matlab canny算子边缘检测函数代码
canny边缘检测matlab代码

canny边缘检测matlab代码Canny边缘检测是一种常用的图像处理算法,它可以有效地检测图像中的边缘,并将其显示为白色线条。
在Matlab中,可以使用以下代码实现Canny边缘检测:1. 读取图像首先,需要读取待处理的图像。
可以使用imread函数来读取图片:```matlabimg = imread('image.jpg');```其中,image.jpg是待处理的图片文件名。
2. 灰度化Canny算法只能处理灰度图像,因此需要将彩色图像转换为灰度图像。
可以使用rgb2gray函数来实现:```matlabgray_img = rgb2gray(img);```3. 高斯滤波在进行边缘检测之前,需要对图像进行高斯滤波来消除噪声。
可以使用fspecial和imfilter函数来实现:```matlabgaussian_filter = fspecial('gaussian', [5 5], 1);blur_img = imfilter(gray_img, gaussian_filter, 'replicate');```其中,[5 5]表示高斯核的大小为5x5,1表示标准差。
4. 计算梯度幅值和方向接下来,需要计算每个像素点的梯度幅值和方向。
可以使用Sobel算子来计算梯度,并利用arctan函数计算方向角度:```matlabsobel_x = [-1 0 1; -2 0 2; -1 0 1];sobel_y = [-1 -2 -1; 0 0 0; 1 2 1];grad_x = imfilter(blur_img, sobel_x, 'replicate');grad_y = imfilter(blur_img, sobel_y, 'replicate');grad_mag = sqrt(grad_x.^2 + grad_y.^2);grad_dir = atan(grad_y ./ grad_x);```5. 非极大值抑制由于Sobel算子计算出的梯度幅值可能会有多个峰值,因此需要进行非极大值抑制来保留边缘。
matlab边缘轮廓坐标

matlab边缘轮廓坐标在MATLAB中,可以使用edge函数来检测图像的边缘,并使用findContours函数来找到边缘的轮廓。
以下是一个简单的示例,说明如何找到二值图像的边缘轮廓:matlab复制代码% 读取图像I = imread('image.png');% 转换为灰度图像I = rgb2gray(I);% 使用Canny边缘检测BW = edge(I,'Canny');% 查找轮廓[B,L] = bwboundaries(BW,'noholes');% 显示原始图像和边缘检测结果figure;subplot(1,2,1); imshow(I); title('原始图像');subplot(1,2,2); imshow(BW); title('边缘检测结果');% 显示轮廓figure;for k = 1:length(B)boundary = B{k};plot(boundary(:,2), boundary(:,1), 'r', 'LineWidth', 2);endtitle('边缘轮廓');在这个示例中,bwboundaries函数返回一个边界矩阵B 和一个标记矩阵L。
边界矩阵B是一个结构数组,每个元素B{i}是一个表示第i个边界的点的矩阵。
标记矩阵L是一个逻辑矩阵,与输入图像具有相同的尺寸,其中L(i,j)为1表示点(i,j)属于某个边界,为0表示不属于任何边界。
在这个示例中,我们只对没有洞的边界感兴趣,因此使用了'noholes'选项。
Canny算子提取边缘Matlab源代码

Canny算子提取边缘Matlab源代码介绍function e=canny_edge(I,sigma)%functione=edge(I,'canny',thresh,sigma);%该函数实现Canny算子提取边缘点%输入图像为I,标准差sigma,输出为边缘图像e[m,n]=size(I);Rr=2:m-1;cc=2:n-1;e=repmat(logical(uint8(0)),m,n);%产生同样大小的边缘图像e,初始化为1 ,即初始化边缘GaussianDieOff=-0.001;%设定高斯函数消失门限PercentOfPixelsNotEdges=-7;%用于计算边缘门限ThresholdRatio=-4;%设置两个门限的比例%首先设计高斯滤波器和它的微分pw=1:30;%设定滤波器宽度ssq=sigma*sigma;%计算方差width=max(find(exp(-(pw.*pw)/(2*sigma*sigma))>GaussianDieOff)); %计算滤波算子宽度t=(-width:width);len=2*width+1;t3=[t-.5;t;t+.5];%对每个像素左右各半个像素位置的值进行平均gau=sum(exp(-(t3.*t3)/(2*ssq))).'/(6*pi*ssq);%一维高斯滤波器dgau=(-t.*exp(-(t.*t)/(2*ssq))/ssq).';%高斯滤波器的微分ra=size(I,1);ca=size(I,2);ay=255*double(I);ax=255*double(I');h=conv(gau,dgau);%利用高斯函数滤除噪声和用高斯算子的一阶微分对图像滤波合并为一个算子ax=conv2(ax,h,'same').';%产生x方向滤波ay=conv2(ay,h,'same');%产生y方向滤波mag=sqrt((ax.*ax)+(ay.*ay));%计算滤波结果的幅度magmax=max(mag(:));if magmax>0mag=mag/magmax;%对滤波幅度进行归一化end%下面根据滤波幅度的概率密度计算滤波门限[counts,x]=imhist(mag,64);%计算滤波结果的幅度的直方图highThresh=min(find(cumsum(counts)>PercentOfPixelsNotEdges*m*n))/64; %通过设定非边缘点的比例来确定高门限lowThresh=ThresholdRatio*highThresh;%设置低门限为高门限乘以比例因子thresh=[lowThresh,highThresh];%下面进行非极大抑制%大于高门限的点归于强边缘图像%小于低门限的点归于弱边缘图像idxStrong=[];for dir=1:4idxLocalMax=cannyFindLocalMaxima(dir,ax,ay,mag); idxWeak=idxLocalMax(mag(idxLocalMax)>lowThresh);e(idxWeak)=1;idxStrong=[idxStrong;idxWeak(mag(idxWeak)>highThresh)]; endrstrong=rem(idxStrong-1,m)+1;%rem是求余数cstrong=floor((idxStrong-1)/m)+1;%向-∞取整e=bwselect(e,cstrong,rstrong,8);%通过形态学算子将两幅图像的边缘进行连接(资料素材和资料部分来自网络,供参考。
边缘提取和边缘检测matlab程序代码大全

附录Part1:对cameraman原始图像处理的仿真程序:clcclear allclose allA = imread('cameraman.bmp'); % 读入图像subplot(2,4,1);imshow(A);title('原图');x_mask = [1 0;0 -1]; % 建立X方向的模板y_mask = rot90(x_mask); % 建立Y方向的模板I = im2double(A); % 将图像数据转化为双精度dx = imfilter(I, x_mask); % 计算X方向的梯度分量dy = imfilter(I, y_mask); % 计算Y方向的梯度分量grad = sqrt(dx.*dx + dy.*dy); % 计算梯度grad = mat2gray(grad); % 将梯度矩阵转换为灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 用阈值分割梯度图像subplot(2,4,2);imshow(BW); % 显示分割后的图像即边缘图像title('Roberts');y_mask = [-1 -2 -1;0 0 0;1 2 1];x_mask = y_mask';I = im2double(A);dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy); % 计算梯度grad = mat2gray(grad);level = graythresh(grad);BW = im2bw(grad,level);subplot(2,4,3);imshow(BW); % 显示分割后的图像即边缘图像title('Sobel');y_mask = [-1 -1 -1;0 0 0;1 1 1];x_mask = y_mask';dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy); % 计算梯度grad = mat2gray(grad);level = graythresh(grad);BW = im2bw(grad,level); % 用阈值分割梯度图像subplot(2,4,4);imshow(BW); % 显示分割后的图像即边缘图像title('Prewitt');mask=[0,-1,0;-1,4,-1;0,-1,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58); % 用阈值分割梯度图像subplot(2,4,5);imshow(BW); % 显示分割后的图像,即梯度图像title('Laplacian');mask=[0,0,-1,0,0;0,-1,-2,-1,0;-1,-2,16,-2,-1;0,-1,-2,-1,0;0,0,-1,0,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58);subplot(2,4,6);imshow(BW); % 显示分割后的图像,即梯度图像title('log');BW1 = edge(I,'canny'); % 调用canny函数subplot(2,4,7);imshow(BW1); % 显示分割后的图像,即梯度图像title('Canny');mask1=[-1 -2 -1;0 0 0;1 2 1]; % 建立方向模板mask2=[-2 -1 0;-1 0 1;0 1 2];mask3=[-1 0 1;-2 0 2;-1 0 1];mask4=[0 1 2;-1 0 1;-2 -1 0];mask5=[1 2 1;0 0 0;-1 -2 -1];mask6=[2 1 0;1 0 -1;0 -1 -2];mask7=[1 0 -1;2 0 -2;1 0 -1];mask8=[0 -1 -2;1 0 -1;2 1 0];d1 = imfilter(I, mask1); % 计算8个领域的灰度变化d2 = imfilter(I, mask2);d3 = imfilter(I, mask3);d4 = imfilter(I, mask4);d5 = imfilter(I, mask5);d6 = imfilter(I, mask6);d7 = imfilter(I, mask7);d8 = imfilter(I, mask8);dd = max(abs(d1),abs(d2)); % 取差值变化最大的元素组成灰度变化矩阵dd = max(dd,abs(d3));dd = max(dd,abs(d4));dd = max(dd,abs(d5));dd = max(dd,abs(d6));dd = max(dd,abs(d7));dd = max(dd,abs(d8));grad = mat2gray(dd); % 将灰度变化矩阵转化为灰度图像BB = grad;FW=median(BB(:))/0.6745;B = BB.*BB;B = sum(B(:));FX= sqrt(B/256^2);FS=sqrt(max(FX^2-FW^2,0));T=sqrt(2)*FW^2/FS; % 计算最佳阈值grad = mat2gray(BB);BW2=im2bw(grad,T); % 用最佳阈值分割梯度图像subplot(2,4,8);imshow(BW2); % 显示分割后的图像,即边缘图像title('sobel改进算子');Part2加入高斯噪声后的cameraman仿真程序:clcclear allclose allA = imread('cameraman.bmp'); % 读入图像V=0.009;X=imnoise(A,'gaussian',0,V);subplot(2,4,1);imshow(X);%添加均值为0、方差0.09的高斯噪声x_mask = [1 0;0 -1]; % 创建X方向的模板y_mask = rot90(x_mask); % 创建Y方向的模板I = im2double(X); % 图像数据双精度转化dx = imfilter(I, x_mask); % X方向的梯度分量的计算dy = imfilter(I, y_mask); % Y方向的梯度分量的计算grad = sqrt(dx.*dx + dy.*dy); % 梯度计算grad = mat2gray(grad); % 梯度矩阵转换成灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 使用阈值分割梯度图像subplot(2,4,2);imshow(BW); % 显示分割后的图像即边缘图像title('Roberts');y_mask = [-1 -2 -1;0 0 0;1 2 1];x_mask = y_mask';dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy);grad = mat2gray(grad); % 梯度矩阵转为灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 用阈值分割梯度图像subplot(2,4,3);imshow(BW); % 显示分割后的图像即边缘图像title('Sobel');y_mask = [-1 -1 -1;0 0 0;1 1 1];x_mask = y_mask';dx = imfilter(I, x_mask);dy = imfilter(I, y_mask);grad = sqrt(dx.*dx + dy.*dy);grad = mat2gray(grad);level = graythresh(grad);BW = im2bw(grad,level);subplot(2,4,4);imshow(BW); % 显示分割后的图像即边缘图像title('Prewitt');mask=[0,-1,0;-1,4,-1;0,-1,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58); % 用阈值分割梯度图像subplot(2,4,5);imshow(BW); % 显示分割后的图像,即梯度图像title('Laplacian');mask=[0,0,-1,0,0;0,-1,-2,-1,0;-1,-2,16,-2,-1;0,-1,-2,-1,0;0,0,-1,0,0]; % 建立模板dx = imfilter(I, mask); % 计算梯度矩阵grad = mat2gray(dx); % 将梯度矩阵转化为灰度图像BW = im2bw(grad,0.58); % 用阈值分割梯度图像subplot(2,4,6);imshow(BW); % 显示分割后的图像,即梯度图像title('log');BW1 = edge(I,'canny'); % 调用canny函数subplot(2,4,7);imshow(BW1); % 显示分割后的图像,即梯度图像title('Canny');mask1=[-1 -2 -1;0 0 0;1 2 1]; % 建立方向模板mask2=[-2 -1 0;-1 0 1;0 1 2];mask3=[-1 0 1;-2 0 2;-1 0 1];mask4=[0 1 2;-1 0 1;-2 -1 0];mask5=[1 2 1;0 0 0;-1 -2 -1];mask6=[2 1 0;1 0 -1;0 -1 -2];mask7=[1 0 -1;2 0 -2;1 0 -1];mask8=[0 -1 -2;1 0 -1;2 1 0];d1 = imfilter(I, mask1); % 计算8个领域的灰度变化d2 = imfilter(I, mask2);d3 = imfilter(I, mask3);d4 = imfilter(I, mask4);d5 = imfilter(I, mask5);d6 = imfilter(I, mask6);d7 = imfilter(I, mask7);d8 = imfilter(I, mask8);dd = max(abs(d1),abs(d2)); % 取差值变化最大的元素组成灰度变化矩阵dd = max(dd,abs(d3));dd = max(dd,abs(d4));dd = max(dd,abs(d5));dd = max(dd,abs(d6));dd = max(dd,abs(d7));dd = max(dd,abs(d8));grad = mat2gray(dd); % 将灰度变化矩阵转化为灰度图像BB = grad;FW=median(BB(:))/0.6745;B = BB.*BB;B = sum(B(:));FX= sqrt(B/256^2);FS=sqrt(max(FX^2-FW^2,0));T=sqrt(2)*FW^2/FS; % 计算最佳阈值grad = mat2gray(BB); % 将梯度矩阵转化为灰度图像BW2=im2bw(grad,T); % 用最佳阈值分割梯度图像subplot(2,4,8);imshow(BW2); % 显示分割后的图像,即边缘图像title('sobel改进算子');加入椒盐噪声的边缘检测程序:function jingdianI=imread('lenna.bmp');I1=imnoise(I,'salt & pepper');%添加椒盐噪声,默认值为0.02 figure,imshow(I1);%添加均值为0、方差0.002的高斯噪声title('添加椒盐噪声后原图')B1=edge(I1,'roberts');B2=edge(I1,'sobel');B3=edge(I1,'prewitt');B4=edge(I1,'canny');B5=edge(I1,'log');subplot(2,3,1);imshow(B1);title('roberts算子检测');subplot(2,3,2);imshow(B2);title('sobel算子检测');subplot(2,3,3);imshow(B3);title('prewitt算子检测');subplot(2,3,4);imshow(B4);title('canny算子检测');subplot(2,3,5)imshow(B5);title('log算子检测');B1=edge(I1,'roberts');%调用roberts算子检测图像B2=edge(I1,'sobel');%调用soble算子进行边缘检测B3=edge(I1,'prewitt');%调用prewitt算子进行边缘检测B4=edge(I1,'canny');%调用canny算子对图像进行边缘检测B5=edge(I1,'log');%调用log算子对图像进行边缘检测subplot(2,3,1);%设置图像布局imshow(B1);title('roberts算子检测');%现实图像并命名为roberts算子检测subplot(2,3,2);imshow(B2);title('sobel算子检测');subplot(2,3,3);imshow(B3);title('prewitt算子检测');subplot(2,3,4);imshow(B4);title('canny算子检测');subplot(2,3,5)imshow(B5);title('log算子检测');mask1=[-1 -2 -1;0 0 0;1 2 1]; % 建立方向模板mask2=[-2 -1 0;-1 0 1;0 1 2];mask3=[-1 0 1;-2 0 2;-1 0 1];mask4=[0 1 2;-1 0 1;-2 -1 0];mask5=[1 2 1;0 0 0;-1 -2 -1];mask6=[2 1 0;1 0 -1;0 -1 -2];mask7=[1 0 -1;2 0 -2;1 0 -1];mask8=[0 -1 -2;1 0 -1;2 1 0];I = im2double(I1); % 将数据图像转化为双精度d1 = imfilter(I, mask1); % 计算8个领域的灰度变化d2 = imfilter(I, mask2);d3 = imfilter(I, mask3);d4 = imfilter(I, mask4);d5 = imfilter(I, mask5);d6 = imfilter(I, mask6);d7 = imfilter(I, mask7);d8 = imfilter(I, mask8);dd = max(abs(d1),abs(d2)); % 取差值变化最大的元素组成灰度变化矩阵dd = max(dd,abs(d3));dd = max(dd,abs(d4));dd = max(dd,abs(d5));dd = max(dd,abs(d6));dd = max(dd,abs(d7));dd = max(dd,abs(d8));grad = mat2gray(dd); % 将灰度变化矩阵转化为灰度图像level = graythresh(grad); % 计算灰度阈值BW = im2bw(grad,level); % 用阈值分割梯度图像BB = grad;FW=median(BB(:))/0.6745;B = BB.*BB;B = sum(B(:));FX= sqrt(B/256^2);FS=sqrt(max(FX^2-FW^2,0));T=sqrt(2)*FW^2/FS; % 计算最佳阈值grad = mat2gray(BB); % 将梯度矩阵转化为灰度图像BW2=im2bw(grad,T); % 用最佳阈值分割梯度图像subplot(2,3,6);imshow(BW2); % 显示分割后的图像,即边缘图像title('加入椒盐噪声的sobel改进算子');。
(完整版)Canny边缘检测算法总结

一.Canny边缘检测算法原理JohnCanny于1986年提出Canny算子,属于是先平滑后求导数的方法。
其处理过程大体上分为下面四部分。
1. 对原始图像进行灰度化Canny算法通常处理的图像为灰度图,因此如果获取的是彩色图像,那首先就得进行灰度化。
对一幅彩色图进行灰度化,就是根据图像各个通道的采样值进行加权平均。
以RGB格式的彩图为例,通常灰度化采用的方法主要有:方法1:Gray=(R+G+B)/3;方法2:Gray=0.299R+0.587G+0.114B;(这种参数考虑到了人眼的生理特点)至于其他格式的彩色图像,可以根据相应的转换关系转为RGB然后再进行灰度化;在编程时要注意图像格式中RGB的顺序通常为BGR。
2. 对图像进行高斯滤波图像高斯滤波的实现可以用两个一维高斯核分别两次加权实现,也可以通过一个二维高斯核一次卷积实现。
1)高斯核实现上式为离散化的一维高斯函数,确定参数就可以得到一维核向量。
上式为离散化的二维高斯函数,确定参数就可以得到二维核向量。
在求得高斯核后,要对整个核进行归一化处理。
2)图像高斯滤波对图像进行高斯滤波,其实就是根据待滤波的像素点及其邻域点的灰度值按照一定的参数规则进行加权平均。
这样可以有效滤去理想图像中叠加的高频噪声。
通常滤波和边缘检测是矛盾的概念,抑制了噪声会使得图像边缘模糊,这会增加边缘定位的不确定性;而如果要提高边缘检测的灵敏度,同时对噪声也提高了灵敏度。
实际工程经验表明,高斯函数确定的核可以在抗噪声干扰和边缘检测精确定位之间提供较好的折衷方案。
3. 用一阶偏导的有限差分来计算梯度的幅值和方向关于图像灰度值得梯度可使用一阶有限差分来进行近似,这样就可以得图像在x和y 方向上偏导数的两个矩阵。
常用的梯度算子有如下几种:1)Roberts算子上式为其x和y方向偏导数计算模板,可用数学公式表达其每个点的梯度幅值为:2)Sobel算子上式三个矩阵分别为该算子的x向卷积模板、y向卷积模板以及待处理点的邻域点标记矩阵,据此可用数学公式表达其每个点的梯度幅值为:3)Prewitt算子和Sobel算子原理一样,在此仅给出其卷积模板。
边缘检测matlab实验报告

边缘检测matlab实验报告引言边缘检测在图像处理领域中是一项十分重要的任务。
它可以帮助我们从图像中提取出物体的边缘信息,对于图像分割、目标识别等任务都具有重要意义。
本实验旨在通过利用MATLAB中提供的边缘检测函数,实现对图像中边缘的提取,并对实验结果进行分析和探讨。
实验步骤1. 导入图像首先,我们需要从MATLAB工作环境中导入需要进行边缘检测的图像。
我们可以使用`imread`函数将图像读入到MATLAB的内存中。
matlabimage = imread('example.jpg');2. 灰度化灰度化是边缘检测的前提条件,它可以将一幅彩色图像转化为灰度图像,使得后续的操作更加简便。
我们可以使用`rgb2gray`函数将彩色图像转化为灰度图像。
matlabgray_image = rgb2gray(image);3. 边缘检测接下来,我们可以使用MATLAB中提供的边缘检测函数进行实际的边缘检测操作。
MATLAB中有许多边缘检测算法可供选择,例如Sobel算子、Canny算子等。
本实验我们选择使用Canny算子进行边缘检测。
matlabedge_image = edge(gray_image, 'Canny');4. 结果显示最后,我们可以使用`imshow`函数将原始图像和边缘检测结果显示出来,以便于观察和分析。
matlabsubplot(1, 2, 1);imshow(gray_image);title('原始图像');subplot(1, 2, 2);imshow(edge_image);title('边缘检测结果');5. 结果分析通过以上步骤,我们可以得到原始图像和边缘检测结果。
我们可以观察边缘检测结果,进一步分析图像中的边缘信息。
同时,我们还可以对不同的边缘检测算法进行对比实验,以评估它们的性能和适用性。
实验结果下图展示了使用Canny算子进行边缘检测的实验结果。
matlab边缘检测代码

MATLAB边缘检测代码边缘检测是图像处理中常用的技术,用于识别图像中物体的轮廓。
在MATLAB中,我们可以使用不同的方法进行边缘检测,例如Sobel算子、Canny算子等。
本文将介绍MATLAB中常用的边缘检测方法,并给出相应的代码示例。
1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,通过计算图像灰度值的一阶导数来识别边缘。
在MATLAB中,我们可以使用edge函数来实现Sobel算子。
img = imread('image.jpg'); % 读取图像gray_img = rgb2gray(img); % 将彩色图像转换为灰度图像edge_img = edge(gray_img, 'sobel'); % 使用Sobel算子进行边缘检测imshow(edge_img); % 显示结果上述代码首先读取一张彩色图像,并将其转换为灰度图像。
然后使用edge函数对灰度图像进行Sobel边缘检测,并将结果显示出来。
2. Canny算子Canny算子是一种基于多阶段处理的边缘检测算法,它能够有效地抑制噪声并提取出清晰、准确的边缘。
在MATLAB中,我们同样可以使用edge函数来实现Canny算子。
img = imread('image.jpg'); % 读取图像gray_img = rgb2gray(img); % 将彩色图像转换为灰度图像edge_img = edge(gray_img, 'canny'); % 使用Canny算子进行边缘检测imshow(edge_img); % 显示结果上述代码与Sobel算子的示例代码类似,只是将edge函数的第二个参数设置为'canny'来使用Canny算子进行边缘检测。
3. Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算法,它能够检测出图像中的灰度变化区域。
matlab边缘检测步骤 -回复

matlab边缘检测步骤-回复Matlab边缘检测步骤边缘检测是计算机视觉和图像处理中常用的技术之一,它可以识别图像中不同区域之间的边界和轮廓。
边缘检测对于图像分割、物体识别和目标跟踪等应用非常重要。
Matlab作为一种强大的计算软件和编程语言,提供了一系列用于边缘检测的函数和工具。
在本文中,我们将逐步介绍Matlab 中进行边缘检测的步骤。
步骤一:读取图像首先,我们需要读取待处理的图像。
在Matlab中,可以使用imread函数来读取图像,并将其存储在一个变量中。
例如,下面的代码可以读取名为"image.jpg"的图像:image = imread('image.jpg');步骤二:灰度化在进行边缘检测之前,通常需要将彩色图像转换为灰度图像。
灰度图像只包含亮度信息,而不包含颜色信息,这样可以简化边缘检测的计算。
在Matlab中,可以使用rgb2gray函数将彩色图像转换为灰度图像。
下面的代码可以将前面读取的彩色图像转换为灰度图像:grayImage = rgb2gray(image);步骤三:滤波在进行边缘检测之前,通常需要对图像进行滤波,以平滑图像并去除噪声。
在Matlab中,有许多滤波器可以使用,例如高斯滤波器和中值滤波器。
可以使用imfilter函数来应用这些滤波器。
下面的代码可以将前一步得到的灰度图像应用高斯滤波器来平滑图像:filteredImage = imfilter(grayImage, fspecial('gaussian'));步骤四:计算梯度接下来,我们需要计算图像中每个像素的梯度。
梯度表示图像中像素灰度变化的方向和强度。
在Matlab中,可以使用gradient函数来计算梯度。
下面的代码可以计算前一步得到的滤波后图像的梯度:[gradX, gradY] = gradient(filteredImage);这里,gradX和gradY分别表示沿x和y轴方向的梯度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分享到:
2012-04-24 20:42网友采纳
clc
clear all
close all
I = imread('cameraman.tif'); % 读入图像
imshow(I);title('原图')
BW1 = edge(I,'canny'); % 调用canny函数
figure,imshow(BW1); % 显示分割后的图像,即梯度图像
title('Canny')
用Lena标准检测图像,图像与代码下面注明了是哪张图像。
一、没有噪声时的检测结果 1 原始图像
2 Sobel算子边缘检测
3 Prewitt算子边缘检测
4 Roberts算子边缘检测
5 Laplace算子边缘检测
6 Canny算子边缘检测
二、加入高斯噪声(μ=0,σ^2=0.01)检测结果 1 原始图像
2 Sobel算子边缘检测
3 Prewitt算子边缘检测
4 Roberts算子边缘检测
5 Laplace算子边缘检测
6 Canny算子边缘检测
三、加入高斯噪声(μ=0,σ^2=0.02)检测结果 1 原始图像
2 Sobel算子边缘检测
3 Prewitt算子边缘检测
4 Roberts算子边缘检测
5 Laplace算子边缘检测
6 Canny算子边缘检测
clear all; close all;
warning off all;
I = imread('lena.bmp'); %%如果是其他类型图像,请先转换为灰度图
%%没有噪声时的检测结果
BW_sobel = edge(I,'sobel');
BW_prewitt = edge(I,'prewitt');
BW_roberts = edge(I,'roberts');
BW_laplace = edge(I,'log');
BW_canny = edge(I,'canny'); figure(1);
subplot(2,3,1),imshow(I),xlabel('原始图像');
subplot(2,3,2),imshow(BW_sobel),xlabel('sobel检测');
subplot(2,3,3),imshow(BW_prewitt),xlabel('prewitt检测');
subplot(2,3,4),imshow(BW_roberts),xlabel('roberts检测');
subplot(2,3,5),imshow(BW_laplace),xlabel('laplace检测');
subplot(2,3,6),imshow(BW_canny),xlabel('canny检测');
%%加入高斯噪声(μ=0,σ^2=0.01)检测结果
I_g1 = imnoise(I,'gaussian',0,0.01);
BW_sobel = edge(I_g1,'sobel');
BW_prewitt = edge(I_g1,'prewitt');
BW_roberts = edge(I_g1,'roberts');
BW_laplace = edge(I_g1,'log');
BW_canny = edge(I_g1,'canny'); figure(2);
subplot(2,3,1),imshow(I_g1),xlabel('加入高斯噪声(μ=0,σ^2=0.01)图像'); subplot(2,3,2),imshow(BW_sobel),xlabel('sobel检测');
subplot(2,3,3),imshow(BW_prewitt),xlabel('prewitt检测');
subplot(2,3,4),imshow(BW_roberts),xlabel('roberts检测');
subplot(2,3,5),imshow(BW_laplace),xlabel('laplace检测');
subplot(2,3,6),imshow(BW_canny),xlabel('canny检测');
%%加入高斯噪声(μ=0,σ^2=0.02)检测结果
I_g2 = imnoise(I,'gaussian',0,0.02);
BW_sobel = edge(I_g2,'sobel');
BW_prewitt = edge(I_g2,'prewitt');
BW_roberts = edge(I_g2,'roberts');
BW_laplace = edge(I_g2,'log');
BW_canny = edge(I_g2,'canny'); figure(3);
subplot(2,3,1),imshow(I_g2),xlabel('加入高斯噪声(μ=0,σ^2=0.02)图像'); subplot(2,3,2),imshow(BW_sobel),xlabel('sobel检测');
subplot(2,3,3),imshow(BW_prewitt),xlabel('prewitt检测');
subplot(2,3,4),imshow(BW_roberts),xlabel('roberts检测');
subplot(2,3,5),imshow(BW_laplace),xlabel('laplace检测');
subplot(2,3,6),imshow(BW_canny),xlabel('canny检测');。