高中数学-变化率与导数_提高

高中数学-变化率与导数_提高
高中数学-变化率与导数_提高

变化率与导数

【学习目标】

(1)理解平均变化率的概念;

(2)了解瞬时速度、瞬时变化率的概念;

(3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; (4)会求函数在某点的导数或瞬时变化率; 【要点梳理】

知识点一:平均变化率问题

1.变化率

事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值;

2.平均变化率

一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121

()()

f x f x x x --

要点诠释:

① 本质:如果函数的自变量的“增量”为x ?,且21x x x ?=-,相应的函数值的“增量”为

y ?,21()()y f x f x ?=-,则函数()f x 从1x 到2x 的平均变化率为

2121

()()f x f x y x x x -?=?- ② 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势.

即递增或递减幅度的大小。

对于不同的实际问题,平均变化率富于不同的实际意义。如位移运动中,位移S (m )从t 1秒到t 2秒的平均变化率即为t 1秒到t 2秒这段时间的平均速度。

高台跳水运动中平均速度只能粗略地描述物体在某段时间内的运动状态,要想更精确地刻画物体运动,就要研究某个时刻的速度即瞬时速度。

3.如何求函数的平均变化率

求函数的平均变化率通常用“两步”法:

①作差:求出21()()y f x f x ?=-和21x x x ?=- ②作商:对所求得的差作商,即2121

()()f x f x y x x x -?=?-。 要点诠释:

1. x ?是1x 的一个“增量”,可用1x x +?代替2x ,同样21()()y f x f x ?=-。

2. x V 是一个整体符号,而不是V 与x 相乘。

3. 求函数平均变化率时注意,x y V V ,两者都可正、可负,但x V 的值不能为零,y V 的值可以为零。若

函数()y f x =为常函数,则y V =0. 知识点二:导数的概念

定义:函数()f x 在0x x =处瞬时变化率是()()x

x f x x f x y

x x ?-?+=??→?→?0000lim

lim

,我们称它为函数()x f y =在0x x =处的导数,记作() 或0x f '即 0

x x y ='

()()()x

x f x x f x y

x f x x ?-?+=??'→?→?00000lim

lim

= 要点诠释:

① 增量x ?可以是正数,也可以是负,但是不可以等于0。0x ?→的意义:x ?与0之间距离要多近有多近,即|0|x ?-可以小于给定的任意小的正数。

② 0x ?→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数。 即存在一个常数与

00()()

f x x f x y x x

+?-?=

??无限接近。 ③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。如瞬时速度即是位移在这一时

刻的瞬间变化率。

知识点三:求导数的方法: 求导数值的一般步骤:

① 求函数的增量:00()()y f x x f x ?=+?-;

② 求平均变化率:00()()

f x x f x y x x

+?-?=

??; ③ 求极限,得导数:00000()()'()lim lim

x x f x x f x y

f x x x

?→?→+?-?==??。 也可称为三步法求导数。

【典型例题】

类型一:求平均变化率 例1 函数()y f x

==

在区间[1,1+Δx]内的平均变化率为________。 【解析】 ∵(1)(1)1

y f x f ?=+?-=

=

=

(11)1x x

=

++?+?,

(11)1y x x x

?=-?++?+? 【总结升华】 由于平均变化率是函数值增量与自变量增量之比,所以求函数在给定区间[x 0,x 0+Δx]上

的平均变化率问题,就是求00()()

f x x f x y x x +?-?=

??的值。本例的关键是对111x x

-+?+?进行分子有理化。

举一反三:

【变式1】 求函数y=2x 2+5在区间[2,2+Δx]上的平均变化率;并计算当1

2

x ?=

时,平均变化率的值。【答案】 ∵2

2

2

(2)(2)2(2)5(225)82()y f x f x x x ?=+?-=+?+-?+=?+?

82y

x x

?=+??,函数在区间[2,2+Δx]上的平均变化率为82x +?。 当12x ?=时,829y

x x

?=+?=?,即平均变化率的值为9.

【变式2】 (2015春 松山区校级月考)在曲线2

y x x =+上取点P (2,6)及邻近点Q ()2,6x y +?+? ,

那么

y

x

?? 为( ) A.2x ?+ B. 2

2()x x ?+? C. 5x ?+ D. 2

3()x x ?+?

【答案】 ∵ 2

6(2)(2)y x x +?=+?++?,

∴ 2(2)(2)65y x x x x x

?+?++?-==?+?? 故选C

【变式3】已知函数

,分别计算在区间[-3,-1],[0,5]上函数

的平均变化率. 【答案】

函数

在[-3,-1]上的平均变化率为

在[-3,-1]上的平均变化率为

函数

在[0,5]上的平均变化率为

在[0,5]上的平均变化率为

类型二:利用定义求导数值

例2 用导数的定义,求函数()y f x x

==

在x=1处的导数。 【解析】∵(1)(1)11y f x f x

?=+?-=

-+?

111(11)1x x x x -+?=

=

+?++?+?(11)1x x

=++?+? ∴

(11)1y x x x

?=?++?+? ∴01

'(1)lim

2

x y f x ?→?==-?。

【总结升华】 利用定义求函数的导数值,需熟练掌握求导数的步骤和方法,即三步法。

举一反三:

【高清课堂:变化率与导数 383113 例1】

【变式1】(1)求函数 2

()3f x x =在x =1处的导数.

(2)求函数f (x )=x x +-2

在1x =-附近的平均变化率,并求出在该点处的导数.

【答案】 (1) 2

2

(1)(1)3(1)363()y f x f x x x ?=+?-=+?-=?+?

2

63()63y x x x x x

??+?==+???, 0lim(63)6x x ?→+?=,即(1)6f '=.

所以 函数 2

()3f x x =在x =1处的导数为6 .

(2) 依照定义,f (x )在1x =-的平均变化率,为两增量之比,

需先求22

00()()(1)(1)23()y f x x f x x x x x ?=+?-=--+?+-+?-=?-?,

再求:

2

3()3y x x x x x

??-?==-???,即为f (x )=x x +-2在1x =-附近的平均变化率。 再由导数定义得: 00

(1)lim lim(3)3x x y

f x x ?→?→?'-==-?=?

【变式2】已知函数1

y x x

=

x=4处的导数.

【答案】(1

)0011

(2)

(4)(4)44'(4)lim lim x x f x f x f x x

?→?→-+?-+?==??

01

12)

44lim x x x ?→??-- ?+???=

?0lim

x ?→=

15

lim 4(4)

16x x ?→?

-==- +??, 【变式3】(2015春 宝鸡校级月考)已知函数()f x 可导,且'

(1)1f = ,则0

(1)(1)

lim

x f x f x

?→-?--? 等于

( )

A.1

B. 1-

C.(1)1f =

D. (1)1f -= 【答案】 A

类型三:实际问题中导数的应用

例3. 设一个物体的运动方程是:2

02

1)(at t v t s +

=,其中0v 是初速度,时间单位为s, 求:t=2s时的瞬时速度(函数s(t)的瞬时变化率)。 【解析】

a v s t 220+=∴时,瞬时速度是

【总结升华】 t =2s 时的瞬时速度就是t =2s 附近平均速度的极限,亦即速度在t =2s 时导数。 举一反三:

【变式1】 质点按规律s (t)=at 2+1做直线运动(位移单位:m ,时间单位:s )。若质点在t=2 s 时的瞬时

速度为8 m / s ,求常数a 的值。

【答案】 ∵Δs=s(2+Δt)―s(2)=a(2+Δt)2+1―a ×22-1=4a Δt+a(Δt)2,

4s

a a t t

?=+??。 ∴在t=2 s 时,瞬时速度为0lim

4t s

a t ?→?=?,即4a=8。∴a=2。

【变式2】如果一个质点从固定点A 开始运动,关于时间t 的位移函数是

3

()3s t t =+ 0022

00000000()()11[()()][]

221

2

s t t s t s t t

v t t a t t v t at t

v at a t

+?-?=??+?++?-+=

?=++?

求(1)t=4时、物体的位移是s(4); (2)t=4时、物体的速度v(4); (3)t=4时、物体的加速度a(4). 【答案】(1) 3

(4)4367s =+=

(2) t=4时,332(4)3(43)4812()s t t t t t

?+?+-+==+?+??? 2

00lim

lim 4812()48t t s t t t ?→?→???=+?+?=??? ∴v(4)=48

(3) 3322()3(3)

33()s t t t t t t t t t

?+?+-+==+?+??? ∴222

00()lim

lim 33()3t t s v t t t t t t t ?→?→???==+?+?=?

?? t=4时 ()(4)v v t t v t t

?+?-==

??2

3(4)234243t t t +?-?=+?? []00lim

lim 24324t t v

t t ?→?→?=+?=?

∴a (4) = 24

【变式3】 枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是a=5×105 m / s 2,枪弹从枪口射

出所用的时间为1.6×10―

3 s 。求枪弹射出枪口时的瞬时速度。 【答案】 运动方程为2

12

s at =

。 因为 222000111()()222s a t t at at t a t ?=

+?-=?+?, 所以 012s at a t t ?=+??。当Δt →0时,0s at t

?→?。

由题意知,a=5×105 m / s 2,t 0=1.6×10-

3 s , 所以at 0=8×102 m / s=800 m / s

即枪弹射出枪口时的瞬时速度为800 m / s

【巩固练习】 一、选择题

1.(2015春 保定校级月考)函数在一点的导数是( ) A.在该点的函数值的增量与自变量的增量的比 B.一个函数

C.一个常数,不是变数

D.函数在这一点到它附近一点之间的平均变化率。

2.(2015春 淄博校级月考)在曲线2

2y x =+的图象上取一点(1,3)及邻近一点()1,3x y +?+?,则

y x

?? 为( )

A. 12x x ?+

+? B. 2x ?+ C. 1x x ?-? D. 1

2x x

?-+?

3.一直线运动的物体,从时间t 到t t +?时,物体的位移为s ?,那么t

s

t ??→?0lim 为 ( )

A .从时间t 到t t +?时,物体的平均速度

B .时间t 时该物体的瞬时速度

C .当时间为t ?时该物体的速度

D .从时间t 到t t +?时位移的平均变化率

4. 已知函数)(x f y =,下列说法错误的是( ) A. )()(00x f x x f y -?+=?叫函数增量

B.

x

x f x x f x y ?-?+=

??)

()(00叫函数在[x x x ?+00,]上的平均变化率 C. )(x f 在点0x 处的导数记为y ' D. )(x f 在点0x 处的导数记为)(0x f '

5.一木块沿某一斜面自由下滑,测得下滑的水平距离s 与时间t 之间的函数关系为2

18

s t =, 则t=2 s 时,此木块在水平方向的瞬时速度为( ) A .2 B .1 C .

12 D .14

6. 设()4f x ax =+,若'(1)2f =,则a=( )

A .2

B .-2

C .3

D .不确定

7.(2015秋 泗县校级期末)若()f x 在(),-∞+∞可导,且

(2)()

13lim

x f a x f a x

?→+?-=?,则'()f a =( )

A.

23 B.2 C.3 D.32

8.在地球上一物体作自由落体运动时,下落距离2

12

S gt =其中t 为经历的时间,29.8/g m s =, 若 0(1)(1)

lim

t S t S V t

?→+?-=?9.8/m s =,则下列说法正确的是( )

A. 0~1s 时间段内的速率为9.8/m s

B. 在1~1+△ts 时间段内的速率为9.8/m s

C. 在1s 末的速率为9.8/m s

D. 若△t >0,则9.8/m s 是1~1+△ts 时段的速率;

若△t <0,则9.8/m s 是1+△ts ~1时段的速率.

二、填空题

9.已知函数y =x 3

-2,当x =2时,Δy Δx

= .

10.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则[(0)]f f =

(1)(1)

lim

x f x f x

?→+?-?= .

11. 一质点的运动方程是3

2

2s t t t =-+, 其中最小速度是 。 三、解答题 12.已知函数1

y x x

=

求函数在x=4处的导数. 13.将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热。如果在第x h 时,原油温度(单位:C ?)为()()801572

≤≤+-=x x x x f .计算第2h 和第6h 时,原油温度的瞬时变化率,并说明它们的意义。 14. 已知函数y=log 2x+1。

(1)求函数在[2,2.1]上的平均变化率;

(2)若自变量从x 0增加到x 0+Δx ,该函数的平均变化率又是多少?(x 0>0) 15. 已知曲线2

2(0)y px y =>,用定义求:0x x =处的导数;

【答案与解析】 1. 【答案】 C 2. 【答案】B

【解析】Δy =(1+Δx )2+2-1-1=Δx 2+2Δx ,x

y

??=2+Δx .选B 。 3. 【答案】 C

【解析】 ∵f ′(4)=-sin4,π<4<2

, ∴sin4<0.∴f ′(4)>0,即函数在点(4,f (4))处的斜率为正值. ∴切线的倾斜角为锐角.

4. 【答案】 C

【解析】 正确的写法应该是0'|x x y = 5. 【答案】 C

【解析】 220011(2)2

1118

8'|lim lim 822t t t t s t t =?→?→+?-???==?+= ???

?。故选C 。 6. 【答案】 A

【解析】 ∵0

0(1)(1)'(1)lim

lim 2x x f x f a x

f a x

x ?→?→+?-?====??,∴a=2,故选A 。

7. 【答案】 D

【解析】因为

(2)()

13lim

x f a x f a x ?→+?-=?,即

02(2)()13

2lim x f a x f a x ?→+?-?=?,0

2(2)()132lim x f a x f a x ?→+?-=?,'2()13f a = ,所以'

3()2f a =

,故选D 。 8. 【答案】 C

【解析】 0(1)(1)

lim

'(1)t s t s v s t

?→+?-==?,即s (t )在t=1

s 时的导数值。由导数的物理意义,得9.8 m / s 是物体在t=1 s 这一时刻的速率。故选C 。 9. 【答案】 2

42()x x +?+?

【解析】332(2)(22)42()y x x x x x

?+?--==+?+??? 10. 【答案】 2, 2

【解析】 由图可知:f(0)=4,f(4)=2; f(x)=-2x+4,带入可得。 11. 【答案】

53

【解析】由于()2

2155

3223333

s t t t t ??'=-+=-+≥ ???

12. 【答案】

12

【解析】

0011

(2)

(4)(4)44'(4)lim lim x x f x f x f x x

?→?→-+?-+?==??

01

12)44lim x x x ?→??-- ?+???=

?0lim x ?→=

15

lim 4(4)

16x x ?→?

-==- +??, 13. 【解析】在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f

根据导数定义

0(2)()f x f x f

x x

+?-?=?? 22(2)7(2)15(27215)3x x x x

+?-+?+--?+==?-?

所以00

(2)lim

lim(3)3x x f

f x x ?→?→?'==?-=-? 同理可得:(6)5f '= 在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,

说明在第2h 附近,原油温度大约以3/C h o

的速率下降

在第6h 附近,原油温度大约以5/C h o

的速率上升.

14.【 答案】0.7 1

20log 1x

x x ???

?+ ??

?

【解析】(1)∵x 1=2,x 2=2.1,Δx=x 2-x 1=0.1,

∴12()log 212f x =+=,22()log 2.11 2.07f x =+≈, ∴函数在[2,2.1]上的平均变化率 2121()() 2.0720.70.1

f x f x y x x x -?-===?-。 (2)x1=x0,x2=x0+Δx ,

020()log 1f x x =+,

020()log ()1f x x x x +?=+?+,

200020202

00()()log ()log log log 1x x

x y f x x f x x x x x x ??+???=+?-=+?-==+ ??

?, ∴ 函数的平均变化率

1

2200log 1log 1x

y

x x x x x x ????????=+÷?=+ ? ?????

?。 15.

【解析】∵y >0

,∴y =

∴y ?=

y x ?=?

=

= 当x ?趋近于0

lim x ?→

=

高中数学导数知识点归纳

高中数学选修2----2 知识点 第一章导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数y f ( x) 在x x0处的瞬时变化率是 lim f ( x0x)f ( x ) , x0x 我们称它为函数y f ( x) 在x x0处的导数,记作 f ( x0 ) 或 y |x x, 即 f (x0 ) =lim f ( x0x) f (x0 ) x 0x 2.导数的几何意义:曲线的切线.通过图像 ,我们可以看出当点P n趋近于P时,直线PT与曲线相切。容易 知道,割线 PP n的斜率是k n f ( x n )f ( x ) ,当点 P n趋近于P时,函数y f ( x) 在x x0处的导 x n x0 数就是切线 PT 的斜率 k,即k f (x n ) f ( x0) lim f ( x0 ) x 0x n x0 3.导函数:当 x变化时, f ( x) 便是x的一个函数,我们称它为 f (x) 的导函数.y f ( x) 的导函数有 时也记作 y ,即 f ( x)lim f ( x x) f ( x) x 0x 二 .导数的计算 1)基本初等函数的导数公式: 2若 f ( x)x ,则 f (x)x 1 ; 3若 f ( x)sin x ,则 f(x)cos x 4若 f ( x)cos x ,则 f(x)sin x ; 5若6若f ( x) a x,则 f ( x) a x ln a f ( x)e x,则 f ( x) e x 7若 f ( x)log a x,则f ( x)1 x ln a 8若 f ( x)ln x ,则 f ( x)1 x 2)导数的运算法则 2.[ f (x)g( x)] f ( x)g( x) f ( x) g (x)

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

最新高中数学导数知识点归纳总结

高中导数知识点归纳 1 一、基本概念 2 1. 导数的定义: 3 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也4 引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 5 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数6 )(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 7 ()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=) ()(lim )(00000 8 2 导数的几何意义:(求函数在某点处的切线方程) 9 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的10 斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为11 ).)((0'0x x x f y y -=- 12 3.基本常见函数的导数: 13 ①0;C '=(C 为常数) ②()1;n n x nx -'= 14 ③(sin )cos x x '=; ④(cos )sin x x '=-; 15 ⑤();x x e e '= ⑥()ln x x a a a '=; 16 ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 17 二、导数的运算 18 1.导数的四则运算: 19

高中数学导数之变化率问题

冷世平之教案设计【高二下】 选修2-2第一章导数及其应用第1课时 1 课题:§1.1.1变化率及导数的概念 三维目标: 1、 知识与技能 ⑴理解平均变化率的概念; ⑵了解瞬时速度、瞬时变化率的概念; ⑶理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; ⑷会求函数在某点的导数或瞬时变化率; ⑸理解导数的几何意义。 2、过程与方法 ⑴通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数; ⑵通过动手计算培养学生观察、分析、比较和归纳能力; ⑶通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。 3、情态与价值观 ⑴通过学生的积极参与、学习变化率与导数的知识,培养学生思维的科学性、严密性,不断认识数形结合和等价转化的数学思想; ⑵通过运动的观点体会导数的内涵,使学生掌握导数的概念,从而激发学生学习数学的兴趣; ⑶通过对变化率与导数的学习,不断培养自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神 教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成,导数及几何意义的理解。 教学难点:在平均变化率的基础上去探求瞬时变化率,导数及几何意义的理解。 教学过程: 一、引入课题: 为了描述现实世界中运动、过程等变化的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度。 二、讲解新课: 【探究1】气球膨胀率 同学们,相信大家都玩过气球吧,我们回忆一下吹气球的过程,可以发现,随着气球内气体的容量的增加,气球的半径增加的越来越慢, 从数学角度,如何描述这种现象呢? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是34 ()3 V r r π=,如果将半径r 表示为体积V 的函数, 那么()r V 。 【分析】⑴当V 从0增加到1时,气球半径增加了(1)(0)0.62()r r dm -≈,气球的平均膨胀率为(1)(0)0.62(/)10 r r dm L -≈-;⑵当V 从1增加到2时,气球半径增加了(2)(1)0.16()r r dm -≈,气球的平均膨胀率为(2)(1)0.16(/)21 r r dm L -≈-。可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了。 【思考】当空气容量从1V 增加到2V 时,气球的平均膨胀率是多少? 【答案】2121 ()()r V r V V V -- 【探究2】高台跳水

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高中数学导数知识点归纳总结

导 数 知识要点 1. 导数(导函数的简称)的定义:即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. Ps :二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f (x )的导数y '=f '(x )仍然是x 的函数,则y '=f '(x )的导数叫做函数y=f (x )的二阶导数。 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. ⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 3. 导数的几何意义: 就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

)0(2''' ≠-= ?? ? ??v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+ =,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形. 6. 函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法; 如果函数)(x f y =在区间I 恒有)('x f =0,则)(x f y =为常数. 注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件. ②一般地,如果f (x )在某区间有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.

高考积分,导数知识点精华总结

定积分 一、知识点与方法: 1、定积分的概念 设函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……把区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上取任一点(1,2,,)i i n ξ=…作和式 1 ()n n i i I f x ξ== ?∑ (其中x ?为小区间长度) ,把n →∞即0x ?→时,和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作:?b a dx x f )(,即?b a dx x f )(=1 lim ()n i n i f x ξ→∞ =?∑ 。 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式。 (1)定积分的几何意义:当函数()f x 在区间[,]a b 上恒为正时,定积分()b a f x dx ?的几何意 义是以曲线()y f x =为曲边的曲边梯形的面积。 (2)定积分的性质 ① ??=b a b a dx x f k dx x kf )()((k 为常数);② ???± = ±b a b a b a dx x g dx x f dx x g x f )()()()(; ③???+ = b a c a b c dx x f dx x f dx x f )()()((其中a c b <<)。 2、微积分基本定理 如果()y f x =是区间[,]a b 上的连续函数,并且()()F x f x '=,那么: ()()|()()b b a a f x dx F x F b F a ==-? 3、定积分的简单应用 (1) 定积分在几何中的应用:求曲边梯形的面积由三条直线 ,()x a x b a b ==<,x 轴及一条曲线()(()0)y f x f x =≥围成的 曲边梯的面积? = b a dx x f S )(。 如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

变化率和导数(三个课时教案)

第一章导数及其应用 第一课时:变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴当V 从0增加到1时,气球半径增加了 )(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

高中数学导数知识点归纳

导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于 P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 趋近于 P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作y ',即0 ()() ()lim x f x x f x f x x ?→+?-'=? 例一: 若2012)1(/=f ,则x f x f x ?-?+→? )1()1(l i m 0 = ,x f x f x ?--?+→?) 1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 二.导数的计算 1)基本初等函数的导数公式: 2 若()f x x α =,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '=

高中数学导数知识点归纳总结

核心出品 必属精品 免费下载 导 数 考试内容: 导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c 为常数)、y=xn(n ∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. §14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做

)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时, 1-=??x y ,故x y x ??→?0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-=?? ? ??v v u v vu v u 注:①v u ,必须是可导函数. ②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、 积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形.

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

(精心整理)高中数学导数知识点归纳总结

§14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)] ()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→

高中数学-变化率与导数_提高

变化率与导数 【学习目标】 (1)理解平均变化率的概念; (2)了解瞬时速度、瞬时变化率的概念; (3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; (4)会求函数在某点的导数或瞬时变化率; 【要点梳理】 知识点一:平均变化率问题 1.变化率 事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; 2.平均变化率 一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121 ()() f x f x x x -- 要点诠释: ① 本质:如果函数的自变量的“增量”为x ?,且21x x x ?=-,相应的函数值的“增量”为 y ?,21()()y f x f x ?=-,则函数()f x 从1x 到2x 的平均变化率为 2121 ()()f x f x y x x x -?=?- ② 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势. 即递增或递减幅度的大小。 对于不同的实际问题,平均变化率富于不同的实际意义。如位移运动中,位移S (m )从t 1秒到t 2秒的平均变化率即为t 1秒到t 2秒这段时间的平均速度。 高台跳水运动中平均速度只能粗略地描述物体在某段时间内的运动状态,要想更精确地刻画物体运动,就要研究某个时刻的速度即瞬时速度。 3.如何求函数的平均变化率 求函数的平均变化率通常用“两步”法: ①作差:求出21()()y f x f x ?=-和21x x x ?=- ②作商:对所求得的差作商,即2121 ()()f x f x y x x x -?=?-。 要点诠释: 1. x ?是1x 的一个“增量”,可用1x x +?代替2x ,同样21()()y f x f x ?=-。 2. x V 是一个整体符号,而不是V 与x 相乘。 3. 求函数平均变化率时注意,x y V V ,两者都可正、可负,但x V 的值不能为零,y V 的值可以为零。若

高三数学一轮复习(知识点归纳与总结):变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0, 即 f′(x0)=lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx → f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

高中数学导数知识点归纳.

高中数学选修 2----2知识点第一章导数及其应用 一.导数概念的引入1.导数的物理意义:瞬时速率。一般的,函数()y f x 在0x x 处的瞬时变化率是000()() lim x f x x f x x ,我们称它为函数()y f x 在0x x 处的导数,记作0()f x 或0|x x y ,即0()f x =000()() lim x f x x f x x 2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点 n P 趋近于P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00()()n n n f x f x k x x ,当点n P 趋近于P 时,函数()y f x 在0x x 处的导数就是切线PT 的斜率k ,即0000()()lim () n x n f x f x k f x x x 3.导函数:当x 变化时,()f x 便是x 的一个函数,我们称它为()f x 的导函数. ()y f x 的导函数有时也记作y ,即0()() ()lim x f x x f x f x x 二.导数的计算 1)基本初等函数的导数公式 : 2 若() f x x ,则1()f x x ; 3 若() sin f x x ,则()cos f x x 4 若() cos f x x ,则()sin f x x ; 5 若() x f x a ,则()ln x f x a a 6 若() x f x e ,则()x f x e 7 若() log x a f x ,则1()ln f x x a 8 若()ln f x x ,则1 ()f x x 2)导数的运算法则2. [()()]()()()()f x g x f x g x f x g x

高中数学导数及其应用

高中数学导数及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高中数学导数及其应用 一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如

在点处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间 ()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时,

相关文档
最新文档