热点专题七 统计与概率
高考数学命题区间七概率与统计-教学课件

(2)6 次中前两次均出现正面,且要使 2≤S6≤4,则后 4 次 中有 2 次正面,2 次反面或 3 次正面 1 次反面,设其概率为 P2,N=64,由(1),知前两次均出现正面且 2≤S6≤4 的情 况有 10 种,所以 P2=1604=352.
[例5] (2012·洛阳模拟)某学校共有高一、高二、高三学 生2 000名,各年级男、女人数如下图:
甲班 乙班 合计
优秀 10 20 30
非优秀 45 30 75
总计 55 50 105
(2)根据列联表中的数据,得到 k=105×55×105×0×303-0×207×5452≈6.109>3.841,因此有 95%的 把握认为“成绩与班级有关系”.
[例 4] 设连续掷两次普通立方体骰子得到的点数分别为 m、n,令平面向量 a=(m,n),b=(1,-3). (1)求使得事件“a⊥b”发生的概率; (2)求使得事件“|a|≤|b|”发生的概率; (3)求使得事件“直线 y=mn x 与圆(x-3)2+y2=1 相交”发 生的概率.
解析:根据分层抽样的等比例性,所抽取的样本也成等
差数列,设为a1,a2,a3,a4,则a2=30,根据等差数列 的性质,a1+a3=2a2=60,又a1+a2+a3+a4=150,故 a4=60. 答案:60
2.某班级有男生20人,女生30人,从中抽取10个人的样
本,恰好抽到了4个男生、6个女生.给出下列命题:
3.如图所示,是某环卫工人在革命公园9天内捡到的矿泉
水瓶的数据所绘制出来的茎叶图,去掉一个最高个数
和一个最低个数,则他在每天可捡到的矿泉水瓶方差
为
()
79 8 44467 9 136
A.467
B.9
七大专题,融会贯通高中数学

七大专题,融会贯通高中数学作者:来源:《学生导报·高中版》2017年第03期通常情况下,高三数学需进行三轮复习,第一轮复习需以高考大纲为指导,以数学课本为基础,熟悉每个所学知识点。
第二轮复习阶段是对第一阶段的巩固与强化,更侧重于知识的融会贯通,各个知识点的衔接。
根据高考对知识点的考查,我们可以归类为七大专题。
专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点。
函数的性质:着重掌握函数的单调性、奇偶性、周期性、对称性。
这些性质通常会综合起来一起考查,并且有时会考查具体函数的这些性质,有时会考查抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考查等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,有时候考查三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考查三角函数与解三角形、向量的综合性問题,当然正弦、余弦定理是很好的工具。
向量可以很好地实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,主要考查建立空间直角坐标系,通过向量这一手段求空间距离、线面角、二面角等。
另外,需要掌握棱锥、棱柱的性质,在棱锥中,着重掌握三棱锥、四棱锥,棱柱中,应该掌握三棱柱、长方体。
安徽省2013年高考数学第二轮复习 专题七概率与统计第3讲 .

专题七 概率与统计第3讲 随机变量及其分布列真题试做1.(2012·课标全国高考,理15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________.2.(2012·山东高考,理19)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).3.(2012·陕西高考,理20)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X 表示至第2分钟末已办理完业务的顾客人数,求X 的分布列及数学期望.4.(2012·安徽高考,理17)某单位招聘面试,每次从试题库中随机调用一道试题.若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类型试题和一道B 类型试题入库,此次调题工作结束,若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题.以X 表示两次调题工作完成后,试题库中A 类型试题的数量.(1)求X =n +2的概率;(2)设m =n ,求X 的分布列和均值(数学期望). 考向分析本讲是概率统计的重点,主要考查三方面的内容:①相互独立事件及其概率,题型有选择、填空,有时也出现在解答题中与其他知识交会命题;②二项分布及其应用,准确把握独立重复试验的特点是解答二项分布问题的关键,一般以中档题为主;③随机变量的分布列、期望和方差,以考生比较熟悉的实际应用题为背景,综合排列组合、概率公式、互斥事件及独立事件等基础知识,考查对随机变量的识别及概率计算能力,解答时要注意分类与整合、转化与化归思想的运用,其中有选择题,也有填空题,但更多的是解答题,难度中档.热点例析热点一 相互独立事件及其概率【例1】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率. 规律方法(1)求复杂事件的概率的一般步骤:①列出题中涉及的各事件,并且用适当的符号表示;②理清各事件之间的关系,列出关系式.即把随机事件分成几个互斥事件的和,每个小事件再分为n 个相互独立事件的乘积.③根据事件之间的关系准确选取概率公式进行计算.(2)直接计算符合条件的事件的概率较繁时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.变式训练1甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率. 热点二 二项分布及其应用【例2】(2012·安徽六安一中第十次月考,理17)为备战运动会,射击队运动员们正在积极备战.若某运动员每次射击成绩为10环的概率为13.求该运动员在5次射击中,(1)至少有3次射击成绩为10环的概率;(2)记“射击成绩为10环的次数”为ξ,写出ξ的分布列并求E ξ.(结果用分数表示) 规律方法事件服从二项分布的条件是:(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n 次独立重复试验中事件发生的次数.变式训练2某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.热点三 离散型随机变量的分布列、均值与方差【例3】(2012·天津高考,理16)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).规律方法求离散型随机变量的分布列,关键是计算各个概率值,一方面要弄清楚相应的概型(古典概型、相互独立事件的概率、独立重复试验等),以便套用相关的计算公式计算;另一方面要注意运用分布列的性质检验所求概率值是否正确.变式训练3(2012·安徽江南十校联考,理18)“低碳经济”是促进社会可持续发展的推进器.某企业现有100万元资金可用于投资,如果投资“传统型”经济项目,一年后可能获利20%,可能损失10%,也可能不赔不赚,这三种情况发生的概率分别为35,15,15;如果投资“低碳型”经济项目,一年后可能获利30%,也可能损失20%,这两种情况发生的概率分别为a 和b (其中a +b =1).(1)如果把100万元投资“传统型”经济项目,用ξ表示投资收益(投资收益=回收资金-投资资金),求ξ的概率分布及均值(数学期望)E ξ;(2)如果把100万元投资“低碳型”经济项目,预测其投资收益均值会不低于投资“传统型”经济项目的投资收益均值,求a 的取值范围.思想渗透转化与化归思想——期望与概率的实际应用解题中要善于透过问题的实际背景,发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.【典型例题】某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B ,已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假设甲、乙两厂的产品都符合相应的执行标准.(1)且X 1的数学期望E (X 1)=(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望; (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.解:(1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2,又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5.由⎩⎪⎨⎪⎧ 6a +7b =3.2,a +b =0.5,解得⎩⎪⎨⎪⎧a =0.3,b =0.2. (2)X 2的概率分布列如下:所以E (X 2) 4.8, 即乙厂产品的等级系数X 2的数学期望等于4.8. (3)乙厂的产品更具可购买性,理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其“性价比”为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其“性价比”为4.84=1.2.所以乙厂的产品更具可购买性.1.设随机变量ξ服从正态分布N (3,σ2),若P (ξ>m )=a ,则P (ξ>6-m )等于( ). A .a B .1-2a C .2a D .1-a2.设一随机试验的结果只有A 和A 且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生0,A 不发生,则ξ的方差D (ξ)等于( ).A .mB .2m (1-m )C .m (m -1)D .m (1-m )3.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以Z 表示取出球的最大号码,令a =P (Z =6),则函数y =⎝ ⎛⎭⎪⎫12x 2-2ax 的单调递增区间是( ). A.⎝ ⎛⎭⎪⎫-∞,12 B.⎝ ⎛⎭⎪⎫12,+∞ C .(-∞,1) D .(1,+∞) 4.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( ).A.16625B.96625C.624625D.46255.(2012·浙江五校联考,理16)甲、乙两个篮球队进行比赛,比赛采用5局3胜制(即先胜3局者获胜).若甲、乙两队在每场比赛中获胜的概率分别为23和13,记需要比赛的场次为ξ,则E (ξ)=__________.6.(2012·山东济南二模,20)一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得0分.”某考生已确定有8道题的答案是正确的,其余题中有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.参考答案命题调研·明晰考向 真题试做 1.38解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .∴该部件的使用寿命超过1 000小时的概率为P =⎝⎛12×12+12×12+12×⎭⎪⎫12×12=38. 2.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C D +B C D +B C D , 根据事件的独立性和互斥性得P (A )=P (B C D +B C D +B C D )=P (B C D )+P (B C D )+P (B C D )=P (B )P (C )P (D )+P (B )P (C )P (D )+P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,X 的所有可能取值为0,1,2,3,4,5, 根据事件的独立性和互斥性得P (X =0)=P (B C D )=[1-P (B )][1-P (C )][1-P (D )]=⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =136, P (X =1)=P (B C D )=P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23 =112, P (X =2)=P (B C D +B C D )=P (B C D )+P (B C D )=⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23 =19, P (X =3)=P (BC D +B C D )=P (BC D )+P (B C D )=34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13, P (X =4)=P (B CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19, P (X =5)=P (BCD )=34×23×23=13.故X 的分布列为所以EX =0×136+1×12+2×9+3×3+4×9+5×3=12.3.解:设Y Y 的分布列如下:(1)A A 对应三种情形: ①第一个顾客办理业务所需的时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P (A )=P (Y =1)P (Y =3)+P (Y =3)P (Y =1)+P (Y =2)P (Y =2)=0.1×0.3+0.3×0.1+0.4×0.4=0.22.(2)方法一:X 所有可能的取值为0,1,2.X =0对应第一个顾客办理业务所需的时间超过2分钟, 所以P (X =0)=P (Y >2)=0.5;X =1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需的时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P (X =1)=P (Y =1)P (Y >1)+P (Y =2)=0.1×0.9+0.4=0.49; X =2对应两个顾客办理业务所需的时间均为1分钟, 所以P (X =2)=P (Y =1)P (Y =1)=0.1×0.1=0.01. 所以X 的分布列为E (X )方法二:X 所有可能的取值为0,1,2.X =0对应第一个顾客办理业务所需的时间超过2分钟, 所以P (X =0)=P (Y >2)=0.5;X =2对应两个顾客办理业务所需的时间均为1分钟, 所以P (X =2)=P (Y =1)P (Y =1)=0.1×0.1=0.01; P (X =1)=1-P (X =0)-P (X =2)=0.49. 所以X 的分布列为E (X )4.解:以A i 表示第i 次调题调用到A 类型试题,i =1,2.(1)P (X =n +2)=P (A 1A 2)=n m +n ·n +1m +n +2=n (n +1)(m +n )(m +n +2).(2)X 的可能取值为n ,n +1,n +2.P (X =n )=P (A 1 A 2)=n n +n ·n n +n =14.P (X =n +1)=P (A 1A 2)+P (A 1A 2)=n n +n ·n +1n +n +2+n n +n ·n n +n =12,P (X =n +2)=P (A 1A 2)=n n +n ·n +1n +n +2=14,从而X 的分布列是E (X )=n ×14+(n +1)×2+(n +2)×4=n +1.精要例析·聚焦热点 热点例析【例1】 解:记Ai 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; Bi 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先. (1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16, P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P (A 0·A )+P (A 1·A ) =P (A 0)P (A )+P (A 1)P (A )=0.16×0.4+0.48×(1-0.4)=0.352.(2)P (B 0)=0.62=0.36,P (B 1)=2×0.4×0.6=0.48,P (B 2)=0.42=0.16, P (A 2)=0.62=0.36.C =A 1·B 2+A 2·B 1+A 2·B 2, P (C )=P (A 1·B 2+A 2·B 1+A 2·B 2) =P (A 1·B 2)+P (A 2·B 1)+P (A 2·B 2) =P (A 1)P (B 2)+P (A 2)P (B 1)+P (A 2)P (B 2)=0.48×0.16+0.36×0.48+0.36×0.16 =0.307 2.【变式训练1】 解:设Ak ,Bk 分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3).(1)记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A 1B 1A 2B 2)+P (A 1B 1A 2B 2A 3B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫123=1327. (2)记“投篮结束时乙只投了2个球”为事件D ,则由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (D )=P (A1B1A 2B 2)+P (A1B1A2B 2A 3)=P (A1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)P (A 2)P (B 2)P (A 3)=⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫13=427.【例2】 解:设随机变量X 为射击成绩为10环的次数,则X ~B ⎝ ⎛⎭⎪⎫5,13. (1)在5次射击中,至少有3次射击成绩为10环的概率为P (X ≥3)=P (X =3)+P (X =4)+P (X =5)=40243+10243+1243=1781.(2)因为ξ~B ⎝ ⎛⎭⎪⎫5,3,所以E (ξ)=3. 【变式训练2】 解:(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率P (X =2)=C 52×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-233=40243.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881.(3)由题意可知,ξ的所有可能取值为0,1,2,3,6,P (ξ=0)=P (A 1 A 2 A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A 2 A 3)+P (A 1A 2A 3)+P (A 1 A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29; P (ξ=2)=P (A 1A 2A 3)=23×13×23=427; P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827; P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827.所以ξ【例3】 解:依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C 4i ⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率P (A 2)=C 42⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 43⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+C 44⎝ ⎛⎭⎪⎫134=19.所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是随机变量ξ的数学期望E (ξ)=0×27+2×81+4×81=81.【变式训练3】 解:(1)依题意,ξ的可能取值为20,0,-10, ξ的分布列为E (ξ)=20×35+0×15+(-10)×5=10(万元).(2)设η表示100η的分布列为E (η)=30a -20b =50a -20.依题意要求50a -20≥10,∴35≤a ≤1.创新模拟·预测演练1.D 解析:正态分布曲线关于x =μ对称,即关于x =3对称,m 与6-m 关于x =3对称, ∴P (ξ<6-m )=P (ξ>m )=a , 则P (ξ>6-m )=1-a . 2.D3.A 解析:P (Z =6)=C 11C 52C 63=12,y =212x x-⎛⎫⎪⎝⎭在⎝⎛⎭⎪⎫-∞,12上单调递增.4.B 解析:若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为6C 62=25.现有4人参与摸奖,恰有3人获奖的概率是C 43⎝ ⎛⎭⎪⎫253·35=96625.5.10727解析:依题意ξ的可能取值分别为3,4,5, P (ξ=3)=23×23×23+13×13×13=927,P (ξ=4)=C 32⎝ ⎛⎭⎪⎫232×13×23+C 32×⎝ ⎛⎭⎪⎫132×23×13=1027,P (ξ=5)=1-P (ξ=3)-P ()ξ=4=827.E (ξ)=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=10727.6.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A ,“可判断一个选项是错误的”一道题选对为事件B ,“不理解题意的”一道题选对为事件C ,∴P (A )=12,P (B )=13,P (C )=14,∴得60分的概率为P =12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P (ξ=40)=12×12×23×34=18,P (ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748,P (ξ=50)=12×12×23×34+C 21×12×12×13×34+C 21×12×12×23×14+12×12×13×14=1748,P (ξ=55)=C 21×12×12×13×14+12×12×23×14+12×12×13×34=748,P (ξ=60)=12×12×13×14=148.所得分数ξE (ξ)=40×648+(45+50)×48+55×48+60×48=12.。
初中三年级数学统计与概率

初中三年级数学统计与概率数学统计与概率是初中数学学科中的一个重要内容,旨在培养学生的数据分析能力和问题解决能力。
通过统计与概率的学习,学生可以了解到生活中的各种数据,学会对数据进行整理、分析和解读,并通过概率的概念来描述事物的不确定性程度。
本文将结合具体实例,介绍初中三年级学生所需要掌握的数学统计与概率的知识点。
一、数据的收集与整理在统计学中,数据是最重要的基础。
数据的采集与整理是统计与概率的第一步。
在现实生活中,我们可以通过调查问卷、实地观察等方式来收集数据。
例如,我们可以设计一份调查问卷,询问同学们最喜欢的运动项目,然后将数据进行整理和归类。
二、数据的分析与图表表示数据的分析与图表表示是统计学的核心内容之一。
通过对数据的整理和处理,我们可以使用各种图表来直观地呈现数据的特点和规律。
常见的数据图表包括柱状图、折线图、饼图等。
以刚才的运动项目为例,我们可以使用柱状图来表示同学们最喜欢的运动项目,直观地展示每个项目的人数比例。
三、数据的描述与概率在统计学中,数据的描述是对数据进行概括和总结的过程。
我们可以通过计算数据的平均数、中位数、众数等指标来描述数据的分布情况。
在概率的学习中,我们可以利用概率的概念来描述事件发生的可能性。
例如,我们可以计算某个事件发生的概率,比如掷骰子出现一个特定的数字的概率是多少。
四、概率的计算与应用概率的计算是统计与概率的重要部分。
通过掌握概率的计算方法,我们可以解决各种问题。
常见的概率计算方法包括频率法、几何概型法和古典概型法等。
例如,我们可以使用几何概型法来计算掷硬币出现正面的概率,或使用古典概型法来计算从一副扑克牌中抽到红桃的概率。
总结:通过对初中三年级数学统计与概率的学习,学生可以培养数据分析能力和问题解决能力。
他们可以学会数据的收集与整理、数据的分析与图表表示、数据的描述与概率以及概率的计算与应用等技巧。
这些技巧将在他们今后的学习和生活中起到重要的作用。
因此,初中三年级数学统计与概率的学习是必不可少的。
2024年高考数学专项复习数列考查的九个热点(解析版)

数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516B.440C.258D.2202(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65mB.85mC.100mD.120m3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块2024年高考数学专项复习数列考查的九个热点(解析版)4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8= ()A.12B.24C.30D.326(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.427(2023·全国高考真题)已知a n为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=.【规律方法】1.等比数列运算问题的一般求法是设出首项a1和公比q,然后由通项公式或前n项和公式转化为方程(组)求解.2.等比数列的通项公式及前n项和公式,共涉及五个量a1,a n,q,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.9(2022·全国·统考高考真题)记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n 的通项公式及其前n 项和.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3).若a 1>1,则A.a 1<a 3,a 2<a 4B.a 1>a 3,a 2<a 4C.a 1<a 3,a 2>a 4D.a 1>a 3,a 2>a 412(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y =1.1x ,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :y =x +1交于点A n x n ,y n 和B n x n,y n,则20n =0y n y n=.(参考数据:取1.122=8.14.)13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.14(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x ,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<416(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.1217(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.19(2021·全国·统考高考真题)设a n 是首项为1的等比数列,数列b n 满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求a n 和b n 的通项公式;(2)记S n 和T n 分别为a n 和b n 的前n 项和.证明:T n <S n2.20(2023·河南郑州·统考模拟预测)已知数列a n 与b n 的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.热点六数列与解析几何交汇22(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,AA ,BB ,CC ,DD 是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A.0.75B.0.8C.0.85D.0.923(重庆·高考真题)设A x 1,y 1 ,B 4,95 ,C x 2,y 2 是右焦点为F 的椭圆x 225+y 29=1上三个不同的点,则“|AF |,|BF |,|CF |成等差数列”是“x 1+x 2=8”的()A.充要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件24(2021·浙江·统考高考真题)已知a ,b ∈R ,ab >0,函数f x =ax 2+b (x ∈R ).若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点s ,t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线热点七数列与概率统计交汇25(2023秋·江西·高三校联考阶段练习)甲同学现参加一项答题活动,其每轮答题答对的概率均为13,且每轮答题结果相互独立.若每轮答题答对得5分,答错得0分,记第i 轮答题后甲同学的总得分为X i ,其中i =1,2,⋅⋅⋅,n .(1)求E X 99 ;(2)若乙同学也参加该答题活动,其每轮答题答对的概率均为23,并选择另一种答题方式答题:从第1轮答题开始,若本轮答对,则得20分,并继续答题;若本轮答错,则得0分,并终止答题,记乙同学的总得分为Y .证明:当i >24时,E X i >E Y .26(2023秋·湖北荆州·高三沙市中学校考阶段练习)在正三棱柱ABC -A 1B 1C 1中,点A 处有一只小蚂蚁,每次随机等可能地沿各条棱或侧面对角线向另一顶点移动,设小蚂蚁移动n 次后仍在底面ABC 的顶点处的概率为P n .(1)求P1,P2的值.(2)求P n.27(2019·全国·高考真题(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,⋯,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1-p i}(i=0,1,2,⋯,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.热点八等差数列、等比数列的判断与证明28【多选题】(2022·广东茂名·模拟预测)已知数列a n的前n项和为S,a1=1,S n+1=S n+2a n+1,数列2na n⋅a n+1的前n项和为Tn,n∈N*,则下列选项正确的为()A.数列a n+1是等比数列 B.数列a n+1是等差数列C.数列a n的通项公式为a n=2n-1 D.T n>129(2021·全国·统考高考真题)记S n为数列a n的前n项和,b n为数列S n的前n项积,已知2S n+1b n=2.(1)证明:数列b n是等差数列;(2)求a n的通项公式.热点九数列中的“新定义”问题30(2020·全国·统考高考真题)0-1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1,2,⋯)成立,则称其为0-1周期序列,并称满足a i+m=a i(i=1,2,⋯)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2⋯a n⋯,C(k)=1 mmi=1a i a i+k(k=1,2,⋯,m-1)是描述其性质的重要指标,下列周期为5的0-1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯31【多选题】(2023秋·湖南长沙·高三周南中学校考阶段练习)古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,⋯称为三角形数,第二行图形中黑色小点个数:1,4,9,16,⋯称为正方形数,记三角形数构成数列a n,正方形数构成数列b n,则下列说法正确的是()A.1b 1+1b 2+1b 3+⋯+1b n<2;B.1225既是三角形数,又是正方形数;C.10i =11b i +1-a i +1=95;D.∀m ∈N *,m ≥2总存在p ,q ∈N *,使得b m =a p +a q 成立;32(2022秋·山东·高三校联考阶段练习)若项数为n 的数列a n 满足:a i =a n +1-i i =1,2,3,⋯,n 我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列c n 为2k +1项的“对称数列”,其中c 1,c 2⋯c k +1是公差为2的等差数列,数列c n 的最大项等于8,记数列c n 的前2k +1项和为S 2k +1,若S 2k +1=32,则k =.数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516 B.440C.258D.220【答案】D【分析】根据给定条件,利用等差数列性质求出a 4,a 6,再利用前n 项和公式求解作答.【详解】等差数列a n 为递增数列,则a 4<a 6,由a 3+a 7=34,得a 4+a 6=34,而a 4⋅a 6=280,解得a 4=14,a 6=20,所以S 11=11(a 1+a 11)2=11a 6=220.故选:D2(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65m B.85mC.100mD.120m【答案】B【分析】依题意,可以把绕在盘上的卫生纸长度,近似看成300个半径成等差数列的圆周长,然后分别计算各圆的周长,再借助等差数列前n 项和公式求总和即可.【详解】因为空盘时盘芯直径为60mm ,则半径为30mm ,周长为2π×30=60πmm ,又满盘时直径为120mm ,则半径为60mm ,周长为2π×60=120πmm ,又因为卫生纸的厚度为0.1mm ,则60-300.1=300,即每一圈周长成等差数列,项数为300,于是根据等差数列的求和公式,得:S300=300×60π+120π2=27000πmm ,又27000πmm≈84780mm≈85m,即满盘时卫生纸的总长度大约为85m,故选:B.3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设第n环天石心块数为a n,第一层共有n环,则a n是以9为首项,9为公差的等差数列,a n=9+n-1×9=9n,设S n为a n的前n项和,则第一层、第二层、第三层的块数分别为S n,S2n-S n,S3n-S2n,因为下层比中层多729块,所以S3n-S2n=S2n-S n+729,即3n9+27n2-2n9+18n2=2n9+18n2-n9+9n2+729即9n2=729,解得n=9,所以S3n=S27=279+9×272=3402.故选:C4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【答案】2【分析】转化条件为2a1+2d=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2a1+a2+a3=3a1+a2+6,化简得2a3=a1+a2+6,即2a1+2d=2a1+d+6,解得d=2.故答案为:2.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m 项,可由a m =12(a m -n +a m +n)转化为求a m -n ,a m +n 或a m -n +a m +n 的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=()A.12B.24C.30D.32【答案】D【分析】根据已知条件求得q 的值,再由a 6+a 7+a 8=q 5a 1+a 2+a 3 可求得结果.【详解】设等比数列a n 的公比为q ,则a 1+a 2+a 3=a 11+q +q 2 =1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q 1+q +q 2 =q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 51+q +q 2 =q 5=32.故选:D .6(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.42【答案】D【分析】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,利用等比数列的求和公式求出a 1的值,然后利用等比数列的求和公式可求得此人后3天共走的里程数.【详解】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,所以,a 11-12 6 1-12=6332a 1=378,解得a 1=378×3263=192,所以,此人后三天所走的里程数为a 4+a 5+a 6=192×181-1231-12=42.故选:D .7(2023·全国高考真题)已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【答案】-2【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【解析】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.【规律方法】1.等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.2.等比数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{an }的通项公式;(Ⅱ)记{an }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)a n =2n -12;(Ⅱ)-30.【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得a n 的通项公式;(Ⅱ)首先求得S n 的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列a n 的公差为d ,因为a 2+10,a 3+8,a 4+6成等比数列,所以(a 3+8)2=(a 2+10)(a 4+6),即(2d -2)2=d (3d -4),解得d =2,所以a n =-10+2(n -1)=2n -12.(Ⅱ)由(Ⅰ)知a n =2n -12,所以S n =-10+2n -122×n =n 2-11n =n -112 2-1214;当n =5或者n =6时,S n 取到最小值-30.9(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和.已知2S nn+n =2a n +1.(1)证明:a n 是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.【答案】(1)证明见解析;(2)-78.【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n =S 1,n =1S n-Sn -1,n ≥2,作差即可得到a n -a n -1=1,从而得证;(2)法一:由(1)及等比中项的性质求出a 1,即可得到a n 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为2S nn+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n -1+n -1 2=2n -1 a n -1+n -1 ②,①-②得,2S n +n 2-2S n -1-n -1 2=2na n +n -2n -1 a n -1-n -1 ,即2a n +2n -1=2na n -2n -1 a n -1+1,即2n -1 a n -2n -1 a n -1=2n -1 ,所以a n -a n -1=1,n ≥2且n ∈N *,所以a n 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即a 1+6 2=a 1+3 ⋅a 1+8 ,解得a 1=-12,所以a n=n-13,所以S n=-12n+n n-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时,S nmin=-78.[方法二]:【最优解】邻项变号法由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,即有a1<a2<⋯<a12<0,a13=0.则当n=12或n=13时,S nmin=-78.【整体点评】(2)法一:根据二次函数的性质求出S n的最小值,适用于可以求出S n的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n的通项公式及其前n项和.【答案】(1)a n=2n+1,2n-1i=2n-1a i=3⋅4n-1;(2)(Ⅰ)证明见解析;(Ⅱ)b n=2n,前n项和为2n+1-2.【分析】(1)由题意得到关于首项、公差的方程,解方程可得a1=3,d=2,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n项和公式计算可得2n-1i=2n-1a i=3⋅4n-1.(2)(Ⅰ)利用题中的结论分别考查不等式两侧的情况,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,即可证得题中的不等式;(Ⅱ)结合(Ⅰ)中的结论,利用极限思想确定数列的公比,进而可得数列的通项公式,最后由等比数列前n 项和公式即可计算其前n项和.【详解】(1)由题意可得a2+a5=2a1+5d=16a5-a3=2d=4,解得a1=3d=2,则数列a n的通项公式为a n=a1+n-1d=2n+1,求和得2n-1i=2n-1a i=2n-1i=2n-12i+1=22n-1i=2n-1i+2n-1-2n-1+1=22n-1+2n-1+1+2n-1+2+⋯+2n-1+2n-1=22n-1+2n-1⋅2n-12+2n-1=3⋅4n-1.(2)(Ⅰ)由题意可知,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,则b k<a2k-1=2×2k-1+1=2k+1,即b k<2k+1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,此时a n=a2k-1-1=22k-1-1+1=2k-1,据此可得2k-1<b k,综上可得:2k-1<b k<2k+1.(Ⅱ)由(Ⅰ)可知:2k-1<bk<2k+1,2k+1-1<b k+1<2k+1+1则数列b n的公比q满足2k+1-12k+1=2-32k+1<q=b k+1b k<2k+1+12k-1=2+32k-1,当k∈N*,k→+∞时,2-3 2k+1→2,2+32k-1→2,所以q=2,所以2k-1<b12k-1<2k+1,即2k-12k-1=2-12k-1<b1<2k+12k-1=2+12k-1,当k∈N*,k→+∞时,2-1 2k-1→2,2+12k-1→2,所以b1=2,所以数列的通项公式为b n=2n,其前n项和为:S n=2×1-2n1-2=2n+1-2.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【答案】B【分析】先证不等式x≥ln x+1,再确定公比的取值范围,进而作出判断.【详解】令f(x)=x-ln x-1,则f (x)=1-1x,令f(x)=0,得x=1,所以当x>1时,f (x)>0,当0<x<1时,f (x)<0,因此f(x)≥f(1)=0,∴x≥ln x+1,若公比q>0,则a1+a2+a3+a4>a1+a2+a3>ln(a1+a2+a3),不合题意;若公比q≤-1,则a1+a2+a3+a4=a1(1+q)(1+q2)≤0,但ln(a1+a2+a3)=ln[a1(1+q+q2)]>ln a1>0,即a1+a2+a3+a4≤0<ln(a1+a2+a3),不合题意;因此-1<q<0,q2∈(0,1),∴a1>a1q2=a3,a2<a2q2=a4<0,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如x≥ln x+1,e x≥x+1,e x≥x2+1(x≥0).12(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y=1.1x,第n根弦(n∈N,从左数首根弦在y轴上,称为第0根弦)分别与雁柱曲线和直线l:y=x+1交于点A n x n,y n和B n x n ,y n,则20n=0y n y n=.(参考数据:取1.122=8.14.)【答案】914【分析】根据题意可得y n =n +1,y n=1.1n ,进而利用错位相减法运算求解.【详解】由题意可知:y n =n +1,y n =1.1n ,则20n =0y n y n=20n =0n +1 1.1n =1×1.10+2×1.11+⋯+20×1.119+21×1.120,可得1.1×20n =0y n y n =1×1.11+2×1.12+⋯+20×1.120+21×1.121,两式相减可得:-0.1×20n =0y n y n=1.10+1.11+⋯+1.120-21×1.121=1-1.1211-1.1-21×1.121=1-1.121+0.1×21×1.121-0.1=1+1.122-0.1=1+8.14-0.1=-91.4,所以20n =0y n y n=914.故答案为:914.13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.【答案】(1)数列a 2n -1 成等比数列,证明见解析(2)证明见解析【分析】(1)推导出a 2n +1=2a 2n +2=2log 2a 2n -1+2=4a 2n -1,得到结论;(2)先得到a 2n -1=a 1⋅4n -1,a 2n =2(n -1)+log 2a 1,从而得到S 10=341a 1+5log 2a 1+20,令f (x )=341x +5log 2x +20,得到函数单调递增,且由特殊点函数值得到a 1=1,b n =14n2,求出T 1=14<74,当n ≥2时,利用裂项相消法求和,得到T n <12.【详解】(1)数列a 2n -1 成等比数列,证明如下:根据a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗得,a 2n +1=2a 2n +2=2log 2a 2n -1+2=22a 2n -1=4a 2n -1;∵a 1>0,∴a 2n -1>0,a2n +1a 2n -1=4,即数列a 2n -1 成等比数列.(2)由(1)得,a 2n -1=a 1⋅4n -1,a 2n =log 2a 2n -1=2(n -1)+log 2a 1,故S 10=a 140+41+42+43+44 +5log 2a 1+2×(0+1+2+3+4)=341a 1+5log 2a 1+20,由S 10=361,得341a 1+5log 2a 1+20=361.令f (x )=341x +5log 2x +20,当x >0时,f (x )=341x +5log 2x +20单调递增,且f (1)=361=f a 1 ,故a 1=1,a 2n +1=4n =22n ,a 2n +2=log 2a 1+2n =2n ,∴b n =1log 2a 2n +1 ⋅a 2n +2=14n 2,T 1=b 1=14<12,当n ≥2时,b n =14n2<14(n -1)n =141n -1-1n∴T n =b 1+b 2+⋯+b n <141+1-12+12-13+⋯+1n -1-1n=142-1n <14×2=12,综上,知T n <1214(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;【答案】(1)x 1+x 2=1,y 1+y 2=-2(2)存在,c =1,m =1【分析】(1)根据点M 在直线x =12上,设M 12,y M ,利用AM =MB ,可得x 1+x 2=1,分类讨论:①x 1=12,x 2=12;②x 1≠12时,x 2≠12,利用函数解析式,可求y 1+y 2的值;(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2,∴f k n +f n -kn=-2,代入k =0,1,2,⋯,n -1,利用倒序相加法可得S n =1-n ,从而可得数列a n 的通项与前n 项和,利用T m -c T m +1-c <12化简即可求得结论.【详解】(1)根据点M 在直线x =12上,设M 12,y M ,则AM =12-x 1,y M -y 1 ,MB =x 2-12,y 2-y M ,∵AM =MB ,∴x 1+x 2=1.①当x 1=12时,x 2=12,y 1+y 2=f x 1 +f x 2 =-1-1=-2;②当x 1≠12时,x 2≠12,y 1+y 2=2x 11-2x 1+2x 21-2x 2=2x 11-2x 2 +2x 21-2x 1 1-2x 1 1-2x 2 =2(x 1+x 2)-8x 1x 21-2(x 1+x 2)+4x 1x 2=2(1-4x 1x 2)4x 1x 2-1=-2;综合①②得,y 1+y 2=-2.(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2.∴f k n +f n -k n=-2,k =0,1,2,⋯,n -1,∴n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n①S n =f n -1n +f n -2n +f n -3n +⋯+f 1n ②①+②得,2S n =-2(n -1),则S n =1-n .又n =1时,S 1=0满足上式,∴S n =1-n .∴a n =2S n=21-n ,∴T n =1+12+⋯+12n -1=1×1-12 n1-12=2-22n.∵T m -c T m +1-c <12,∴2T m -c -T m +1-c 2T m +1-c<0,∴c -2T m -T m +1c -T m +1<0,∵Tm +1=2-12m ,2T m -T m +1=4-42m -2+12m =2-32m ,∴12≤2-32m <c <2-12m <2,c ,m 为正整数,∴c =1,当c =1时,2-32m<12-12m >1,∴1<2m <3,∴m =1.【点评】作为高考热点,数列与函数的交汇问题,等差数列易于同二次函数结合,研究和的最值问题,而等比数列易于同指数函数结合,利用指数函数的单调性解决问题,递推、通项问题往往与函数的单调性、周期性相结合.热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<4【答案】B【分析】先通过递推关系式确定a n 除去a 1,其他项都在0,1 范围内,再利用递推公式变形得到1a n +1-1a n =13-a n >13,累加可求出1a n >13(n +2),得出100a 100<3,再利用1a n +1-1a n =13-a n<13-3n +2=131+1n +1 ,累加可求出1a n -1<13n -1 +1312+13+⋯+1n ,再次放缩可得出100a 100>52.【详解】∵a 1=1,易得a 2=23∈0,1 ,依次类推可得a n ∈0,1由题意,a n +1=a n 1-13a n ,即1a n +1=3a n 3-a n=1a n +13-a n ,∴1a n +1-1a n =13-a n >13,即1a 2-1a 1>13,1a 3-1a 2>13,1a 4-1a 3>13,⋯,1a n -1a n -1>13,(n ≥2),累加可得1a n -1>13n -1 ,即1a n >13(n +2),(n ≥2),∴a n <3n +2,n ≥2 ,即a 100<134,100a 100<10034<3,又1a n +1-1a n =13-a n <13-3n +2=131+1n +1 ,(n ≥2),∴1a 2-1a 1=131+12 ,1a 3-1a 2<131+13 ,1a 4-1a 3<131+14 ,⋯,1a n -1a n -1<131+1n,(n≥3),累加可得1a n -1<13n -1 +1312+13+⋯+1n ,(n ≥3),∴1a 100-1<33+1312+13+⋯+1100 <33+1312×4+16×96 <39,即1a 100<40,∴a 100>140,即100a 100>52;综上:52<100a 100<3.故选:B .16(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.12【答案】C【分析】由题意可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n,结合等比数列前n 项和解不等式即可.【详解】由题意可知操作1次时有21=2个边长为121=12的小正方形,即S 1=21×1212=121=12,操作2次时有22=4个边长为122=14的小正方形,即S 2=22×122 2=122=14,操作3次时有23=8个边长为123=18的小正方形,即S 3=23×1232=123=18,以此类推可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n ,由等比数列前n 项和公式有S 1+S 2+⋅⋅⋅+S n =12+12 2+⋅⋅⋅+12 n =12×1-12 n1-12=1-12 n,从而问题转换成了求1-12 n ≥20232024不等式的最小正整数解,将不等式变形为12 n ≤12024,注意到12 10=11024>12024,1211=12048<12024,且函数y =12x在R 上单调递减,所以n 的最小值是11.故选:C .17(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)利用等差数列的通项公式以及前n 项和公式,列方程求解首项和公差,即得答案;(2)由(1)结论可得b n =1a n a n +1的表达式,利用裂项求和可得T n 表达式,即可证明结论.【详解】(1)设a n 的公差为d ,由S 4=4S 2得,4a 1+6d =42a 1+d ,解得d =2a 1,∵a 3n =3a n +2,即a 1+3n -1 d =3a 1+n -1 d +2,∴2d =2a 1+2,结合d =2a 1,∴d =2,a 1=1,∴a n =1+2n -1 =2n -1;(2)证明:由b n =12n -1 2n +1=1212n -1-12n +1 .∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1,即∴T n =121-12n +1 ,又T n 随着n 的增大增大,当n =1时,T n 取最小值为T 1=13,又n →+∞时,12n +1>0,且无限趋近于0,故T n =121-12n +1 <12,故13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n n +12(2)见解析【分析】(1)利用等差数列的通项公式求得S n a n =1+13n -1 =n +23,得到S n =n +2 a n 3,利用和与项的关系得到当n ≥2时,a n =S n -S n -1=n +2 a n 3-n +1 a n -13,进而得:a n a n -1=n +1n -1,利用累乘法求得a n =n n +1 2,检验对于n =1也成立,得到a n 的通项公式a n =n n +1 2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n =21-1n +1 ,进而证得.【详解】(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a na n-1=n+1n-1,∴a n=a1×a2a1×a3a2×⋯×a n-1a n-2×a na n-1=1×31×42×⋯×nn-2×n+1n-1=n n+12,显然对于n=1也成立,∴a n的通项公式a n=n n+12;(2)1a n =2n n+1=21n-1n+1,∴1 a1+1a2+⋯+1a n=21-12+12-13+⋯1n-1n+1=21-1n+1<219(2021·全国·统考高考真题)设a n是首项为1的等比数列,数列b n满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求a n和b n的通项公式;(2)记S n和T n分别为a n和b n的前n项和.证明:T n<S n 2.【答案】(1)a n=13n-1,b n=n3n;(2)证明见解析.【分析】(1)利用等差数列的性质及a1得到9q2-6q+1=0,解方程即可;(2)利用公式法、错位相减法分别求出S n,T n,再作差比较即可.【详解】(1)因为a n是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2-6q+1=0,解得q=13,所以a n=13n-1,所以b n=na n3=n3n.(2)[方法一]:作差后利用错位相减法求和T n=13+232+⋯+n-13n-1+n3n,S n 2=12130+131+132+⋯+13n-1 ,T n-S n2=13+232+333+⋯+n3n-12130+131+132+⋯+13n-1 =0-1230+1-1231+2-1232+⋯+n-1-123n-1+n3n.设Γn=0-1230+1-1231+2-1232+⋯+n-1-123n-1, ⑧则13Γn=0-1231+1-1232+2-1233+⋯+n-1-123n. ⑨由⑧-⑨得23Γn=-12+131+132+⋯+13n-1-n-323n=-12+131-13n-11-13-n-323n.所以Γn=-14×3n-2-n-322×3n-1=-n2×3n-1.因此T n-S n2=n3n-n2×3n-1=-n2×3n<0.故T n<S n 2.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得S n=1×1-13n1-13=321-13n,T n=13+232+⋯+n-13n-1+n3n,①1 3T n=132+233+⋯+n-13n+n3n+1,②①-②得23T n=13+132+133+⋯+13n-n3n+1=131-13n1-13-n3n+1=121-13n-n3n+1,所以T n=341-13n-n2⋅3n,所以T n-S n2=341-13n-n2⋅3n-341-13n=-n2⋅3n<0,所以T n<S n 2 .[方法三]:构造裂项法由(Ⅰ)知b n=n13n,令c n=(αn+β)13 n,且b n=c n-c n+1,即n13 n=(αn+β)13 n-[α(n+1)+β]13n+1,通过等式左右两边系数比对易得α=32,β=34,所以c n=32n+34 ⋅13 n.则T n=b1+b2+⋯+b n=c1-c n+1=34-34+n2 13 n,下同方法二.[方法四]:导函数法设f(x)=x+x2+x3+⋯+x n=x1-x n1-x,由于x1-x n1-x'=x1-x n'1-x-x1-x n×1-x'1-x2=1+nx n+1-(n+1)x n(1-x)2,则f (x)=1+2x+3x2+⋯+nx n-1=1+nx n+1-(n+1)x n(1-x)2.又b n=n13n=13n13 n-1,所以T n=b1+b2+b3+⋯+b n=131+2×13+3×132+⋯+n⋅13n-1 =13⋅f 13 =13×1+n13n+1-(n+1)13 n1-132=341+n13n+1-(n+1)13n =34-34+n213 n,下同方法二.20(2023·河南郑州·统考模拟预测)已知数列a n与b n的前n项和分别为A n和B n,且对任意n∈N*,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.【答案】(1)n (n +1);(2)3【分析】(1)利用a n ,S n 求通项公式,再求证{b n }是首项、公差均为2的等差数列,进而求B n ;(2)由题设易得b n +1=3b n ,等比数列前n 项和公式求B n ,进而可得b n +1a n a n +1=1B n -1B n +1,裂项相消法化简已知不等式左侧,得b 1>31-23n +1-1恒成立,进而求最小值.【详解】(1)由题设,a n =A n -A n -1=32[n 2+n -(n -1)2-n +1]=3n 且n ≥2,而a 1=A 1=3,显然也满足上式,故a n =3n ,由a n +1-a n =32b n +1-b n ⇒b n +1-b n =2,又b 1=2,所以{b n }是首项、公差均为2的等差数列.综上,B n =2×(1+...+n )=n (n +1).(2)由a n =B n ,a n +1-a n =32b n +1-b n ,则B n +1-B n =b n +1=32(b n +1-b n ),所以b n +1=3b n ,而b 1≥1,故bn +1b n=3,即{b n }是公比为3的等比数列.所以B n =b 1(1-3n )1-3=b 12(3n -1),则B n +1=b12(3n +1-1),b n +1a n a n +1=B n +1-B n B n +1B n =1B n -1B n +1,而b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13,所以1B 1-1B 2+1B 2-1B 3+...+1B n -1B n +1=1B 1-1B n +1=1b 1-2b 1(3n +1-1)<13,所以1b 11-23n +1-1 <13⇒b 1>31-23n +1-1对n ∈N *都成立,所以1-23n +1-1<1,故b 1≥3,则正整数b 1的最小值为3.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.【答案】(1)a n =n ;b n =2n (2)证明见解析【分析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,根据题意列式求d ,q ,进而可得结果;(2)利用分组求和以及裂项相消法求得T n =-14n +2+4n +13-56,进而根据数列单调性分析证明.【详解】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由a 1=1,a 5=5a 4-a 3 ,可得1+4d =5d ,解得d =1。
中考数学复习指导:《统计与概率》专题专练(含答案)

《统计与概率》专题专练加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。
这是当前课程改革的大势所趋。
统计与概率部分在社会生活及科学领域中有广泛应用。
加强应用统计与概率的意识,不仅仅是学习的需要,更是工作生活必不可少的.专题一:50年的变化1.考点分析本专题在中考题中多出现在极富有生活气息和时代特色的题目中,考查的问题通常有三类:(1)选择使用合适的统计图来表示统计量;(2)根据所哦给出的统计图提取有用的信息,并用这些信息解答问题;(3)能用加权平均数的公式求扇形统计图中的平均数,命题多以填空、选择、解答的形式出现,分值在3~9分2.典例剖析例1. 为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值;A :_____________;B :_____________; (3)求该地区喜爱娱乐类节目的成年人的人数.分析:本题是一道双统计图试题,解决问题需要理解两个统计图各表示的意义.从折有 线统计图中可以看到老年人、青少年对三类节目喜爱的数目,从扇形统计中只能看到成年人喜爱三类节目所占的百分比.解:(1)上面所用的调查方法是“抽样调查” .节目 新闻 娱乐 动画 图二:成年人喜爱的节目统计图 新闻娱乐 动画108°(2)A=20,B=40. (3)5300000150000352⨯=++,108360=30%,15000×30%=45000. 点评:在抽样调查中,我们常常用样本的情况去估计总体的情况,例如用样本中某部分个体所占的百分比去估计总体中该部分个体所占的百分比等,为了保证估计的准确性,抽样时要注意样本的代表性与广泛性.例2. 下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如图2.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票 的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格. 分析:第(1)问只要看清条形统计图即可获取需要的信息; 第(2)问只要根据概率的定义进行计算即可; 第(3)问只要根据题意列出方程即可.解:(1)由条形统计图可知,观看男篮比赛的门票有30张,由于总票数为100张,而观看乒乓球比赛的门票20 张,故观看乒乓球比赛的门票占全部门票的20%.(2)由于总门票数为100张,而观看乒乓球比赛的门票20 张,所以看到乒乓球的概率是: 12 ,故问员工小亮抽到足球门票的概率是12 . (3)解法一:依题意,有x x 205080030100020+⨯+⨯= 18,解得x =500, 经检验,x =500是原方程的解.答:每张乒乓球门票的价格为500元.解法二:依题意,有x 2050800301000+⨯+⨯= x 208⨯. 解得x =500. 答:每张乒乓球门票的价格为500元.点评:此题为统计与概率知识的综合题,由条形统计图可以判断出三种比赛项目的具体人数,就可以解决第一、二两问.第三问乒乓球门票的价格需要根据统计表中所示的各门票的价格与购买乒乓球门票的总款数占全部门票总款数的81,构造方程从而求出乒乓球门票的价格.专练一:1、某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形图和扇形统计图,请你根据图表信息完成下列各题: (1)此次共调查了多少位学生? (2)请将表格填充完整; (3)请将条形统计图补充完整.2、阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.图4是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表(1)是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率.(2分) (2)求表(1)中A B ,的值.(4分)(3)该校学生平均每人读多少本课外书?(2分)其他共汽车图3表(1)3、甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图5、图6的统计图.(1)在图12-2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况; (2)已知甲队五场比赛成绩的平均分甲x =90分,请你计算乙队五场比赛成绩的平均分乙x ; (3)就这五场比赛,分别计算两队成绩的极差;(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?4、红星煤矿人事部欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行专业知识测试,成绩如下表所示;并依录用的程序,组织200名职工对三人进行民主评议投票推荐,三人得票率如图7所示.(没有弃权票,每位职工只能投1票,每得1票记作1分)(1)请填出三人的民主评议得分:甲得 分,乙得 分,丙得 分;丙 31% 甲 35%乙34%图7得分/ 甲、乙两球队比赛成绩条形统计图图5 /场甲、乙两球队比赛成绩折线统计图 图6得分/场(2)根据招聘简章,人事部将专业知识、民主评议二项得分按6:4的比例确定各人成绩,成绩优者将被录用.那么 将被录用,他的成绩为 分.5、今年4月,国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有 人;(3)根据统计结果,请你简单谈谈自己的看法.6、某校学生会准备调查初中2008级同学每天(除课间操外)的课外锻炼时间.⑴ 确定调查方式时,甲同学说:“我到1班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到初中2008级每个班去随机调查一定数量的同学”. 请你指出哪位同学的调查方式最为合理;⑵ 他们采用了最为合理的调查方法收集数据,并绘制出如图9所示的条形统计图和如图10所示的扇形统计图,请将其补充完整;⑶ 若该校初中2008级共有240名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数,并根据调查情况向学生会提出一条建议.(注:图5-2中相邻两虚线形25 50 75 100125150175200人数图9图10图8成的圆心角为30°.)7、我省某地区结合本地自然条件,大力发展茶叶、蔗糖、水果、药材等产业,取得良好经济效益,经过多年发展,茶叶、蔗糖、水果、药材成了该地区四大产业.图11①、图②是根据该地区2006年各项产业统计资料绘制的两幅不完整统计图,请你根据统计图提供的信息解答以下问题:(1)该地区2006年各项产业总产值共___________万元;(2)图11①中蔗糖所占的百分数是_________,2006年该地区蔗糖业的产值有__________万元;(3)将图12②中“蔗糖”部分的图形补充完整。
高考数学专题《概率与统计》解读含答案解析

重难点04 概率与统计新高考概率与统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
试题考查特点是以实际应用问题为载体,小题部分主要是考查排列组合与古典概型,解答题部分主要考查独立性检验、超几何分布、离散型分布以及正态分布对应的数学期望以及方差。
概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活。
取代了传统意义上的应用题,成为高考中的亮点。
解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注。
求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因;(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。
相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。
定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。
标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。
有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法。
对于二项式定理的应用,只要会求对应的常数项以及对应的n项即可,但是应注意是二项式系数还是系数。
新高考统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
高中数学统计与概率的基本问题

3.在频率分布直方图中,小长方形的面积=频率,各小长方形 的面积的总等于 1.
4.方差与标准差 s2=1n[(x1- x )2+(x2- x )2+…+(xn- x )2], s= 1n[x1- x 2+x2- x 2+…+xn- x 2].
答案 D
(2014·天津卷)某大学为了解在校本科生对参加某 项社会实践活动的意向,拟采用分层抽样的方法, 从该校四个年级的本科生中抽取一个容量为300的 样本进行调查.已知该校一年级、二年级、三年级 、四年级的本科生人数之比为4∶5∶5∶6,则应 从一年级本科生中抽取________名学生.
答案 60
现将所有同学随机编号,用系统抽样的方法,抽取一个容
量为4的样本,已知5号、33号、47号学生在样本中,则
样本中还有一个学生的编号为
( ).
○ A.13
B.17
○ C.19
D.21
为了研究雾霾天气的治理, 某课题组对部分城市进行空 气质量调查,按地域特点把 这些城市分成甲、乙、丙三 组,已知三组城市的个数分 别为4,y,z,依次构成等 差数列,且4,y,z+4成 等比数列,若用分层抽样抽 取6个城市,则乙组中应抽 取的城市个数为 ______________.
下的列联表:
喜爱
不喜 爱
总计
女 男 总计
40 20
60
20 30
50
60 50
110
试根据样本估计总体的思想,估计约有________的把握认为“喜 爱该节目与否和性别有关”. 参考附表:
P(K2≥k0) 0.050 0.010 0.001 k0 3.841 6.635 10.828
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点专题七统计与概率热点专题七统计与概率【考点聚焦】统计与概率主要是研究现实生活中的数据和客观世界中的随机现象,它通过对数据收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们做出合理的决策.随着社会的不断发展,统计与概率的思想方法也越来越重要.因此,统计与概率知识是各地中考重点考查内容之一.1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现.2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算.3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍,4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件.5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【热点透视】热点1:通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,通过实例体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差.例1(2008娄底)去年娄底市有7.6万学生参加初中毕业会考,为了解这7.6万名学生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是()(A)这1 000名考生是总体的一个样本(B)7.6万名考生是总体(C)每位考生的数学成绩是个体(D)1 000名学生是样本容量分析:在这个问题中,样本应是“1 000名考生的数学成绩”而不是“1 000名考生”,所以(A)不正确,同样总体是指“7.6万名考生的数学成绩”这一数量指标,而不是“7.6万名考生”这个具体对象,所以(B)不正确,样本容量是样本中个体的数目,故样本容量是1 000,(D)显然不正确.解:选(C).点评:总体,个体,样本,样本容量是统计里的重要概念,用样本估计总体是统计的基本思想方法,也是一个重要的考点.热点2:在具体情境中计算平均数、加权平均数、众数、中位数;根据具体问题,能选择合适的统计量表示数据的集中趋势.例2(2008长沙)某校社会实践小组八位成员上街卖报,一天的卖报数如下表:则卖报数的众数为()(A)25(B)26(C)27(D)28分析:本题考查如何确定众数,观察发现表中卖报数为28份的最多,为3人,故众数为28.解:选(D).点评:确定众数的方法是找该组数据中出现次数最多的数,如果有多个数出现的次数相同,那这些出现次数相同的数都是这组数据的众数;平均数、众数、中位数及其应用,在中考试卷中它们有机地交汇于实际情境中,考查应用意识.热点3:会用条形统计图、折线统计图、扇形统计图直观表示数据,能从统计图中获得所需要的信息回答相关问题是最常见的题型之一.例3(2008郴州)“农民也可以报销医疗费了!”这是某市推行新型农村合作医疗的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款.这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了如图1的统计图.根据以上信息,解答以下问题:(1)本次调查了多少村民,被调查的村民中,有多少人参加合作医疗得到了返回款?(2)该乡若有10 000村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9 680人,假设这两年的年增长率相同,求这个年增长率.分析:由条形统计图,可看出共调查了300个村民;从扇形统计图,可以看出占2.5%,即参加合作医疗得到返回款的为6人.解:(1)240+60=300(人),240×2.5%=6(人).(2)因为参加合作医疗的百分率为240300=80%,所以估计该乡参加合作医疗的村民有:10 000×80%=8 000(人).设年增长率为x,由题意知28000(1)9680x⨯+=,解得10.1x=,2 2.1x=-(舍去),即年增长率为10%.答:共调查了300人,得到返回款的村民有6人,估计有8 000人参加了合作医疗,年增长率为10%.点评:条形统计图和扇形统计图是一种基本的统计图表,通过条形统计图可以看到各个对象或多个因素的绝对统计数据,能反应具体的数据;通过扇形统计图可清楚地表示出各部分数量占总量的百分比.本题背景新颖,首先考查了同学们的“图表”阅读能力,其次考查同学们根据图表中反映出的数据解答有关问题的能力.热点4:通过实例理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题;例4(2008湘潭)某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了“频率分布表”和“频数分布条形图”(如图2).请你根据图表中提供的信息,解答下列问题.频率分布表:代号教学方式最喜欢的频数频率1 老师讲,学生听20 0.102 老师提出问题,学生探索思考1003 学生自行阅读教材,独立思考30 0.154 分组讨论,解决问题0.25(1)补全“频率分布表”;(2)在“频数分布条形图”中,将代号为“4”的部分补充完整;(3)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由.(字数在20字以内)分析:本题背景材料来源于同学们的生活实际,可从仔细阅读频率分布表和频数分布条形图中获取重要信息来解决问题.解:(1)频数:50;频率:0.5;(2)略;(3)答案不惟一(略).点评:频数、频率、频数分布表,频数分布直方图是重要考点,本题既考查了同学们对统计图表的应用,各种统计量的计算掌握情况,又考查了解释统计结果及根据结果做出简单判断的能力,同时还为同学们留有个性化的思考和创新的空间.热点5:考查极差和方差的意义和计算方法,并会用它们表示数据的离散程度例5(2008岳阳)某地统计部门公布最近五年国民消费指数增长率分别为8.5%,9.2%,9.9%,10.2%,9.8%.业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据的()比较小.(A)方差(B)平均数(C)众数(D)中位数分析:由题可知,判断“增长率之间是否相当平稳”,是考查数据的波动大小(离散程度).解:选(A).点评:统计中,数据的代表比较多,如平均数、众数、中位数、方差、极差、频数、频率等等,它们表示的意义各不相同,我们应抓住它们的本质.对统计概念的掌握一直以来都是中考的考点,新课标下的中考也不例外.热点6:会判断一个事件是确定事件(必然事件和不可能事件)还是不确定事件例6(2008张家界)下列事件中是必然事件的是()(A)明天我市天气晴朗(B)两个负数相乘,结果是正数(C)抛一枚硬币,正面朝下(D)在同一个圆中,任画两个圆周角,度数相等分析:此题主要考查对确定事件与不确定事件的了解和掌握,准确对几类事件概念的理解是解决此题的关键.解:选(B).点评:这类题是基础题,只要弄清概率的基本概念,不难正确解决.热点7:理解概率的意义,会求一些事件的概率;会运用列举法(列表、画树状图)计算事件发生的概率,并能利用它们解决实际问题例7(2008怀化)“六一”儿童节前夕,我市某县“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行表彰,某校八年级8个班中只能选两个班级参加这项活动,且8(1)班必须参加,另外再从其它班级中选一个班参加活动.8(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标上1,2,3,4四个数字,转动转盘两次,将两次指针所指的数字相加,(当指针指在某一条等分线上时视为无效,重新转动)和为几就选哪个班参加,你认为这种方法公平吗?请说明理由.分析:本例是判断游戏公平的题,它的关键是正确求出概率,而后看它们获胜的概率是否相等.解:方法不公平.用表格说明:所以,八(2)班被选中的概率为:116,八(3)班被选中的概率为:21168=,八(4)班被选中的概率为:316,八(5)班被选中的概率为:41164=,八(6)班被选中的概率为:316,八(7)班被选中的概率为:21168=,八(8)班被选中的概率为:116,所以这种方法不公平.点评:判断游戏是否公平的(或者奖项设置是否合理)原则是双方获胜的概率是否相等,公平的游戏机会是相等的;这类题既可以考查同学们正确掌握求概率方法的程度,也可以考查同学们运用概率思想和知识解决实际问题的能力.无论是强化应用意识,还是培养综合能力,都是有价值的.【考题预测】1.我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是()(A)27,28(B)27.5,28(C)28,27(D)26.5,272.将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是()(A)15(B)25(C)35(D)453.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()(A)12(B)9(C)4(D)34.随着中国经济的高速发展,股市持续上涨,到2007年5月28日止,股市的开户人数已达到1亿人,同日对股民的市场抽样调查如图3所示,据此估计当日对后市看涨的股民为_________万人.5.据统计,某州今年参加初三毕业会考的学生为46 000人.为了了解全州初三考生毕业会考数学考试情况,从中随机抽取了500名考生的数学成绩进行统计分析,在这个问题中,样本容量是________.6.某市篮球队到市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,图4记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写下表.姓名平均数众数方差王亮7李刚7 2.8(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理由.7.为了进一步了解九年级学生的身体素质情况,体育老师对九年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:请结合图表完成下列问题:(1)表中的a ___________;(2)请把频数分布直方图补充完整;(3)这个样本数据的中位数落在第________组;(4)若九年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或九年级同学提一条合理化建议:___________________.8.小华与小丽设计了A B,两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.。