方法是所谓的“梯度检测法”。

设(,)f x y 是图像灰度分布函数;(,)s x y 是图像边缘的梯度值;(,)x y ϕ是梯度的方向。

matlab 中canny算法

matlab 中canny算法

matlab 中canny算法什么是Canny算法?Canny算法是一种常用于图像边缘检测的计算机视觉算法。

它由约翰·Canny在1986年提出,目的是在保持最佳信噪比的同时准确地检测出图像中的边缘。

Canny算法的步骤是什么?Canny算法包括以下几个步骤:1. 噪声抑制:由于图像中常常存在噪声,因此第一步是对图像进行平滑处理以抑制噪声。

常用的方法是应用高斯滤波器。

2. 计算梯度:通过计算图像的梯度来确定边缘的强度和方向。

梯度计算通常使用Sobel算子,它可以有效地检测图像中的边缘。

3. 非极大值抑制:在计算梯度之后,需要对梯度幅度图像进行非极大值抑制。

这一步的目的是去除那些不是真正边缘的像素。

4. 双阈值检测:在经过非极大值抑制之后,需要对幅度图像进行阈值处理。

Canny算法使用双阈值检测来确定强边缘和弱边缘。

任何高于高阈值的像素被认为是强边缘,低于低阈值的像素被认为是弱边缘。

5. 边缘跟踪:最后一步是利用边缘跟踪算法来连接强边缘。

边缘跟踪算法基于弱边缘像素与强边缘像素的连接关系,通过追踪弱边缘像素与强边缘像素的路径来确定最终的边缘。

Canny算法的优缺点是什么?Canny算法有以下几个优点:1. 准确性:Canny算法能够准确地检测图像中的边缘,尤其在边缘区域有噪声的情况下。

2. 低错误率:相比于其他边缘检测算法,Canny算法的错误率较低,能够有效地排除非边缘像素。

3. 单一边缘:Canny算法仅提取单一像素的边缘,不会将边缘模糊化。

虽然Canny算法有许多优点,但也存在一些缺点:1. 计算量大:Canny算法需要进行多次计算,包括高斯滤波、梯度计算和非极大值抑制等,因此计算量较大。

2. 参数选择:Canny算法涉及到多个参数的选择,如高斯滤波器的大小和标准差、双阈值检测的高低阈值等。

不同的参数选择可能导致不同的结果。

3. 边缘连接:Canny算法在边缘连接过程中可能会产生断裂的边缘。

基于canny算子的改进边缘检测算法

基于canny算子的改进边缘检测算法

Gx ( x, y ) G ( x, y 1) G ( x, y 1) , G y ( x, y ) G ( x 1, y ) G ( x 1, y ) 。
Gx ( x, y ) 、 G y ( x, y ) 分别为点 ( x, y ) 处
在 x 方向和 y 方向的一阶偏导。 (3)非极大值抑制 将边缘的梯度方向按照水平、竖 直、45°和135°四个方向,用不同的邻 近像素进行比较,确定局部极大值。若某 个像素的灰度值与梯度方向上前后两个像 素的灰度值相比不是最大,该点即为非边
1.如何保证物业系统的成功实施 项目的成功实施离不开管理层的支 持,配套推行相应的管理制度,如公司 规定:业务人员每天要将信息及时录入系 统,作为公司、集团层面分析的依据,公 司根据系统中的业务资料,作为主要分析 的依据,同时每月对业务员做量化考评。 通过管理考评体系配合管理软件在基层的 实施取得很好的效果,有效的提高出租率 和收费数据分析精密度。强调将配套的制 度和软件有机结合起来。一方面作为一套 好的管理软件中应该带有完整的管理考核 体系配套,另一方面管理制度的执行同样 也需要管理软件的支撑和实现。 合双边滤波和Canny算子的优越性,提出 一种新的Canny边缘检测算法,该算法用 滤波性能较好的双边滤波代替传统Canny 边缘检测中的高斯滤波,对含噪图像具有 更好的边缘检测效果。 双边滤波是一种非线性的2D信号滤 波方法 ,是图像的空间临近度和像素相 似度的一种折衷处理[5],是通过像素的加 权平均而定义的,利用强度的变化来保存 图像边缘信息。设BF为双边滤波的符号, 由下式定义[6]:
1.引言 边缘检测技术是数字图像处理中的 一项重要技术,边缘检测的主要目的就是 实现对目标图像的精确定位。边缘是图像 的基本特征,是图像分割的重要依据,也 是纹理特征的重要信息源和形状特征分析 的基础,边缘检测的效果将直接影响到图 像理解和识别的性能 。经典的边缘检测 算子,如Robert、Prewitt、Log等,简 单、易于实现,但对噪声敏感、抗干扰性 能差,边缘不够精细[2]。相比这些算子, Canny算子具有更好的信噪比和检测精 度,在图像边缘检测领域中具有更加广泛 的应用范围。 但是,实际图像中,存在着许多噪 声,这时,若仍采用传统Canny算子进行 边缘检测,会将一些噪声点误作边缘点检 测,导致提取的边缘轮廓模糊、不精确, 因此,我们需要对传统Canny算子加以改 进。 本文提出了一种基于Canny算子而改 进的边缘检测算法,该算法既可以较好地 滤除噪声,又可以提高目标边缘的定位精 度、抑制虚假边缘和去除冗余弱边缘,呈 现出了一个更为清晰的图像边缘检测结 果,比传统Canny算法具有更好的性能。 2.传统canny边缘检测算法 Canny提出了边缘检测性能优劣的3 个判断准则[3]: 高信噪比准则:即输出信号的信噪 比最大,以降低边缘点判断为非边缘点 和非边缘点判为边缘点的概率。信噪比越 大,误检率越低。 高定位精度准则:好的定位性能, 即检测出的边缘点要尽可能在实际边缘的 中心 单边缘相应准则:即单一边缘只有 惟一响应,并且对虚假边缘响应应得到最 大抑制。 2.1 传统canny算法边缘检测步骤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Canny 算子的三个最优准则如下所示:
(1)信噪比准则 信噪比准则的主要作用是提高边缘检测的正确性,使得错检或者漏检的边缘错误率下降,其公式如下:
SNR = (4-8)
其中,SNR 表示信噪比,()f x 表示滤波器脉冲于边界[],w w -的响应,()G x 代表图像边缘信号,0n 代表噪声()n x 的高斯噪声响应的均方根。

SNR 与检测效果成正比。

(2)最优定位准则
最优定位准则的目的是使标记得出的边缘尽可能地接近图像真正的边缘,从而提高定位的精度,其公式如下:
Localization = (4-9)
其中Localization 代表定位精度,高精度的定位必须满足上式。

相关文档
最新文档